You have reached the cached page for https://www.acunetix.com/blog/articles/dom-xss-explained/
Below is a snapshot of the Web page as it appeared on 3/6/2024 (the last time our crawler visited it). This is the version of the page that was used for ranking your search results. The page may have changed since we last cached it. To see what might have changed (without the highlights), go to the current page.
Bing is not responsible for the content of this page.






































  








Get a demo


Toggle navigation 













Get a demo






	Product
	Why Acunetix? 	Solutions 	INDUSTRIES 	IT & Telecom
	Government
	Financial Services
	Education
	Healthcare

 
	ROLES 	CTO & CISO
	Engineering Manager
	Security Engineer
	DevSecOps

 

 
	Case Studies
	Customers
	Testimonials

 
	Pricing
	About Us 	Our story
	In the news
	Careers
	Contact

 
	Resources 	Blog
	Webinars
	White papers
	Buyer’s guide
	Partners
	Support

 
	Get a demo





















THE ACUNETIX BLOG





Articles 


DOM XSS: An Explanation of DOM-based Cross-site Scripting
















  Tomasz Andrzej Nidecki | March 3, 2019
 



DOM XSS stands for Document Object Model-based Cross-site Scripting. A DOM-based XSS attack is possible if the web application writes data to the Document Object Model without proper sanitization. The attacker can manipulate this data to include XSS content on the web page, for example, malicious JavaScript code.

The Document Object Model is a convention used to represent and work with objects in an HTML document (as well as in other document types). All HTML documents have an associated DOM that consists of objects, which represent document properties from the point of view of the browser. When a client-side script is executed, it can use the DOM of the HTML page where the script runs. The script can access various properties of the page and change their values.

An attacker may use several DOM objects to create a Cross-site Scripting attack. The most popular objects from this perspective are document.url, document.location, and document.referrer. Potential consequences of DOM-based XSS vulnerabilities are classified in the OWASP Top 10 2017 document as moderate.

A Typical Example of a DOM XSS Attack

The following is a basic example of a DOM-based Cross-site Scripting vulnerability. The http://www.example.com/userdashboard.html page is customized based on the user name. The user name is encoded in the URL and used directly on the resulting page:

<html>
<head>
<title>Custom Dashboard </title>
...
</head>
Main Dashboard for
<script>
	var pos=document.URL.indexOf("context=")+8;
	document.write(document.URL.substring(pos,document.URL.length));
</script>
...
</html>

For example,

http://www.example.com/userdashboard.html?context=Mary is a dashboard customized for Mary. It contains the string Main Dashboard for Mary at the top.

Here is how a DOM-based XSS attack can be performed for this web application:

	The attacker embeds a malicious script in the URL: http://www.example.com/userdashboard.html#context=<script>SomeFunction(somevariable)</script>.
	The victim’s browser receives this URL, sends an HTTP request to http://www.example.com, and receives the static HTML page.
	The browser starts building the DOM of the page and populates the document.URL property with the URL from step 1.
	The browser parses the HTML page, reaches the script, and runs it, extracting the malicious content from the document.URL property.
	The browser updates the raw HTML body of the page to contain: Main Dashboard for <script>SomeFunction(somevariable)</script>.
	The browser finds the JavaScript code in the HTML body and executes it.


In reality, the attacker would encode the URL payload so that it is not obvious that it contains a script. Some browsers may encode the < and > characters in the URL, causing the attack to fail. However, there are other scenarios that do not require these characters, nor embedding the code into the URL directly. Therefore, these browsers are not entirely immune to DOM XSS either.

How is DOM XSS Different?

Using the above example, we can observe that:

	The HTML page is static and there are no malicious scripts embedded into the page source code, as in the case of other types of XSS attacks.
	The script code never reaches the server if we use the # character. It is seen as a fragment and the browser does not forward it. Therefore, server-side attack detection tools will fail to detect this attack. Note that in some cases, depending on the type of the URL, the payload might get to the server and it may be impossible to hide it.


The characteristics of classic XSS are not valid in the case of DOM-based XSS vulnerabilities. Instead, DOM XSS attacks exploit inappropriate manipulation of DOM objects and properties in client-side code.

Defending Against DOM XSS Attacks

DOM XSS attacks are difficult to detect by server-side attack detection and prevention tools. The malicious payload usually does not reach the server and therefore cannot be sanitized in server-side code. However, the root of the problem still resides in the code of the page, this time in client-side code. You can use the same sanitization and prevention techniques as for other XSS attacks. The only difference is that in this case, you must review and sanitize client-side code, not server-side code.

To defend against DOM XSS, you can:

	Avoid using data received from the client for client-side sensitive actions such as rewriting or redirection.
	Sanitize client-side code by inspecting references to DOM objects that pose a threat, for example, URL, location, and referrer. This is especially important if DOM may be modified.
	Use intrusion prevention systems that are able to inspect inbound URL parameters and prevent the inappropriate pages to be served.


You can test the effectiveness of sanitization methods that you use by manually attempting to exploit them or by using automatic tools. Tools such as the Acunetix vulnerability scanner are much more effective. They perform automatic penetration tests using various payloads and mounting points to ensure complete web application security.

Comparison Between Classic XSS and DOM-based XSS


		Classic XSS	DOM XSS
	Root cause	Source code	Source code
	Premises	Inappropriate embedding of client-side data in outbound HTML pages (by the server)	Inappropriate referencing and use of DOM objects in client-side
	Page type	Dynamic	Static or dynamic
	Detection	Intrusion detection systems, logs	Cannot be detected server side if proper evading techniques are being used by the attacker
	Detection of vulnerabilities	Attack simulation, code review – server-side, vulnerability detection tools that perform automatic penetration testing	Attack simulation, code review – client-side, vulnerability detection tools that perform automatic penetration testing
	Defending	Sanitization – server side, intrusion prevention systems	Sanitization – client-side, intrusion prevention systems (to a lesser extent)




Detecting DOM-based XSS

An easy way to test if your website or web application is vulnerable to DOM-based XSS and other vulnerabilities is to run an automated web scan using the Acunetix vulnerability scanner, which includes a specialized DOM-based XSS scanner module. Take a demo and run scans against your website or web application.

For more information about XSS attacks, see also: What is Cross-site Scripting, Types of XSS, and Preventing XSS Attacks.

Frequently asked questions






What are DOM-based XSS vulnerabilities? 











DOM-based XSS vulnerabilities are a type of Cross-site Scripting (XSS) vulnerabilities. A DOM-based XSS attack is possible if the web application writes data to the Document Object Model (DOM) without proper sanitization. The attacker can manipulate this data to include, for example, malicious JavaScript code.

Learn more about all types of Cross-site scripting attacks.











How common are DOM-based XSS vulnerabilities? 











According to the latest Acunetix Web Application Vulnerability Report, DOM-based XSS vulnerabilities are quite rare and appear only in approximately 1.2% of web applications. However, they are detected only by some scanners and they might have serious repercussions, therefore they should not be treated lightly.

Read more about the current state of web security.











How to detect DOM-based XSS vulnerabilities? 











DOM-based XSS is not easy to detect because in many cases the payload never reaches the server and therefore all server-side tools completely ignore the attacks (for example, web application firewalls can’t protect against it). The best way to detect such vulnerabilities is by using a professional web vulnerability scanner with a DOM-based XSS detection module – Acunetix.

See what Acunetix Premium can do for you.











How to avoid DOM-based XSS vulnerabilities? 











To avoid DOM-based XSS, you should avoid using data received from the client for client-side sensitive actions and sanitize client-side code by inspecting references to DOM objects that pose a threat, for example, URL, location, and referrer.

Read about DOM-based XSS vulnerabilities in popular websites and web applications.



















Get the latest content on web security 
 in your inbox each week.


















We respect your
privacy














SHARE THIS POST

















































THE AUTHOR







Tomasz Andrzej Nidecki

Principal Cybersecurity Writer

 LinkedIn 




Tomasz Andrzej Nidecki (also known as tonid) is a Primary Cybersecurity Writer at Invicti, focusing on Acunetix. A journalist, translator, and technical writer with 25 years of IT experience, Tomasz has been the Managing Editor of the hakin9 IT Security magazine in its early years and used to run a major technical blog dedicated to email security.


 Related Posts:
	Web vulnerability classes in the context of information security certificationsRead more  
	How to build a cyber incident response planRead more  
	How Acunetix addresses HTTP/2 vulnerabilitiesRead more  



 


Most Popular Articles:
	What is SQL Injection (SQLi) and How to Prevent ItRead more 
	Cross-site Scripting (XSS)Read more 
	Google Hacking: What is a Google Hack?Read more 




	 Older
	Newer 




Subscribe by Email
 Get the latest content on web security in your inbox each week.












We respect your
privacy






Learn More
	IIS Security
	Apache Troubleshooting
	Security Scanner
	DAST vs SAST
	Threats, Vulnerabilities, & Risks
	Vulnerability Assessment vs Pen Testing
	Server Security
	Google Hacking


Blog Categories
	Articles
	Web Security Zone
	News
	Events
	Product Releases
	Product Articles


 














 


 


 


 


 


 












Product Information









	AcuSensor Technology
	AcuMonitor Technology
	Acunetix Integrations
	Vulnerability Scanner
	Support Plans



Use Cases









	Penetration Testing Software
	Website Security Scanner
	External Vulnerability Scanner
	Web Application Security
	Vulnerability Management Software



Website Security









	Cross-site Scripting
	SQL Injection
	Reflected XSS
	CSRF Attacks
	Directory Traversal



Learn More









	White Papers
	TLS Security
	WordPress Security
	Web Service Security
	Prevent SQL Injection



Company









	About Us
	Customers
	Become a Partner
	Careers
	Contact



Documentation









	Case Studies
	Support
	Videos
	Vulnerability Index
	Webinars




 

	Login
	Invicti Subscription Services Agreement
	Privacy Policy
	Terms of Use
	Sitemap


	Find us on Facebook
	Follow us on Twiter
	Follow us on LinkedIn




© Acunetix 2024, by Invicti


































