You have reached the cached page for https://en.wikipedia.org/wiki/SQL_injection
Below is a snapshot of the Web page as it appeared on 3/7/2024 (the last time our crawler visited it). This is the version of the page that was used for ranking your search results. The page may have changed since we last cached it. To see what might have changed (without the highlights), go to the current page.
Bing is not responsible for the content of this page.

Jump to content

	
		
			
				

	
	

Main menu
	
	

				
		

	
	Main menu

	move to sidebar
	hide

	

	
		Navigation
	

	
		
			Main page
	Contents
	Current events
	Random article
	About Wikipedia
	Contact us
	Donate

		
	

	
	

	
		Contribute
	

	
		
			Help
	Learn to edit
	Community portal
	Recent changes
	Upload file

		
	

	

	
		Languages

		
			Language links are at the top of the page.

		

	

				

	

		
			

	
	
		
		
	

		

		
			

	

Search
	
	
		
			
				
					
						
						
					

					
				

				Search
			

		

	

			
	
	

	
		
		

		
	

	

	
		
		

		
	

	
		
		
	
	

	
		
		

		
	

	

	
		
			Create account

	Log in

		
	

	

	

	
	

Personal tools
	
	

		

	
		
			 Create account
	 Log in

		
	

	
		Pages for logged out editors learn more
	

	
		
			Contributions
	Talk

		
	

	
	

		

	

	
		
			

		

		
			
		
			
				
				
				

		
		

	

	
				
					
					
	
	Contents

	move to sidebar
	hide

		
			
				(Top)

			
		
	
		
			
			1History

		
		
		

	
	
		
			
			2Form

		
		
		

	
	
		
			
			3Technical implementations

		
		
			
				
				Toggle Technical implementations subsection
			
		
			
			
				
				3.1Incorrectly constructed SQL statements

			
			
			

		
	
			
				
				3.2Blind SQL injection

			
			
				
			
				
				3.2.1Conditional responses

			
			
			

		

		
	
			
				
				3.3Second order SQL injection

			
			
			

		

	
	
		
			
			4Mitigation

		
		
			
				
				Toggle Mitigation subsection
			
		
			
			
				
				4.1Escaping

			
			
			

		
	
			
				
				4.2Object relational mappers

			
			
			

		
	
			
				
				4.3Parameterized statements

			
			
			

		
	
			
				
				4.4Pattern check

			
			
			

		
	
			
				
				4.5Database permissions

			
			
			

		

	
	
		
			
			5Examples

		
		
		

	
	
		
			
			6In popular culture

		
		
		

	
	
		
			
			7See also

		
		
		

	
	
		
			
			8References

		
		
		

	
	
		
			
			9External links

		
		
		

	

					

		
			

		

		
			
				
					
						

	
	

Toggle the table of contents
	
	

							
			

		
	

					
					SQL injection

							

	
	

41 languages
	
	

		
			
				العربية
	Azərbaycanca
	বাংলা
	Català
	Čeština
	Dansk
	Deutsch
	Ελληνικά
	Español
	Euskara
	فارسی
	Français
	한국어
	Հայերեն
	Bahasa Indonesia
	Italiano
	עברית
	ქართული
	Latviešu
	Lombard
	Magyar
	മലയാളം
	Bahasa Melayu
	Монгол
	Nederlands
	日本語
	Norsk bokmål
	Polski
	Português
	Русский
	Shqip
	Slovenčina
	Српски / srpski
	Suomi
	Svenska
	Türkçe
	Türkmençe
	Українська
	اردو
	Tiếng Việt
	中文

			Edit links

		

	

				
					
						
							
								

	
		
			Article
	Talk

		
	

								

	
	English
	
	

					

	
		
		

		
	

				
	

							
						

						
							
								

	
		
			Read
	Edit
	View history

		
	

							
				
							
								

	
	Tools
	
	

									
						

	
	Tools

	move to sidebar
	hide

	

	
		Actions
	

	
		
			Read
	Edit
	View history

		
	

	
		General
	

	
		
			What links here
	Related changes
	Upload file
	Special pages
	Permanent link
	Page information
	Cite this page
	Get shortened URL
	Download QR code
	Wikidata item

		
	

	
		Print/export
	

	
		
			Download as PDF
	Printable version

		
	

	
		In other projects
	

	
		
			Wikibooks

		
	

									

				
	

							
						

					

				

				
					
						
							
				
							

		
						
						
					

				

				
					
							
		

						From Wikipedia, the free encyclopedia

					

					

					
					
					Computer hacking technique

A classification of SQL injection attacking vector as of 2010
In computing, SQL injection is a code injection technique used to attack data-driven applications, in which malicious SQL statements are inserted into an entry field for execution (e.g. to dump the database contents to the attacker).[1][2] SQL injection must exploit a security vulnerability in an application's software, for example, when user input is either incorrectly filtered for string literal escape characters embedded in SQL statements or user input is not strongly typed and unexpectedly executed. SQL injection is mostly known as an attack vector for websites but can be used to attack any type of SQL database.

SQL injection attacks allow attackers to spoof identity, tamper with existing data, cause repudiation issues such as voiding transactions or changing balances, allow the complete disclosure of all data on the system, destroy the data or make it otherwise unavailable, and become administrators of the database server. Document-oriented NoSQL databases can also be affected by this security vulnerability.[3]

In a 2012 study, it was observed that the average web application received four attack campaigns per month, and retailers received twice as many attacks as other industries.[4]

History[edit]

The first public discussions of SQL injection started appearing around 1998;[5] for example, a 1998 article in Phrack Magazine.[6]

Form[edit]

SQL injection (SQLI) was considered one of the top 10 web application vulnerabilities of 2007 and 2010 by the Open Web Application Security Project.[7] In 2013, SQLI was rated the number one attack on the OWASP top ten.[8] There are four main sub-classes of SQL injection:

	Classic SQLI
	Blind or Inference SQL injection
	Database management system-specific SQLI
	Compounded SQLI

		SQL injection + insufficient authentication[9]
	SQL injection + DDoS attacks[10]
	SQL injection + DNS hijacking[11]
	SQL injection + XSS[12]

The Storm Worm is one representation of Compounded SQLI.[13]

This classification represents the state of SQLI, respecting its evolution until 2010—further refinement is underway.[14]

Technical implementations[edit]

Incorrectly constructed SQL statements[edit]

This form of injection relies on the fact that SQL statements consist of both data used by the SQL statement and commands that control how the SQL statement is executed. For example, in the SQL statement select * from person where name = 'susan' and age = 2 the string 'susan' is data and the fragment and age = 2 is an example of a command (the value 2 is also data in this example).

SQL injection occurs when specially crafted user input is processed by the receiving program in a way that allows the input to exit a data context and enter a command context. This allows the attacker to alter the structure of the SQL statement which is executed.

As a simple example, imagine that the data 'susan' in the above statement was provided by user input. The user entered the string 'susan' (without the apostrophes) in a web form text entry field, and the program used string concatenation statements to form the above SQL statement from the three fragments select * from person where name=', the user input of 'susan', and ' and age = 2.

Now imagine that instead of entering 'susan' the attacker entered ' or 1=1; --.

The program will use the same string concatenation approach with the 3 fragments of select * from person where name=', the user input of ' or 1=1; --, and ' and age = 2 and construct the statement select * from person where name='' or 1=1; -- and age = 2. Many databases will ignore the text after the '--' string as this denotes a comment. The structure of the SQL command is now select * from person where name='' or 1=1; and this will select all person rows rather than just those named 'susan' whose age is 2. The attacker has managed to craft a data string which exits the data context and entered a command context.

A more complex example is now presented.

Imagine a program creates a SQL statement using the following string assignment command :

var statement = "SELECT * FROM users WHERE name = '" + userName + "'";

This SQL code is designed to pull up the records of the specified username from its table of users. However, if the "userName" variable is crafted in a specific way by a malicious user, the SQL statement may do more than the code author intended. For example, setting the "userName" variable as:

' OR '1'='1

or using comments to even block the rest of the query (there are three types of SQL comments[15]). All three lines have a space at the end:

' OR '1'='1' --
' OR '1'='1' {
' OR '1'='1' /*

renders one of the following SQL statements by the parent language:

SELECT * FROM users WHERE name = '' OR '1'='1';

SELECT * FROM users WHERE name = '' OR '1'='1' -- ';

If this code were to be used in authentication procedure then this example could be used to force the selection of every data field (*) from all users rather than from one specific user name as the coder intended, because the evaluation of '1'='1' is always true.

The following value of "userName" in the statement below would cause the deletion of the "users" table as well as the selection of all data from the "userinfo" table (in essence revealing the information of every user), using an API that allows multiple statements:

a';DROP TABLE users; SELECT * FROM userinfo WHERE 't' = 't

This input renders the final SQL statement as follows and specified:

SELECT * FROM users WHERE name = 'a';DROP TABLE users; SELECT * FROM userinfo WHERE 't' = 't';

While most SQL server implementations allow multiple statements to be executed with one call in this way, some SQL APIs such as PHP's mysql_query() function do not allow this for security reasons. This prevents attackers from injecting entirely separate queries, but doesn't stop them from modifying queries.

Blind SQL injection[edit]

Blind SQL injection is used when a web application is vulnerable to an SQL injection but the results of the injection are not visible to the attacker. The page with the vulnerability may not be one that displays data but will display differently depending on the results of a logical statement injected into the legitimate SQL statement called for that page.
This type of attack has traditionally been considered time-intensive because a new statement needed to be crafted for each bit recovered, and depending on its structure, the attack may consist of many unsuccessful requests. Recent advancements have allowed each request to recover multiple bits, with no unsuccessful requests, allowing for more consistent and efficient extraction.[16] There are several tools that can automate these attacks once the location of the vulnerability and the target information has been established.[17]

Conditional responses[edit]

One type of blind SQL injection forces the database to evaluate a logical statement on an ordinary application screen. As an example, a book review website uses a query string to determine which book review to display. So the URL https://books.example.com/review?id=5 would cause the server to run the query

SELECT * FROM bookreviews WHERE ID = '5';

from which it would populate the review page with data from the review with ID 5, stored in the table bookreviews. The query happens completely on the server; the user does not know the names of the database, table, or fields, nor does the user know the query string. The user only sees that the above URL returns a book review. A hacker can load the URLs https://books.example.com/review?id=5 OR 1=1 and https://books.example.com/review?id=5 AND 1=2, which may result in queries

SELECT * FROM bookreviews WHERE ID = '5' OR '1'='1';
SELECT * FROM bookreviews WHERE ID = '5' AND '1'='2';

respectively. If the original review loads with the "1=1" URL and a blank or error page is returned from the "1=2" URL, and the returned page has not been created to alert the user the input is invalid, or in other words, has been caught by an input test script, the site is likely vulnerable to an SQL injection attack as the query will likely have passed through successfully in both cases. The hacker may proceed with this query string designed to reveal the version number of MySQL running on the server: https://books.example.com/review?id=5 AND substring(@@version, 1, INSTR(@@version, '.') - 1)=4, which would show the book review on a server running MySQL 4 and a blank or error page otherwise. The hacker can continue to use code within query strings to achieve their goal directly, or to glean more information from the server in hopes of discovering another avenue of attack.[18][19]

Second order SQL injection[edit]

Second order SQL injection occurs when submitted values contain malicious commands that are stored rather than executed immediately. In some cases, the application may correctly encode an SQL statement and store it as valid SQL. Then, another part of that application without controls to protect against SQL injection might execute that stored SQL statement. This attack requires more knowledge of how submitted values are later used. Automated web application security scanners would not easily detect this type of SQL injection and may need to be manually instructed where to check for evidence that it is being attempted.

Mitigation[edit]

An SQL injection is a well known attack and easily prevented by simple measures. After an apparent SQL injection attack on TalkTalk in 2015, the BBC reported that security experts were stunned that such a large company would be vulnerable to it.[20] Techniques like pattern matching, software testing, and grammar analysis are some common ways to mitigate these attacks.[2]

Escaping[edit]

The simplest way to prevent injections is to escape all characters that have a special meaning in SQL. The manual for an SQL DBMS explains which characters have a special meaning, which allows creating a comprehensive blacklist of characters that need translation. For instance, every occurrence of a single quote (') in a string parameter must be prepended with a backslash (\) so that the database understands the single quote is part of a given string, rather than its terminator. PHP provides the mysqli_real_escape_string() function to escape strings according to MySQL semantics; the following example parameterizes a SQL query by escaping username and password parameters:

Relying on the programmer to escape all query parameters is error prone, as it is easy to forget to escape a given string. A programmer may choose to implement their own abstractions to escape said parameters automatically, which can reduce susceptibility to error, if not entirely eliminate it.[21]

Object relational mappers[edit]

Object–relational mapping (ORM) frameworks such as Hibernate and ActiveRecord provide an object-oriented interface for queries over a relational database. Most, if not all, ORMs, automatically handle the escaping needed to prevent SQL injection attacks, as a part of the framework's query API. However, many ORMs provide the ability to bypass their mapping facilities and emit raw SQL statements; improper use of this functionality can introduce the possibility for an injection attack.[22]

Parameterized statements[edit]

Main article: Prepared statement

With most development platforms, parameterized statements that work with parameters can be used (sometimes called placeholders or bind variables) instead of embedding user input in the statement. A placeholder can only store a value of the given type and not an arbitrary SQL fragment. Hence the SQL injection would simply be treated as a strange (and probably invalid) parameter value. In many cases, the SQL statement is fixed, and each parameter is a scalar, not a table. The user input is then assigned (bound) to a parameter.[23]

Pattern check[edit]

Integer, float, or boolean string parameters can be checked to determine if their value is a valid representation of the given type. Strings that must adhere to a specific pattern or condition (e.g. dates, UUIDs, phone numbers) can also be checked to determine if said pattern is matched.

Database permissions[edit]

Limiting the permissions on the database login used by the web application to only what is needed may help reduce the effectiveness of any SQL injection attacks that exploit any bugs in the web application.

For example, on Microsoft SQL Server, a database logon could be restricted from selecting on some of the system tables which would limit exploits that try to insert JavaScript into all the text columns in the database.

deny select on sys.sysobjects to webdatabaselogon;
deny select on sys.objects to webdatabaselogon;
deny select on sys.tables to webdatabaselogon;
deny select on sys.views to webdatabaselogon;
deny select on sys.packages to webdatabaselogon;

Examples[edit]

	In February 2002, Jeremiah Jacks discovered that Guess.com was vulnerable to an SQL injection attack, permitting anyone able to construct a properly-crafted URL to pull down 200,000+ names, credit card numbers and expiration dates in the site's customer database.[24]
	On November 1, 2005, a teenaged hacker used SQL injection to break into the site of a Taiwanese information security magazine from the Tech Target group and steal customers' information.[25]
	On January 13, 2006, Russian computer criminals broke into a Rhode Island government website and allegedly stole credit card data from individuals who have done business online with state agencies.[26]
	On September 19, 2007 and January 26, 2009 the Turkish hacker group "m0sted" used SQL injection to exploit Microsoft's SQL Server to hack web servers belonging to McAlester Army Ammunition Plant and the US Army Corps of Engineers respectively.[27]
	On April 13, 2008, the Sexual and Violent Offender Registry of Oklahoma shut down its website for "routine maintenance" after being informed that 10,597 Social Security numbers belonging to sex offenders had been downloaded via an SQL injection attack[28]
	On August 17, 2009, the United States Department of Justice charged an American citizen, Albert Gonzalez, and two unnamed Russians with the theft of 130 million credit card numbers using an SQL injection attack. In reportedly "the biggest case of identity theft in American history", the man stole cards from a number of corporate victims after researching their payment processing systems. Among the companies hit were credit card processor Heartland Payment Systems, convenience store chain 7-Eleven, and supermarket chain Hannaford Brothers.[29]
	In July 2010, a South American security researcher who goes by the handle "Ch Russo" obtained sensitive user information from popular BitTorrent site The Pirate Bay. He gained access to the site's administrative control panel and exploited an SQL injection vulnerability that enabled him to collect user account information, including IP addresses, MD5 password hashes and records of which torrents individual users have uploaded.[30]
	From July 24 to 26, 2010, attackers from Japan and China used an SQL injection to gain access to customers' credit card data from Neo Beat, an Osaka-based company that runs a large online supermarket site. The attack also affected seven business partners including supermarket chains Izumiya Co, Maruetsu Inc, and Ryukyu Jusco Co. The theft of data affected a reported 12,191 customers. As of August 14, 2010 it was reported that there have been more than 300 cases of credit card information being used by third parties to purchase goods and services in China.
	On September 19 during the 2010 Swedish general election a voter attempted a code injection by hand writing SQL commands as part of a write-in vote.[31]
	On November 8, 2010 the British Royal Navy website was compromised by a Romanian hacker named TinKode using SQL injection.[32][33]
	On April 11, 2011, Barracuda Networks was compromised using an SQL injection flaw. Email addresses and usernames of employees were among the information obtained.[34]
	Over a period of 4 hours on April 27, 2011, an automated SQL injection attack occurred on Broadband Reports website that was able to extract 8% of the username/password pairs: 8,000 random accounts of the 9,000 active and 90,000 old or inactive accounts.[35][36][37]
	On June 1, 2011, "hacktivists" of the group LulzSec were accused of using SQLI to steal coupons, download keys, and passwords that were stored in plaintext on Sony's website, accessing the personal information of a million users.[38]
	In June 2011, PBS was hacked by LulzSec, most likely through use of SQL injection; the full process used by hackers to execute SQL injections was described in this Imperva blog.[39]
	In July 2012 a hacker group was reported to have stolen 450,000 login credentials from Yahoo!. The logins were stored in plain text and were allegedly taken from a Yahoo subdomain, Yahoo! Voices. The group breached Yahoo's security by using a "union-based SQL injection technique".[40][41]
	On October 1, 2012, a hacker group called "Team GhostShell" published the personal records of students, faculty, employees, and alumni from 53 universities including Harvard, Princeton, Stanford, Cornell, Johns Hopkins, and the University of Zurich on pastebin.com. The hackers claimed that they were trying to "raise awareness towards the changes made in today's education", bemoaning changing education laws in Europe and increases in tuition in the United States.[42]
	On November 4, 2013, hacktivist group "RaptorSwag" allegedly compromised 71 Chinese government databases using an SQL injection attack on the Chinese Chamber of International Commerce. The leaked data was posted publicly in cooperation with Anonymous.[43]
	In August 2014, Milwaukee-based computer security company Hold Security disclosed that it uncovered a theft of confidential information from nearly 420,000 websites through SQL injections.[44] The New York Times confirmed this finding by hiring a security expert to check the claim.[45]
	In October 2015, an SQL injection attack was used to steal the personal details of 156,959 customers from British telecommunications company TalkTalk's servers, exploiting a vulnerability in a legacy web portal.[46]
	In August 2020, an SQL injection attack was used to access information on the romantic interests of many Stanford students, as a result of insecure data sanitization standards on the part of Link, a start-up founded on campus by undergraduate Ishan Gandhi.[47]
	In early 2021, 70 gigabytes of data was exfiltrated from the far-right website Gab through a SQL injection attack. The vulnerability was introduced into the Gab codebase by Fosco Marotto, Gab's CTO.[48] A second attack against Gab was launched the next week using OAuth2 tokens stolen during the first attack.[49]

In popular culture[edit]

	A 2007 xkcd cartoon involved a character Robert'); DROP TABLE Students;-- named to carry out an SQL injection. As a result of this cartoon, SQL injection is sometimes informally referred to as "Bobby Tables".[50][51]
	Unauthorized login to websites by means of SQL injection forms the basis of one of the subplots in J.K. Rowling's 2012 novel The Casual Vacancy.
	In 2014, an individual in Poland legally renamed his business to Dariusz Jakubowski x'; DROP TABLE users; SELECT '1 in an attempt to disrupt operation of spammers' harvesting bots.[52]
	The 2015 game Hacknet has a hacking program called SQL_MemCorrupt. It is described as injecting a table entry that causes a corruption error in an SQL database, then queries said table, causing an SQL database crash and core dump.

See also[edit]

	Code injection
	Cross-site scripting
	Metasploit Project
	OWASP Open Web Application Security Project
	Prompt injection, a similar concept applied to artificial intelligence
	SGML entity
	Uncontrolled format string
	w3af
	Web application security

References[edit]

	^ Microsoft. "SQL Injection". Archived from the original on August 2, 2013. Retrieved August 4, 2013. SQL injection is an attack in which malicious code is inserted into strings that are later passed to an instance of SQL Server for parsing and execution. Any procedure that constructs SQL statements should be reviewed for injection vulnerabilities because SQLi Server will execute all syntactically valid queries that it receives. Even parameterized data can be manipulated by a skilled and determined attacker.

	^ a b
Zhuo, Z.; Cai, T.; Zhang, X.; Lv, F. (April 2021). "Long short‐term memory on abstract syntax tree for SQL injection detection". IET Software. 15 (2): 188–197. doi:10.1049/sfw2.12018. ISSN 1751-8806. S2CID 233582569.

	^
"Hacking NodeJS and MongoDB | Websecurify Blog". Retrieved November 15, 2023.

	^
Imperva (July 2012). "Imperva Web Application Attack Report" (PDF). Archived from the original (PDF) on September 7, 2013. Retrieved August 4, 2013. Retailers suffer 2x as many SQL injection attacks as other industries. / While most web applications receive 4 or more web attack campaigns per month, some websites are constantly under attack. / One observed website was under attack 176 out of 180 days, or 98% of the time.

	^
Sean Michael Kerner (November 25, 2013). "How Was SQL Injection Discovered? The researcher once known as Rain Forrest Puppy explains how he discovered the first SQL injection more than 15 years ago". Archived from the original on March 18, 2014. Retrieved November 15, 2023.

	^
Jeff Forristal (signing as rain.forest.puppy) (December 25, 1998). "NT Web Technology Vulnerabilities". Phrack Magazine. 8 (54 (article 8)). Archived from the original on March 19, 2014.

	^
"Category:OWASP Top Ten Project". OWASP. Archived from the original on May 19, 2011. Retrieved June 3, 2011.

	^
"Category:OWASP Top Ten Project". OWASP. Archived from the original on October 9, 2013. Retrieved August 13, 2013.

	^
"WHID 2007-60: The blog of a Cambridge University security team hacked". Xiom. Archived from the original on June 19, 2011. Retrieved June 3, 2011.

	^
"WHID 2009-1: Gaza conflict cyber war". Xiom. Archived from the original on October 7, 2011. Retrieved June 3, 2011.

	^
"List of Web Hacking Incidents: DNS Hijacking". Xiom. Archived from the original on June 18, 2009.

	^
Dark Reading Staff (May 13, 2008). "Third Wave of Web Attacks Not the Last". Dark reading. Informa. Retrieved January 1, 2024.

	^
Danchev, Dancho (January 23, 2007). "Mind Streams of Information Security Knowledge: Social Engineering and Malware". Ddanchev.blogspot.com. Archived from the original on July 21, 2011. Retrieved June 3, 2011.

	^
Deltchev, Krassen. "New Web 2.0 Attacks". B.Sc. Thesis (in English and German). Ruhr-University Bochum. Archived from the original on April 2, 2012. Retrieved February 18, 2010.

	^
"How to Enter SQL Comments" (PDF), IBM Informix Guide to SQL: Syntax, IBM, pp. 13–14, archived from the original (PDF) on February 24, 2021, retrieved June 4, 2018

	^
"Extracting Multiple Bits Per Request From Full-blind SQL Injection Vulnerabilities". Hack All The Things. Archived from the original on July 8, 2016. Retrieved July 8, 2016.

	^
"Using SQLBrute to brute force data from a blind SQL injection point". Justin Clarke. Archived from the original on June 14, 2008. Retrieved October 18, 2008.

	^
macd3v. "Blind SQL Injection tutorial". Archived from the original on December 14, 2012. Retrieved December 6, 2012.{{cite web}}: CS1 maint: numeric names: authors list (link)

	^
Andrey Rassokhin; Dmitry Oleksyuk. "TDSS botnet: full disclosure". Archived from the original on December 9, 2012. Retrieved December 6, 2012.

	^
"Questions for TalkTalk - BBC News". BBC News. October 26, 2015. Archived from the original on October 26, 2015. Retrieved October 26, 2015.

	^
"Transparent query layer for MySQL". Robert Eisele. November 8, 2010. Archived from the original on November 11, 2010.

	^
"SQL Injection Attacks & Prevention: Complete Guide". appsecmonkey.com. February 13, 2021. Retrieved February 24, 2021.

	^
"SQL Injection Prevention Cheat Sheet". Open Web Application Security Project. Archived from the original on January 20, 2012. Retrieved March 3, 2012.

	^
"Guesswork Plagues Web Hole Reporting". SecurityFocus. March 6, 2002. Archived from the original on July 9, 2012.

	^
"WHID 2005-46: Teen uses SQL injection to break to a security magazine web site". Web Application Security Consortium. November 1, 2005. Archived from the original on January 17, 2010. Retrieved December 1, 2009.

	^
"WHID 2006-3: Russian hackers broke into a RI GOV website". Web Application Security Consortium. January 13, 2006. Archived from the original on February 13, 2011. Retrieved May 16, 2008.

	^
"Anti-U.S. Hackers Infiltrate Army Servers". Information Week. May 29, 2009. Archived from the original on December 20, 2016. Retrieved December 17, 2016.

	^
Alex Papadimoulis (April 15, 2008). "Oklahoma Leaks Tens of Thousands of Social Security Numbers, Other Sensitive Data". The Daily WTF. Archived from the original on May 10, 2008. Retrieved May 16, 2008.

	^
"US man 'stole 130m card numbers'". BBC. August 17, 2009. Archived from the original on August 18, 2009. Retrieved August 17, 2009.

	^
"The pirate bay attack". July 7, 2010. Archived from the original on August 24, 2010.

	^
"Did Little Bobby Tables migrate to Sweden?". Alicebobandmallory.com. Archived from the original on July 1, 2012. Retrieved June 3, 2011.

	^
"Royal Navy website attacked by Romanian hacker". BBC News. November 8, 2010. Archived from the original on November 9, 2010. Retrieved November 15, 2023.

	^
Sam Kiley (November 25, 2010). "Super Virus A Target For Cyber Terrorists". Archived from the original on November 28, 2010. Retrieved November 25, 2010.

	^
"Hacker breaks into Barracuda Networks database". Archived from the original on July 27, 2011.

	^
"site user password intrusion info". Dslreports.com. Archived from the original on October 18, 2012. Retrieved June 3, 2011.

	^
"DSLReports says member information stolen". Cnet News. April 28, 2011. Archived from the original on March 21, 2012. Retrieved April 29, 2011.

	^
"DSLReports.com breach exposed more than 100,000 accounts". The Tech Herald. April 29, 2011. Archived from the original on April 30, 2011. Retrieved April 29, 2011.

	^
"LulzSec hacks Sony Pictures, reveals 1m passwords unguarded", electronista.com, June 2, 2011, archived from the original on June 6, 2011, retrieved June 3, 2011

	^
"Imperva.com: PBS Hacked - How Hackers Probably Did It". Archived from the original on June 29, 2011. Retrieved July 1, 2011.

	^
Ngak, Chenda. "Yahoo reportedly hacked: Is your account safe?". CBS News. Archived from the original on July 14, 2012. Retrieved July 16, 2012.

	^
Yap, Jamie (July 12, 2012). "450,000 user passwords leaked in Yahoo breach". ZDNet. Archived from the original on July 2, 2014. Retrieved February 18, 2017.

	^
Perlroth, Nicole (October 3, 2012). "Hackers Breach 53 Universities and Dump Thousands of Personal Records Online". New York Times. Archived from the original on October 5, 2012.

	^
Kovacs, Eduard (November 4, 2013). "Hackers Leak Data Allegedly Stolen from Chinese Chamber of Commerce Website". Softpedia News. Archived from the original on March 2, 2014. Retrieved February 27, 2014.

	^ Damon Poeter. 'Close-Knit' Russian Hacker Gang Hoards 1.2 Billion ID Creds Archived July 14, 2017, at the Wayback Machine, PC Magazine, August 5, 2014

	^ Nicole Perlroth. Russian Gang Amasses Over a Billion Internet Passwords Archived February 27, 2017, at the Wayback Machine, The New York Times, August 5, 2014.

	^
"TalkTalk gets record £400,000 fine for failing to prevent October 2015 attack". October 5, 2016. Archived from the original on October 24, 2016. Retrieved October 23, 2016.

	^
Catania, Sam (August 13, 2020). "Vulnerability in 'Link' website may have exposed data on Stanford students' crushes". The Stanfort Daily. Retrieved September 5, 2020.

	^
Goodin, Dan (March 2, 2021). "Rookie coding mistake prior to Gab hack came from site's CTO". Ars Technica.

	^
Goodin, Dan (March 8, 2021). "Gab, a haven for pro-Trump conspiracy theories, has been hacked again". Ars Technica.

	^
Munroe, Randall. "XKCD: Exploits of a Mom". Archived from the original on February 25, 2013. Retrieved February 26, 2013.

	^
"The Bobby Tables Guide to SQL Injection". September 15, 2009. Archived from the original on November 7, 2017. Retrieved October 30, 2017.

	^
"Jego firma ma w nazwie SQL injection. Nie zazdrościmy tym, którzy będą go fakturowali ;)". Niebezpiecznik (in Polish). September 11, 2014. Archived from the original on September 24, 2014. Retrieved September 26, 2014.

External links[edit]

	OWASP SQL Injection Cheat Sheets, by OWASP.
	WASC Threat Classification - SQL Injection Entry, by the Web Application Security Consortium.
	Why SQL Injection Won't Go Away Archived November 9, 2012, at the Wayback Machine, by Stuart Thomas.
	SDL Quick security references on SQL injection by Bala Neerumalla.
	How security flaws work: SQL injection

	
	v
	t
	e

Information security

	Related security categories	
	Computer security
	Automotive security
	Cybercrime
	Cybersex trafficking
	Computer fraud

	Cybergeddon
	Cyberterrorism
	Cyberwarfare
	Electromagnetic warfare
	Information warfare
	Internet security
	Mobile security
	Network security
	Copy protection
	Digital rights management

	vectorial version

	Threats	
	Adware
	Advanced persistent threat
	Arbitrary code execution
	Backdoors
	Hardware backdoors
	Code injection
	Crimeware
	Cross-site scripting
	Cross-site leaks
	DOM clobbering
	History sniffing
	Cryptojacking
	Botnets
	Data breach
	Drive-by download
	Browser Helper Objects
	Viruses
	Data scraping
	Denial-of-service attack
	Eavesdropping
	Email fraud
	Email spoofing
	Exploits
	Hacktivism
	Insecure direct object reference
	Keystroke loggers
	Logic bombs
	Time bombs
	Fork bombs
	Zip bombs
	Fraudulent dialers
	Malware
	Payload
	Phishing
	Voice

	Polymorphic engine
	Privilege escalation
	Ransomware
	Rootkits
	Scareware
	Shellcode
	Spamming
	Social engineering
	Spyware
	Software bugs
	Trojan horses
	Hardware Trojans
	Remote access trojans
	Vulnerability
	Web shells
	Wiper
	Worms
	SQL injection
	Rogue security software
	Zombie

	Defenses	
	Application security
	Secure coding
	Secure by default
	Secure by design
	Misuse case

	Computer access control
	Authentication
	Multi-factor authentication

	Authorization

	Computer security software
	Antivirus software
	Security-focused operating system

	Data-centric security
	Obfuscation (software)
	Data masking
	Encryption
	Firewall
	Intrusion detection system
	Host-based intrusion detection system (HIDS)
	Anomaly detection

	Security information and event management (SIEM)
	Mobile secure gateway
	Runtime application self-protection
	Site isolation

Retrieved from "https://en.wikipedia.org/w/index.php?title=SQL_injection&oldid=1209519117"

					Categories: 	Injection exploits
	SQL

Hidden categories: 	CS1 German-language sources (de)
	CS1 maint: numeric names: authors list
	Webarchive template wayback links
	CS1 Polish-language sources (pl)
	Articles with short description
	Short description is different from Wikidata
	Use mdy dates from February 2012
	Articles with example SQL code

				
			
			
		
		
			

		 This page was last edited on 22 February 2024, at 08:26 (UTC).
	Text is available under the Creative Commons Attribution-ShareAlike License 4.0;
additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.

		Privacy policy
	About Wikipedia
	Disclaimers
	Contact Wikipedia
	Code of Conduct
	Developers
	Statistics
	Cookie statement
	Mobile view

		
	

		

	

		
		

Toggle limited content width

