Quartz: Mineral information, data and localities.
Mindat.org relies on your donations to survive click here to help today!
Minerals by PropertiesMinerals by ChemistryAdvanced Locality SearchRandom MineralRandom LocalitySearch by minIDLocalities Near MeSearch ArticlesSearch GlossaryMore Search Options
Search For:
Mineral Name:
Locality Name:
Keyword(s):
 

Quartz

This page kindly sponsored by Dragon Minerals

About QuartzHide

Formula:
SiO2
Colour:
Colorless, purple, rose, red, black, yellow, brown, green, blue, orange, etc.
Lustre:
Vitreous
Hardness:
7
Specific Gravity:
2.65 - 2.66
Crystal System:
Trigonal
Name:
Quartz has been known and appreciated since pre-historic times. The most ancient name known is recorded by Theophrastus in about 300-325 BCE, κρύσταλλος or kristallos. The varietal names, rock crystal and bergcrystal, preserve the ancient usage. The root words κρύοσ signifying ice cold and στέλλειυ to contract (or solidify) suggest the ancient belief that kristallos was permanently solidified ice.

The earliest printed use of "querz" was anonymously published in 1505, but attributed to a physician in Freiberg, Germany, Ulrich Rülein von Kalbe (a.k.a. Rülein von Calw, 1527). Agricola used the spelling "quarzum" (Agricola 1530) as well as "querze", but Agricola also referred to "crystallum", "silicum", "silex", and silice". Tomkeieff (1941) suggested an etymology for quartz: "The Saxon miners called large veins - Gänge, and the small cross veins or stringers - Querklüfte. The name ore (Erz, Ertz) was applied to the metallic minerals, the gangue or to the vein material as a whole. In the Erzgebirge, silver ore is frequently found in small cross veins composed of silica. It may be that this ore was called by the Saxon miners 'Querkluftertz' or the cross-vein-ore. Such a clumsy word as 'Querkluftertz' could easily be condensed to 'Querertz' and then to 'Quertz', and eventually become 'Quarz' in German, 'quarzum' in Latin and 'quartz' in English." Tomkeieff (1941, q.v.) noted that "quarz", in its various spellings, was not used by other noted contemporary authors. "Quarz" was used in later literature referring to the Saxony mining district, but seldom elsewhere.

Gradually, there were more references to quartz: E. Brown in 1685 and Johan Gottschalk Wallerius in 1747. In 1669, Nicolaus Steno (Niels Steensen) obliquely formulated the concept of the constancy of interfacial angles in the caption of an illustration of quartz crystals. He referred to them as "cristallus" and "crystallus montium".

Tomkeieff (1941) also noted that Erasmus Bartholinus (1669) used the various spellings for "crystal" to signify other species than quartz and that crystal could refer to other "angulata corpora" (bodies with angles): "In any case in the second half of the XVIIIth century quartz became established as a name of a particular mineral and the name crystal became a generic term synonymous with the old term 'corpus angulatum'."
Isostructural with:
Quartz is one of the most common minerals found in the Earth's crust. If pure, quartz forms colorless, transparent and very hard crystals with a glass-like luster. A significant component of many igneous, metamorphic and sedimentary rocks, this natural form of silicon dioxide is found in an impressive range of varieties and colours.

The Si analogue of pertoldite.

Macro- and Cryptocrystalline Quartz


Quartz occurs in two basic forms:

1. The more common macrocrystalline quartz is made of visible crystals or grains. Examples are rock crystals, the grains in sandstone, but also massive quartz that is made of large crystallites without any crystal faces, like vein quartz.

07142420014946244348255.jpg
Macrocrystalline Quartz: Smoky Quartz
04206330015713541449961.jpg
Macrocrystalline Quartz: Rose Quartz
00680250014946244357863.jpg
Macrocrystalline Quartz: Quartz Grains in a Sandstone
07142420014946244348255.jpg
Macrocrystalline Quartz: Smoky Quartz
04206330015713541449961.jpg
Macrocrystalline Quartz: Rose Quartz
09543190015034997903091.jpg
Macrocrystalline Quartz: Quartz Grains in a Sandstone
07142420014946244348255.jpg
Macrocrystalline Quartz: Smoky Quartz
04206330015713541449961.jpg
Macrocrystalline Quartz: Rose Quartz
04400070014946244356287.jpg
Macrocrystalline Quartz: Quartz Grains in a Sandstone
2. Cryptocrystalline quartz or microcrystalline quartz is made of dense and compact aggregates of microscopic quartz crystals and crystallites. Examples are agate and chert. The different types of cryptocrystalline quartz are colloquially subsumed under the term chalcedony, although that term has a more strict definition in scientific literature. It is worth mentioning that most chalcedony contains small amounts of another SiO2 polymorph, moganite, so it is not always pure quartz.

07516550014946244351404.jpg
Cryptocrystalline Quartz: Flint
08975710014946244354406.jpg
Cryptocrystalline Quartz: Agate
00788600014946244369831.jpg
Cryptocrystalline Quartz: Radiolarite Chert
07516550014946244351404.jpg
Cryptocrystalline Quartz: Flint
09500800015140996749149.jpg
Cryptocrystalline Quartz: Agate
06111580014949688803537.jpg
Cryptocrystalline Quartz: Radiolarite Chert
07516550014946244351404.jpg
Cryptocrystalline Quartz: Flint
00913270014946244385745.jpg
Cryptocrystalline Quartz: Agate
00788600014946244369831.jpg
Cryptocrystalline Quartz: Radiolarite Chert


Quartz Varieties


Quartz crystals or aggregates that share certain peculiar physical properties have been classified as quartz varieties with specific "trivial names".
The best known examples are the colored varieties of quartz, like amethyst or smoky quartz, but there are also trivial names for specific crystal shapes, aggregates and textures, like scepter quartz, gwindel or quartzine. Because there are no canonical rules on naming or defining quartz varieties like they are for minerals, the definitions of some quartz varieties are precise and generally accepted, while the definitions of others vary considerably between different authors, or are rather fuzzy.

Mindat Classification of Quartz Varieties
On Mindat, macrocrystalline quartz and its varieties are listed as quartz and varieties of quartz.
Cryptocrystalline quartz and its varieties are listed as chalcedony, like "Quartz (Var: Chalcedony)", or as variety of chalcedony, like "Chalcedony (Var: Agate)".
More about the specific properties of chalcedony and its varieties can be found at the respective mineral pages.
Note that, contrary to minerals, the definitions of varieties are not mutually exclusive in the sense that no mineral can be another. A single specimen can be correctly classified as several varieties.

Structure of Quartz

09659940014946245124515.jpg
Fig.2: Basic structural features of quartz
01351410014946245135075.jpg
Fig.1: Threefold helix made of SiO4 groups. The child image is a video.
The structure of quartz was deciphered by Bragg and Gibbs in 1925 (for a review of the structure and symmetry features of quartz, see Heaney, 1994). Its basic building block is the SiO4 group, in which four oxygen atoms surround a central silicon atom to form a tetrahedron. Since each oxygen is member of two SiO4 groups, the formula of quartz is SiO2. The SiO4 tetrahedra form a three-dimensional network and many mineralogy textbooks classify quartz as a network silicate or tectosilicate.

Quartz can be thought of as being made of threefold and sixfold helical chains of SiO4 tetrahedra that run parallel to the c axis. Figure 1 shows two representations of a threefold SiO4 helix and its relationship to the quartz unit cell: to the right a ball model with red oxygen and white silicon atoms, to the left a tetrahedral model, with the corners of the tetrahedra at the position of the oxygen atoms.

Six of such helices are connected to form a ring that surrounds a central channel which runs parallel to the c-axis, sometimes called "c-channel". The SiO4 tetrahedra around the central c-channel form two independent sixfold helices. Figure 2 shows two views of the corresponding structure: looking in the direction of the c-axis in the top row, and looking in the direction of an a-axis in the bottom row. Like quartz crystals, the ring is six-sided but has a trigonal symmetry. The large channels are an important structural feature of quartz because they may be occupied by small cations.

You can explore the crystal structure of quartz with the interactive tool JSmol further down this page.

Handedness of Quartz Crystals

02347570014946245133792.jpg
Fig.3: Handedness of Quartz Crystals

A helix is either turning clockwise (right-handed) or counter-clockwise (left-handed). Due to the helical arrangement of the SiO4 tetrahedra, the atomic lattice of quartz possesses the symmetry properties of a helix: Quartz forms left- and right-handed crystals, whose crystal structure and morphology are mirror-images of each other.

In a crystal with space group P3121 (right), the sixfold helices turn counter-clockwise (left) and the threefold helices clockwise (right).
In a crystal with space group P3221 (left), the sixfold helices turn clockwise (right) and the threefold helices counter-clockwise (left).
For a thorough review of the symmetry features of quartz, see Heaney (1994).

The crystallographic form of quartz that is characteristic for its symmetry properties is the trigonal trapezohedron. The position of the faces of the positive trigonal trapezohedra on the crystal reflects the handedness of the structure of the crystal. The figure to the right visualizes the relationship between the handedness of the six-fold helices and the position of the faces of the positive trigonal trapezohedron (x - orange) and the trigonal bipyramid (s - blue). Unfortunately, these faces are not present on all crystals, and often it is not possible to determine the handedness of a crystal from its morphology.

Quartz is optically active: the polarization of a light ray passing through a crystal parallel to the c-axis will be rotated either to the left or the right, depending on the handedness of the crystal (Arago, 1811; Biot, 1812; Herschel, 1822). The relationship between handedness of the crystals and the symmetry of the structure and hence the optical rotation was determined by de Vries (1958).

The following table lists how symmetry, morphology and optical behaviour are related.
Note that the morphological handedness as expressed by the position of the trapezohedral and bipyramidal faces x and s does not match the symmetry's handedness:
Space GroupHandedness of
sixfold helix
Handedness of
threefold helix
Indices for
x- and s-forms
Position of
x- and s-face
Rotation of
polarization of light
Left-handed QuartzP3121 (right)structure: left (counter-clockwise)
symmetry: 31 (right)
structure: right (clockwise)
symmetry: 31 (right)
x {6 1 5 1}
s {2 1 1 1}
leftleft (counter-clockwise)
Right-handed QuartzP3221 (left)structure: right (clockwise)
symmetry: 32 (left)
structure: left (counter-clockwise)
symmetry: 32 (left)
x {5 1 6 1}
s {1 1 2 1}
rightright (counter-clockwise)


Morphology


Quartz is found as individual crystals and as crystal aggregates. Well crystallized quartz crystals are typically six-sided prisms with steep pyramidal terminations. They can be stubby ("short prismatic") or elongated and even needle-like. In most environments quartz crystals are attached to the host rock and only have one tip, but double-terminated crystals are also found.
As a rock-forming mineral, quartz commonly occurs as sub-millimeter to centimeter-sized anhedral grains, well-formed crystals are uncommon. Secondary vein-fillings of quartz are typically massive.

Quartz belongs to the trigonal-trapezohedral crystal class 32. Of the seven basic crystallographic forms of this crystal class, the hexagonal prism and trigonal rhombohedra are very common and determine the overall shape of the crystals. The trigonal bipyramids and trigonal trapezohedra are frequently found, but typically only as relatively small faces. The trigonal prisms, the basal pinacoid and in particular ditrigonal prisms are very rare (Frondel, 1962).

Quartz crystals show about 100 different crystallographic forms in nature (Frondel, 1962; Rykart, 1995). It is convenient and common practice to designate them with Latin and Greek letter symbols instead of Miller-Bravais indices. The following figure illustrates the relation of the common forms (sorted by abundance) to the faces found on quartz crystals. The most common combination of crystallographic forms in quartz crystals is r+m+z.

07790870014946245138491.jpg
Fig.4: Common Crystallographic Forms of Quartz


02297000014946245145167.jpg
Fig.5: x and s Face Positions on Left- and Right-handed Crystals
The handedness of quartz crystals can be determined easily from the positions of x faces, which are at the lower left or lower right corner of the r face (orange faces in Fig.5). With some difficulty the handedness can be determined from the position of the s faces (blue faces in Fig.5), which lie between the r and z faces: the s face often shows a fine striation that runs parallel to the edge of the r-face.
The bottom row shows a top view of the crystals. It does not only show their trigonal symmetry but also the chirality of the position of the x faces.


Macroscopic Structure of Quartz Crystals

In response to lattice defects, and apparently reflecting their growth conditions, quartz crystals may develop two very distinct and mutually exclusive types of internal structure:
- Macromosaic Structure, sometimes called "Friedlaender Quartz"
- Lamellar Structure, sometimes called "Bambauer Quartz"

Individual crystals may possess both structural types, but the respective parts of the crystals grew at different developmental stages (Hertweck et al., 1998). It is sometimes claimed that all quartz occurs either as macromosaic or as lamellar structural type. This is not correct.

The lamellar structure was first described by Weil (1931). The crystals contain layers that show an optical anomaly: they are biaxial. The layers are stacked parallel to the crystal faces in an onion-like manner and were found to be associated with a relatively high hydrogen and aluminium content (Bambauer et al., 1961, 1962, 1963). Lamellar quartz cannot be safely recognized without studying the optical properties of the crystal in a thin section.

Macromosaic quartz crystals have been described by Friedlaender (1951) and are composed of slightly tilted and radially arranged wedge-shaped sectors. They are recognized by the presence of sutures on the crystal faces which are often confused with twin boundaries. Crystals with such a structure are found in pegmatite and miarole pockets and in high-temperature alpine-type fissures.

Quartz Crystal Habits

05948120014946245148813.jpg
Fig.6: Common Habits of Quartz Crystals
Strictly speaking, the term "habit" is used to designate the overall shape of individual crystals, regardless of the crystallographic forms (crystal faces) involved. Confusingly, the definitions of some habits of quartz crystals do include specific forms. Many of the trivial names of these habits have been introduced and popularized by rock hounds in the Alps (for a good overview, see Rykart, 1995). The most important habits with trivial names (with synonyms in different languages in braces) are:
a) Normal habit ("Maderaner Habitus", prismatic habit): "typical" quartz crystals that are not or only slightly tapered.
b) Trigonal habit: Crystals with obvious trigonal symmetry, for example, because of missing z faces, or because of a triangular cross section, like in crystals with a Muzo habit (h).
c) Pseudohexagonal habit: Crystals with an even development of rhombohedral and prism faces.
d) Cumberland habit: Crystals with very small or absent prism faces, often bipyramidal.
e) Pseudocubic quartz (pseudocubic habit, cubic habit, cube quartz, "Würfelquarz"): Crystals with a dominant r or z form that look like slightly distorted cubes.
f) Dauphiné habit: Crystal tips with a single very dominant rhombohedral face.
g) Tessin habit ("Abito Ticino", "Tessiner Habitus", "Rauriser Habitus", "Penninischer Habitus", "Acute Rhombohedral Habit"): Crystals that are tapered by steep rhombohedral faces { h 0 i 1 }, Tessin habit in the strict sense is dominated by { 4 0 4 1 } and { 3 0 3 1 } faces. At the original locality, they possess a macromosaic structure.
h) Muzo habit: Crystals with prism faces that are tapered under the z faces because these are made of a succession of alternating m and z faces, and who have a trigonal cross section at the crystal tips (Gansser, 1963).
Needle quartz (acicular habit): Crystals greatly elongated along the c-axis.

00857440014946245153798.jpg
Normal Habit
03115960014946252492526.jpg
Dauphiné habit
04364870014946252503368.jpg
Tessin habit
00356880014946252511233.jpg
Pseudocubic habit
02932860014946252515334.jpg
Cumberland habit
00857440014946245153798.jpg
Normal Habit
02682540015494400771404.jpg
Dauphiné habit
04364870014946252503368.jpg
Tessin habit
08926920014949688827800.jpg
Pseudocubic habit
02932860014946252515334.jpg
Cumberland habit
04358860014946252518570.jpg
Normal Habit
03096540014946252523539.jpg
Dauphiné habit
04835650014946252536618.jpg
Tessin habit
09986260014946253476465.jpg
Pseudocubic habit
02674150014946253487033.jpg
Cumberland habit


Quartz Growth Forms

In addition to crystallographic forms and habits, many quartz crystals are characterized by peculiar morphological features that reflect different modes of growth during their development. Some of these "growth forms" are found at many different localities and - like habits - have been given "trivial names" (e.g., "cactus quartz", "gwindel"). Some of these are listed as varieties of quartz on Mindat. Among the more common and important growth forms are:
Sceptre quartz: Crystals with syntaxial overgrowth of a second generation tip.
Faden quartz: Crystals and crystal aggregates with a white thread running through the crystals. The thread is caused by repetitive cracking of the crystal during growth and consists of fluid inclusions.
Window or Skeleton or Frame or Fenster quartz: Crystals with frame-like, elevated edges of the crystal faces, usually with parallel grown blades that grow from the edges to the center of the faces in a window glass-like manner. Hopper crystals that correspond to skeleton-growth in the strict sense are rare.
Phantom quartz: Crystals in which outlines of the shape of earlier developmental stages of the crystal are visible because of inclusions or color zones.
Sprouting quartz ("Sprossenquarz"): Crystals on which split-growth causes subparallel daughter crystals to sprout from the crystal faces
Artichoke quartz: A form of split-growth resulting in specimens with composite artichoke-like crystal tips.
Gwindel: Crystals elongated and twisted along an a-axis.
Cactus quartz or spirit quartz: Crystals whose prism faces are covered by small, roughly radially grown second-generation crystals.


00810480014972374691512.jpg
Scepter quartz
04030450014946253481375.jpg
Gwindel
01705020014946253498207.jpg
Faden quartz
04625220014946253499013.jpg
Cactus quartz
09852130014946253495382.jpg
Artichoke quartz
01854890014949688845463.jpg
Scepter quartz
00003370015450952526546.jpg
Gwindel
01705020014946253498207.jpg
Faden quartz
02709370014949688844727.jpg
Cactus quartz
07538980014949688844064.jpg
Artichoke quartz
05046820014946249868685.jpg
Scepter quartz
02356330014946253501099.jpg
Gwindel
08616990014946253507091.jpg
Faden quartz
08000470014946245988350.jpg
Cactus quartz
01402120014946253518943.jpg
Artichoke quartz



Quartz Twins

Twinning is very common in quartz, but is often inconspicuous and difficult to recognize. Two types of twinning can be distinguished (data in tables from Jentzsch, 1867, 1868; Gault, 1949; Frondel, 1962):

1. Twins with parallel main crystallographic axes
Twinning AxisTwinning PlaneComposition PlaneTypeHandedness of Domains
Dauphiné Law[0 0 0 1]-{1 0 1 0}Penetration TwinR+R or L+L
Brazil Law-{1 1 2 0}{1 1 2 0}Penetration / Contact TwinL+R
Combined Law[0 0 0 1]{1 1 2 0}-Penetration TwinL+R

Dauphiné and Brazil law twins are very common. Most crystals, even if morphologically untwinned, contain at least small twin domains. Both types of twins can be found in a single crystal.

Dauphiné Law
04301260014946253512841.jpg
Fig.7: Dauphiné Law Twin

Also called: Swiss Law, Alpine Law
Dauphiné law twins can be thought of as a merger of two crystals of equal handedness that are rotated by 60° around the c-axis relative to each other (Weiss, 1816). They are penetration twins composed of twin domains with irregular boundaries (Leydolt, 1855). The size and shape of the twin domains can vary and the shares of the twin domains in a crystal do not have to be equal. The degree of intergrowth of the domains may increase during growth, starting from roughly triangular sectors at the base to complex irregular patterns at the tip of the crystal (Friedlaender, 1951). Twin domains are only rarely visible in natural crystals and normally need to get visualized by etching the surface or a polished cross-section (Leydolt, 1855; Judd, 1888). Electron microscopical studies reveal that on a small scale the twin domains look like complex polygons with straight boundaries (Lang, 1965; McLaren and Phakey, 1969).

Dauphiné twins can sometimes be recognised by the position and arrangement of crystal faces, in particular, the x-faces. Because the rhombohedral faces are composites of r and z faces, they do not show the common size difference of the faces and the crystals assume a pseudohexagonal habit.

Rarely Dauphiné twinned crystals that lack one type of rhombohedral face (either r or z) - and that would display a trigonal habit if they were untwinned - show re-entrant angles at the tip that make them look like drill heads (for example, Schäfer, 1999).

Dauphiné twins are sometimes called electrical twins, because this kind of twinning reduces or even suppresses the piezoelectricity that is typical for untwinned quartz crystals, while their optical activity remains unaffected (Thomas, 1945; Donnay and Le Page, 1975).

Brazil Law
07019280014946253515174.jpg
Fig.8: Brazil Law Twin

Also called: Optical Law
Brazil law twins can be thought of as a merger of a left- and right-handed crystal: they are penetration twins composed of left- and right-handed domains. Their twin boundaries are usually straight lines, resulting in a characteristic pattern made of straight lines and triangles (Leydolt, 1855). As with Dauphiné twins, the twin domains are usually not visible in natural crystals and need to be visualized by etching (Leydolt, 1855). The corresponding surface patterns on crystal faces are polygonal patches with straight boundaries, often triangular.

Brazil law twins that show the ideal arrangement of x and s crystal faces are very rare.

Many amethysts are twinned polysynthetically according to the Brazil Law: Parts of the amethyst crystals, in particular in zones under the r rhombohedral faces are composed of alternating layers of left- and right-handed quartz (Brewster 1823; McLaren and Pitkethly, 1982; Taijing and Sunagawa, 1990). The gauge of individual layers is normally less than 1 mm. The layered structure may be visible as a fingerprint-like pattern on rhombohedral faces.

Brazil law twins are sometimes called optical twins, because this kind of twinning reduces or even suppresses the optical activity typical for quartz crystals. Confusingly, and contrary to common belief, Brazil law twinning does also reduce or suppress the piezoelectricity of quartz crystals (Thomas, 1945; Donnay and Le Page, 1975).

Combined Law
Also called: Liebisch Law, Dauphiné-Brazil Law, Leydolt Law
It is not unusual for crystals to show Dauphiné and Brazil law domains in one crystal, and sometimes crystals show x or s faces at positions that would indicate a special type of twinning. Electron microscopic studies show that when Brazil law twins are heated and develop new Dauphiné twin domains, their left- and right-handed domains do not share boundaries when they are rotated with respect to each other (Van Goethem et al., 1977), so Liebisch twinning seems to be energetically less favorable. Accordingly, Liebisch twinning is rare.


2. Twins with inclined main crystallographic axes (incomplete list)
Twinning PlaneComposition PlaneTypeInclination of c-axes
Japan Law{1 1 2 2}{1 1 2 2}Contact Twin84°33'
Zinnwald Law{2 0 2 1}{2 0 2 1}Contact Twin38°13'
Breithaupt Law[1 1 2 1]{1 1 2 1}Contact Twin48°17'
Reichenstein Grieserntal Law{1 0 1 1}{1 0 1 1}Contact Twin76°26'
09141800014946253518900.jpg
Fig.9: Twins with Inclined Axes.
a) Japan Law
b) Breithaupt Law
c) Reichenstein-Grieserntal Law
d) Zinnwald Law
Of the twins with inclined main axes, only the Japan law twin is common and well established, while for some of the others (including some that are not listed here) only a few and sometimes only one specimen have been reported and the existence of a twin law is questionable. The Reichenstein-Grieserntal Law is sometimes erroneously called "Esterel Law", which is the equivalent for beta-quartz.

Japan Law
Also called: Weiss Law, La Gardette Law
Japan law twins are the only common quartz twins with inclined c axes. The law was first found and described by Weiss (1829) on crystals from La Gardette, France, but the name "Japan law" became more popular after a great number of them were found in Japan. The c-axis of two crystals meet at an angle of 84°33', with two of the m prism faces of both crystals being parallel. The twinning plane {1 1 2 2} of Japan law twins corresponds to the flat trigonal bipyramid ξ (the Greek letter xi).
Japan law twins are contact twins (Sunagawa and Yasuda, 1983). The twin junctions often look jagged on the crystal surface, but are perfectly straight in the interior of the crystals, and form a thin plane that runs from the base of the crystal to the V-shaped indentation between the branches (Sunagawa and Yasuda, 1983). Electron microscopic studies revealed that the twin boundary also forms a perfect plane parallel to {1 1 2 2} (Lenart et al. 2012; Momma et al. 2015), but appears to be restricted to the initial growth periods of the crystal, extending only a few hundred micrometers, which has been interpreted as an indication of a formation as a nucleation twin (Lenart et al. 2012). The cause of the twin formation is still not understood.

Most Japan law twins are flattened, and often they are larger than untwinned crystals that accompany them. Depending on the handedness of the two branches of a twin, one can distinguish 8 different basic twinning subtypes that are also twinned according to the Brazil or Dauphiné law (Frondel, 1962), but the pattern of Brazil and Dauphiné twin domains can be very complex (Kozu, 1952).

07676170014946254596900.jpg
Right-handed Dauphiné law twin
08958980014946254599178.jpg
Left-handed Dauphiné law twin
02516800014946254606543.jpg
Typical irregular intergrowth of Dauphiné law twin domains
03711930014946254608027.jpg
Dauphiné law twin with re-entrant angles (rare)
04933990014946254604965.jpg
Japan law twin
07676170014946254596900.jpg
Right-handed Dauphiné law twin
08958980014946254599178.jpg
Left-handed Dauphiné law twin
02516800014946254606543.jpg
Typical irregular intergrowth of Dauphiné law twin domains
08114230014966402048191.jpg
Dauphiné law twin with re-entrant angles (rare)
05296160014949688854863.jpg
Japan law twin
06374330014946254608508.jpg
Right-handed Dauphiné law twin
08633340014946254603954.jpg
Left-handed Dauphiné law twin
02853700014946254616475.jpg
Typical irregular intergrowth of Dauphiné law twin domains
04966110014946254613059.jpg
Dauphiné law twin with re-entrant angles (rare)
06006450014946254618602.jpg
Japan law twin

Colored Quartz Varieties


Compared to many other minerals, quartz is chemically very pure, most crystals contain more than 99.5% SiO2. Nevertheless, varieties colored by impurities occur. These can be devided into two groups:

1. Quartz colored by trace elements built into the crystal lattice.
Only a few elements can replace silicon in the quartz lattice (substitutional positions) or are small enough to occupy free spaces in the lattice (interstitial positions). In natural quartz crystals, the most common ones to replace Si are Al, Fe, Ge, and Ti, whereas Li, Na, Ca, Mg and Fe often occupy interstitial positions in the "c-channels" mentioned under "Structure of Quartz". Of the substitutional trace elements, only Al, Fe and more rarely P are found to play a role in natural colored varieties. There are only a handful of quartz varieties colored by trace elements built into the lattice, sorted by abundance, with the more common ones first:
- Smoky quartz
- Amethyst
- Citrine
- Pink Quartz / Euhedral Rose Quartz
- Prasiolite

With the possible exception of some prasiolites and some citrines, the color of these varieties is based on color centers whose formation requires high energy irradiation from radioactive elements in the surrounding rocks (O'Brien, 1955; Lehmann and Moore, 1966; Maschmeyer et al., 1980; Maschmeier and Lehmann, 1983). Quartz varieties based on color centers are pleochroic, and their color centers can be destroyed by heat treatment.
Note that individual quartz crystals may contain several colored varieties, like an amethyst with smoky zones.

07362780014946254615213.jpg
Smoky Quartz
03287230014946260939484.jpg
Amethyst
07294530015297036194840.jpg
Citrine
00052020014946249769274.jpg
Pink Quartz/Euhedral Rose Quartz
01505630014946260947438.jpg
Prasiolite
07642750015139199703245.jpg
Smoky Quartz
03287230014946260939484.jpg
Amethyst
09245390014946260949805.jpg
Citrine
00001980014946260956694.jpg
Pink Quartz/Euhedral Rose Quartz
07053230014950375726955.jpg
Prasiolite
00942100014946260958770.jpg
Smoky Quartz
03207550014946260959825.jpg
Amethyst
00191100014946260269538.jpg
Citrine
00052020014946249769274.jpg
Pink Quartz/Euhedral Rose Quartz
00675770014946260969909.jpg
Prasiolite


2. Quartz colored by inclusions of separate phases, for example minerals or fluids.
Because quartz crystals grow in many geological environments, they embed many different minerals during growth and assume the colors of the included minerals. Colors may also be caused by light scattering at finely distributed but colorless inclusions.
There are also trivial names for varieties colored by inclusions that have been found at many localities, like "prase", "ferruginous quartz" or "rose quartz". However, the definitions of these varieties are often rather fuzzy, and different authors use different definitions.

03383240015494400792420.jpg
Milky Quartz
05808770014949688866567.jpg
Blue Quartz
00230130014946260974635.jpg
Ferruginous Quartz
01433810014949688865591.jpg
Rose Quartz
01597720014946260971514.jpg
Prase
02621290014946260976646.jpg
Milky Quartz
04081990014946260973755.jpg
Blue Quartz
04250880014957012032860.jpg
Ferruginous Quartz
05982900014946260977971.jpg
Rose Quartz
01727500015501550245718.jpg
Prase
05099020014946256267961.jpg
Milky Quartz
05808770014949688866567.jpg
Blue Quartz
01169160014946260981114.jpg
Ferruginous Quartz
06028560014946256547266.jpg
Rose Quartz
02349340014946260987517.jpg
Prase


Occurrence of Quartz


Quartz is one of the crystalline forms of silica, the essential building material for all silicates, and quartz can only form where silica is present in excess of what is consumed in the formation of other silicate minerals.
Quartz may also be consumed during the formation of new silicate minerals, in particular at higher temperatures and pressures, and certain geological environments are "incompatible" with free silica and hence quartz.

Quartz as a Rock-Forming Mineral
Silica has been enriched in the continental Earth's crust to about 60% (Rudnick and Gao, 2003) by processes like magmatic differentiation and the formation of silica-rich igneous rocks (mainly driven by plate tectonics) and the accumulation of the physically and chemically stable quartz in sediments and sedimentary rocks. The oceanic crust's silica content of about 50% (White and Klein, 2014) in its igneous rocks is too low for quartz to form in them.

The largest amount of quartz is found as a rock-forming mineral in silica-rich igneous rocks, namely granite-like plutonic rocks, and in the metamorphic rocks that are derived from them. Under conditions at or near the surface, quartz is generally more stable than most other rock-forming minerals and its accumulation in sediments leads to rocks that are highly enriched in quartz, like sandstones. Quartz is also a major constituent of sedimentary rocks whose high quartz content is not immediately obvious, like slates, as well as in the metamorphic rocks derived from such quartz-bearing precursor rocks.

Quartz Veins
At higher temperatures and pressures quartz is easily dissolved by watery fluids percolating the rock. When silica-rich solutions penetrate cooler rocks, the silica will precipitate as quartz in fissures, forming thin white seams as well as large veins which may extend over many kilometers (Bons, 2001; Wangen and Munz, 2004, Pati et al, 2007). In most cases, the quartz in these veins will be massive, but they may also contain well-formed quartz crystals. Phyllites and schists often contain thin lenticular or regular veins of so-called "segregation quartz" (Vinx, 2013) that run parallel to the bedding and are the result of local transport of silica during metamorphosis (Chapman, 1950; Sawyer and Robin, 1986). Silica-rich fluids are also driven out of solidifying magma bodies. When these hot brines enter cooler rocks, the solution gets oversaturated in silica, and quartz forms.

Along with the silica, metals are also transported with the brines and precipitate in the veins as sometimes valuable ore minerals. The association of gold and quartz veins is a well-known example. Quartz is the most common "gangue mineral" in ore deposits.

Quartz Crystals
Quartz crystals typically grow in fluids at elevated temperatures between 150°C and 600°C, but they also grow at ambient conditions (Mackenzie and Gees, 1971; Ries and Menckhoff, 2008).

Quartz is best known for the beautiful crystals it forms in all sorts of cavities and fissures. The greatest variety of shapes and colors of quartz crystals comes from hydrothermal ore veins and deposits, reflecting large differences in growth conditions in these environments (chemistry, temperature, pressure). Splendid, large crystals grow from ascending hot brines in large fissures, from residual silica-rich fluids in cavities in pegmatites and from locally mobilized silica in Alpine-type fissures. An economically important source of amethyst for the lapidary industry are cavities of volcanic rocks. Small, but well-formed quartz crystals are found in septarian nodules, and in dissolution pockets in limestones.

Well-formed quartz crystals that are fully embedded in sedimentary rocks and grew during diagenesis (so-called authigenic quartz crystals) are occasionally found in limestones, marls, and evaporites (e.g. Rykart, 1984).

Euhedral quartz crystals that are embedded in igneous rocks are uncommon. Quartz is among the last minerals that form during the solidification of a magma, and because the crystals fill the residual space between the older crystals of other minerals they are usually irregular. Euhedral, stubby bipyramidal quartz crystals are occasionally found in rhyolites. These are usually paramorphs after beta-quartz with hexagonal symmetry, quartz crystals whose trigonal habit shows that they grew as alpha-quartz are very rare in volcanic rocks (e.g. Flick and Weissenbach, 1978). Only rarely are euhedral quartz crystals seen embedded in metamorphic rocks (Kenngott, 1854; Tschermak, 1874; Heddle, 1901).


Identification


In most cases quartz is easy to identify by its combination of the following properties:
- hardness (easily scratches glass, also harder than steel)
- glass-like luster
- poor to indistinct cleavage
- conchoidal fracture in crystals, in massive specimens the fracture often looks irregular to the naked eye, but still conchoidal at high magnification.

Note that in macrocrystalline quartz the fracture surfaces have a vitreous to resinous luster, whereas in cryptocrystalline quartz (chalcedony) fractured surfaces are dull.

Crystals are very common and their usually six-sided shape and six-sided pyramidal tips are well-known. Intergrown crystals without tips can often be recognized by the presence of the characteristic striation on the prism faces.

Quartz as a rock-forming mineral, in particular as irregular grains in the matrix, occasionally poses problems and may require additional means of identification. It may be confused with cordierite (pleochroic, tendency to alteration) and nepheline (lower hardness, geological environment incompatible with quartz).

In thin sections macrocrystalline quartz appears clear and homogeneous, with blue-gray to white or bright yellow interference colors and a low relief. Quartz does not show alterations at grain boundaries. Strained quartz grains from metamorphic rocks show a so-called "undulatory extinction" (Blatt and Christie, 1963).

ID Requirements on Mindat


Quartz is one of the few minerals on Mindat where "visual identification" may be accepted as a method of identification for new locality entries and photos of well-formed crystals. In other cases, at least hardness should be checked, too.
For quartz as a rock-forming mineral visual identification is often insufficient.

Handling Quartz


Quartz normally does not require special attention when handled or stored. At ambient conditions, quartz is chemically almost inert, so it does not suffer from the problems seen in many other minerals. Crystals do not disintegrate or crumble, they do not oxidize or dissolve easily in water and they don't mind being touched. The only problem for the collector is dust, which will find and cover your crystals, no matter what you do.
Quartz crystals that contain large fluid or gas inclusions may crack when heated - skeleton quartz is the most sensitive variety in this respect - but most quartz specimens can take some heat, like cleaning in warm water, without being damaged.
Quartz is hard but quite brittle, and with some effort, one can damage a crystal even with things that are much softer. The edges of the crystals are very often slightly damaged because crystals were not kept separate from each other.

Colored quartz varieties can pale in sunlight, the most sensitive variety is euhedral rose quartz/pink quartz, which should be kept in the dark. Amethyst, smoky quartz and natural citrine will also pale, but it takes very long.

Mild ultrasonic cleaning is usually not a problem as long the crystals are not internally cracked, but some varieties may be damaged, in particular, amethyst (due to its polysynthetic Brazil law twinning) and skeleton quartz with liquid and gas inclusions.

Rock Currier wrote a Mindat article on cleaning quartz that is worthwhile reading: http://www.mindat.org/article.php/403/Cleaning+Quartz

When cutting, grinding and polishing specimens, keep in mind that quartz dust will cause silicosis (for a review, see Goldsmith, 1994), do not cut or grind dry and wear an appropriate dust mask.

Quartz bear, on average, 10 ppmw (5 ppmw median) of water. Crystals rich in OH defects may bear as much as 250 ppmw (maximum).




Unique IdentifiersHide

Mindat ID:
3337
Long-form identifier:
mindat:1:1:3337:0
GUID
(UUID V4):
4ca61d6f-75f8-4208-8fb2-3b0eecbcd8f0

Classification of QuartzHide

Approved, 'Grandfathered' (first described prior to 1959)
4.DA.05

4 : OXIDES (Hydroxides, V[5,6] vanadates, arsenites, antimonites, bismuthites, sulfites, selenites, tellurites, iodates)
D : Metal: Oxygen = 1:2 and similar
A : With small cations: Silica family
Dana 7th ed.:
75.1.3.1
75.1.3.1

75 : TECTOSILICATES Si Tetrahedral Frameworks
1 : Si Tetrahedral Frameworks - SiO2 with [4] coordinated Si
7.8.1

7 : Oxides and Hydroxides
8 : Oxides of Si

Mineral SymbolsHide

As of 2021 there are now IMA–CNMNC approved mineral symbols (abbreviations) for each mineral species, useful for tables and diagrams.

Please only use the official IMA–CNMNC symbol. Older variants are listed for historical use only.

SymbolSourceReference
QzIMA–CNMNCWarr, L.N. (2021). IMA–CNMNC approved mineral symbols. Mineralogical Magazine, 85(3), 291-320. doi:10.1180/mgm.2021.43
QtzKretz (1983)Kretz, R. (1983) Symbols of rock-forming minerals. American Mineralogist, 68, 277–279.
QtzSiivolam & Schmid (2007)Siivolam, J. and Schmid, R. (2007) Recommendations by the IUGS Subcommission on the Systematics of Metamorphic Rocks: List of mineral abbreviations. Web-version 01.02.07. IUGS Commission on the Systematics in Petrology. download
QzWhitney & Evans (2010)Whitney, D.L. and Evans, B.W. (2010) Abbreviations for names of rock-forming minerals. American Mineralogist, 95, 185–187 doi:10.2138/am.2010.3371
QtzThe Canadian Mineralogist (2019)The Canadian Mineralogist (2019) The Canadian Mineralogist list of symbols for rock- and ore-forming minerals (December 30, 2019). download
QzWarr (2020)Warr, L.N. (2020) Recommended abbreviations for the names of clay minerals and associated phases. Clay Minerals, 55, 261–264 doi:10.1180/clm.2020.30

Pronunciation of QuartzHide

Pronunciation:
PlayRecorded byCountry
Jolyon & Katya RalphUnited Kingdom

Physical Properties of QuartzHide

Vitreous
Transparency:
Transparent, Translucent
Colour:
Colorless, purple, rose, red, black, yellow, brown, green, blue, orange, etc.
Streak:
White
Hardness:
Hardness Data:
Mohs hardness reference species
Comment:
Some variability by direction.
Tenacity:
Brittle
Cleavage:
Poor/Indistinct
The rhombohedral cleavage r{1011} is most often seen, there are at least six others reported.
Fracture:
Conchoidal
Comment:
Tough when massive
Density:
2.65 - 2.66 g/cm3 (Measured)    2.66 g/cm3 (Calculated)

Optical Data of QuartzHide

Type:
Uniaxial (+)
RI values:
nω = 1.544(1) nε = 1.553(1)
Birefringence:
Max Birefringence:
δ = 0.009
Image shows birefringence interference colour range (at 30µm thickness)
and does not take into account mineral colouration.
Surface Relief:
Low
Dispersion:
low
Comments:
Varieties colored by trace elements built into the crystal lattice, as opposed to varieties colored by inclusions, generally show dichroism: smoky quartz, amethyst, citrine, prasiolite, "rose quartz in crystals" (a.k.a. pink quartz), are pleochroic.

Chemical Properties of QuartzHide

Formula:
SiO2
Common Impurities:
H,Al,Li,Fe,Ti,Na,Mg,Ge,etc

Age distributionHide

Recorded ages:
Phanerozoic : 279 ± 3 Ma to 55.7 Ma - based on 7 recorded ages.

Crystallography of QuartzHide

Crystal System:
Trigonal
Class (H-M):
3 2 - Trapezohedral
Space Group:
P31 2 1
Cell Parameters:
a = 4.9133 Å, c = 5.4053 Å
Ratio:
a:c = 1 : 1.1
Unit Cell V:
113.00 ų (Calculated from Unit Cell)
Z:
3
Twinning:
Dauphiné law.
Brazil law.
Japan law.
Others for beta-quartz...
Comment:
Space group is P3121 for left-handed crystals and P3221 for right-handed crystals

Crystallographic forms of QuartzHide

Crystal Atlas:
Image Loading
Click on an icon to view
Quartz no.5 - Goldschmidt (1913-1926)
Quartz no.7 - Goldschmidt (1913-1926)
Quartz no.9 - Goldschmidt (1913-1926)
Quartz no.10 - Goldschmidt (1913-1926)
Quartz no.12 - Goldschmidt (1913-1926)
Quartz no.23 - Goldschmidt (1913-1926)
Quartz no.35 - Goldschmidt (1913-1926)
Quartz no.46 - Goldschmidt (1913-1926)
Quartz no.47 - Goldschmidt (1913-1926)
Quartz no.96 - Goldschmidt (1913-1926)
Quartz no.121 - Goldschmidt (1913-1926)
3d models and HTML5 code kindly provided by www.smorf.nl.

Toggle
Edge Lines | Miller Indices | Axes

Transparency
Opaque | Translucent | Transparent

View
Along a-axis | Along b-axis | Along c-axis | Start rotation | Stop rotation

Crystal StructureHide

Load
Unit Cell | Unit Cell Packed
2x2x2 | 3x3x3 | 4x4x4
Show
Big Balls | Small Balls | Just Balls | Spacefill
Polyhedra Off | Si Polyhedra | All Polyhedra
Remove metal-metal sticks
Display Options
Black Background | White Background
Perspective On | Perspective Off
2D | Stereo | Red-Blue | Red-Cyan
View
CIF File    Best | x | y | z | a | b | c
Rotation
Stop | Start
Labels
Console Off | On | Grey | Yellow
IDSpeciesReferenceLinkYearLocalityPressure (GPa)Temp (K)
0000789QuartzLevien L, Prewitt C T, Weidner D J (1980) Structure and elastic properties of quartz at pressure American Mineralogist 65 920-93019800293
0000790QuartzLevien L, Prewitt C T, Weidner D J (1980) Structure and elastic properties of quartz at pressure American Mineralogist 65 920-93019802.07293
0000791QuartzLevien L, Prewitt C T, Weidner D J (1980) Structure and elastic properties of quartz at pressure American Mineralogist 65 920-93019803.76293
0000792QuartzLevien L, Prewitt C T, Weidner D J (1980) Structure and elastic properties of quartz at pressure American Mineralogist 65 920-93019804.86293
0000793QuartzLevien L, Prewitt C T, Weidner D J (1980) Structure and elastic properties of quartz at pressure American Mineralogist 65 920-93019805.58293
0000794QuartzLevien L, Prewitt C T, Weidner D J (1980) Structure and elastic properties of quartz at pressure American Mineralogist 65 920-93019806.14293
0004265QuartzIkuta D, Kawame N, Banno S, Hirajima T, Ito K, Rakovan J F, Downs R T, Tamada O (2007) First in situ X-ray diffraction identification of coesite and retrograde quartz on a glass thin section of an ultrahigh-pressure metamorphic rock and their crystal structure details American Mineralogist 92 57-632007Yangkou meta-igneous complex in the middle part of the Sulu UHP terrain, eastern China0293
0004266QuartzIkuta D, Kawame N, Banno S, Hirajima T, Ito K, Rakovan J F, Downs R T, Tamada O (2007) First in situ X-ray diffraction identification of coesite and retrograde quartz on a glass thin section of an ultrahigh-pressure metamorphic rock and their crystal structure details American Mineralogist 92 57-632007Oomine granite, Tenkawa-mura, Nara, Southwest Japan0293
0004267QuartzIkuta D, Kawame N, Banno S, Hirajima T, Ito K, Rakovan J F, Downs R T, Tamada O (2007) First in situ X-ray diffraction identification of coesite and retrograde quartz on a glass thin section of an ultrahigh-pressure metamorphic rock and their crystal structure details American Mineralogist 92 57-632007Oomine granite, Tenkawa-mura, Nara, Southwest Japan0293
0006212QuartzAntao S M, Hassan I, Wang J, Lee P L, Toby B H (2008) State-of-the-art high-resolution powder x-ray diffraction (HRPXRD) illustrated with Rietveld structure refinement of quartz, sodalite, tremolite, and meionite The Canadian Mineralogist 46 1501-15092008not specified0293
0006362QuartzKihara K (1990) An X-ray study of the temperature dependence of the quartz structure European Journal of Mineralogy 2 63-7719900298
0006363QuartzKihara K (1990) An X-ray study of the temperature dependence of the quartz structure European Journal of Mineralogy 2 63-7719900398
0006364QuartzKihara K (1990) An X-ray study of the temperature dependence of the quartz structure European Journal of Mineralogy 2 63-7719900498
0006365QuartzKihara K (1990) An X-ray study of the temperature dependence of the quartz structure European Journal of Mineralogy 2 63-7719900597
0006366QuartzKihara K (1990) An X-ray study of the temperature dependence of the quartz structure European Journal of Mineralogy 2 63-7719900697
0006367QuartzKihara K (1990) An X-ray study of the temperature dependence of the quartz structure European Journal of Mineralogy 2 63-7719900773
0006368QuartzKihara K (1990) An X-ray study of the temperature dependence of the quartz structure European Journal of Mineralogy 2 63-7719900813
0006369QuartzKihara K (1990) An X-ray study of the temperature dependence of the quartz structure European Journal of Mineralogy 2 63-7719900838
0006370QuartzKihara K (1990) An X-ray study of the temperature dependence of the quartz structure European Journal of Mineralogy 2 63-7719900848
0006371QuartzKihara K (1990) An X-ray study of the temperature dependence of the quartz structure European Journal of Mineralogy 2 63-7719900854
0006372QuartzKihara K (1990) An X-ray study of the temperature dependence of the quartz structure European Journal of Mineralogy 2 63-7719900859
0006373QuartzKihara K (1990) An X-ray study of the temperature dependence of the quartz structure European Journal of Mineralogy 2 63-7719900869
0006374QuartzKihara K (1990) An X-ray study of the temperature dependence of the quartz structure European Journal of Mineralogy 2 63-7719900891
0006375QuartzKihara K (1990) An X-ray study of the temperature dependence of the quartz structure European Journal of Mineralogy 2 63-7719900920
0006376QuartzKihara K (1990) An X-ray study of the temperature dependence of the quartz structure European Journal of Mineralogy 2 63-7719900972
0006377QuartzKihara K (1990) An X-ray study of the temperature dependence of the quartz structure European Journal of Mineralogy 2 63-77199001012
0006378QuartzKihara K (1990) An X-ray study of the temperature dependence of the quartz structure European Journal of Mineralogy 2 63-77199001078
0008971QuartzRosa A L, El-Barbary A A, Heggie M I, Briddon P R (2005) Structural and thermodynamic properties of water related defects in alpha-quartz Physics and Chemistry of Minerals 32 323-33120050293
0018071QuartzWyckoff R (1926) Kriterien fur hexagonale Raumgruppen und die Kristallstruktur von beta Quarz. _cod_database_code 1011200 Zeitschrift fur Kristallographie 63 507-53719260293
0017992QuartzWei (1935) Die Bindung im Quarz _cod_database_code 1011097 Zeitschrift fur Kristallographie 92 355-36219350293
0010604QuartzArnold H (1962) Die struktur des hochquarzes Zeitschrift fur Kristallographie 117 467-46919620293
0010605QuartzArnold H (1962) Die struktur des hochquarzes Zeitschrift fur Kristallographie 117 467-46919620293
0011007QuartzGlinnemann J, King H E, Schulz H, Hahn T, La Placa S J, Dacol F (1992) Crystal structures of the low-temperature quartz-type phases of SiO2 and GeO2 at elevated pressure Zeitschrift fur Kristallographie 198 177-21219920293
0011008QuartzGlinnemann J, King H E, Schulz H, Hahn T, La Placa S J, Dacol F (1992) Crystal structures of the low-temperature quartz-type phases of SiO2 and GeO2 at elevated pressure Zeitschrift fur Kristallographie 198 177-21219924293
0011009QuartzGlinnemann J, King H E, Schulz H, Hahn T, La Placa S J, Dacol F (1992) Crystal structures of the low-temperature quartz-type phases of SiO2 and GeO2 at elevated pressure Zeitschrift fur Kristallographie 198 177-21219927.2293
0011010QuartzGlinnemann J, King H E, Schulz H, Hahn T, La Placa S J, Dacol F (1992) Crystal structures of the low-temperature quartz-type phases of SiO2 and GeO2 at elevated pressure Zeitschrift fur Kristallographie 198 177-212199210.2293
0012866QuartzGualtieri A F (2000) Accuracy of XRPD QPA using the combined Rietveld-RIR method Journal of Applied Crystallography 33 267-2782000Baveno, Novara, Italy0293
0018749QuartzGibbs G V, Boisen M B, Downs R T, Lasaga A C (1988) Mathematical Modeling of the structures and bulk moduli of TX2 quartz Materials Research Society Symposia Proceedings 121 155-1651988theoretical0293
0018049QuartzBrill R, Hermann C, Peters C (1939) Studien ueber chemische Bindung mittels Fourieranalyse III. Die Bindung im Quarz _cod_database_code 1011172 Naturwissenschaften 27 676-67719390293
0015462QuartzHazen R M, Finger L W, Hemley R J, Mao H K (1989) High-pressure crystal chemistry and amorphization of alpha-quartz Solid State Communications 72 507-5111989synthetic0293
0015463QuartzHazen R M, Finger L W, Hemley R J, Mao H K (1989) High-pressure crystal chemistry and amorphization of alpha-quartz Solid State Communications 72 507-5111989synthetic2293
0015464QuartzHazen R M, Finger L W, Hemley R J, Mao H K (1989) High-pressure crystal chemistry and amorphization of alpha-quartz Solid State Communications 72 507-5111989synthetic5.1293
0015465QuartzHazen R M, Finger L W, Hemley R J, Mao H K (1989) High-pressure crystal chemistry and amorphization of alpha-quartz Solid State Communications 72 507-5111989synthetic8293
0015466QuartzHazen R M, Finger L W, Hemley R J, Mao H K (1989) High-pressure crystal chemistry and amorphization of alpha-quartz Solid State Communications 72 507-5111989synthetic9.5293
0015467QuartzHazen R M, Finger L W, Hemley R J, Mao H K (1989) High-pressure crystal chemistry and amorphization of alpha-quartz Solid State Communications 72 507-5111989synthetic12.5293
CIF Raw Data - click here to close

X-Ray Powder DiffractionHide

Image Loading

Radiation - Copper Kα
Data Set:
Data courtesy of RRUFF project at University of Arizona, used with permission.
Powder Diffraction Data:
d-spacingIntensity
4.257 Å(22)
3.342 Å(100)
2.457 Å(8)
2.282 Å(8)
1.8179 Å(14)
1.5418 Å(9)
1.3718 Å(8)

Geological EnvironmentHide

Paragenetic Mode(s):
Paragenetic ModeEarliest Age (Ga)
Stage 1: Primary nebular phases4.567-4.561
3 : Solar nebular condensates (CAIs, AOAs, URIs)>4.565
Stage 2: Planetesimal differentiation and alteration4.566-4.550
5 : Primary asteroid phases4.566–4.560
6 : Secondary asteroid phases4.566-4.560
Stage 3a: Earth’s earliest Hadean crust>4.50
9 : Lava/xenolith minerals (hornfels, sanidinite facies)
10 : Basalt-hosted zeolite minerals
Stage 3b: Earth’s earliest hydrosphere>4.45
14 : Hot springs, geysers, and other subaerial geothermal minerals
Stage 4a: Earth’s earliest continental crust>4.4-3.0
19 : Granitic intrusive rocks
Near-surface Processes
23 : Subaerial aqueous alteration by non-redox-sensitive fluids (see also #47)
24 : Authigenic minerals in terrestrial sediments (see also #17)
26 : Hadean detrital minerals
Stage 4b: Highly evolved igneous rocks>3.0
34 : Complex granite pegmatites
35 : Ultra-alkali and agpaitic igneous rocks
Stage 5: Initiation of plate tectonics<3.5-2.5
43 : Shear-induced minerals (including mylonite/slickensides)
Stage 10a: Neoproterozoic oxygenation/terrestrial biosphere<0.6
49 : Oxic cellular biomineralization (see also #44)<0.54
Geological Setting:
Most of them...

Synonyms of QuartzHide

Other Language Names for QuartzHide

Arabic:مرو
Bosnian:Kvarc
Bulgarian:Кварц
Catalan:Quars
Croatian:Kvarc
Czech:Křemen
Danish:Kvarts
Dutch:Kwarts
Esperanto:Kvarco
Estonian:Kvarts
Farsi/Persian:کوارتز
Finnish:Kvartsi
French:Quartz
Galician:Cuarzo
Hebrew:קוורץ
Hungarian:Kvarc
Indonesian:Kuarsa
Irish Gaelic:Grian Cloch
Italian:Quarzo
Japanese:石英
水晶
Korean:석영
Latvian:Kvarcs
Lithuanian:Kvarcas
Luxembourgish:Quarz
Macedonian:Кварц
Malay:Kuarza
Norwegian:Kvarts
Polish:Kwarc
Portuguese:Quartzo
Romanian:Cuarţ
Russian:Кварц
Serbian:Кварц
Simplified Chinese:石英
水晶
Slovak:Kremeň
Slovenian:Kamena strela
Spanish:Cuarzo
Swedish:Kvarts
Traditional Chinese:石英
Turkish:Kuvars
Ukrainian:Кварц
Vietnamese:Thạch anh

Varieties of QuartzHide

"Herkimer-style" QuartzThis is a collective name to group together the many different local names for transparent, lustrous quartz crystals, usually doubly-terminated, often associated with inclusions of petroleum and/or associated with oil or coal deposits within sedimentary r...
AgateA distinctly banded fibrous chalcedony. Originally reported from Dirillo river (Achates river), Acate, Ragusa Province, Sicily, Italy.

The banding in agate is based on periodic changes in the translucency of the agate substance. Layers appear darker when...
Agate-JasperA variety of agate consisting of Jasper veined with Chalcedony.
Agatized coralA variety of agate/chalcedony replacing coral.
AlladiniteA name given to a jasper found in Wabuska, Nevada.

Also, unrelatedly, a name for a synthetic casein resin and possibly as a marketing name for gem diopside.
Amarillo StoneA figured variety of chalcedony.
May be the same as Alibates flint.
AmberineYellow to yellow-green chalcedony variety found in Death Valley, Inyo Co., California, USA.

AmethystA violet to purple variety of quartz that owes its color to gamma irradiation (Berthelot, 1906) and the presence of traces of iron built into its crystal lattice (Holden, 1925). The irradiation causes the iron Fe(+3) atoms that replace Si in the lattice t...
AmetrineAmetrine crystals are made of alternating sectors of purple and yellow to orange color. Slabs cut perpendicular to the c axis of the crystal look a bit like a pinwheel. The purple sectors are situated under the positive rhombohedral faces (r), and the yel...
ApricotineReddish-yellow waterworn apricot-coloured quartz pebbles.

Originally described from Sunset Beach, Cape May, Lower Township, Cape May Co., New Jersey, USA.
AquapraseAquaprase is a registered trademark of Melas, Ionannis Bloumstrom and Chordia, Avant Kumar who are marketing this material.

A bluish green chalcedony, colored by chromium and nickel, is marketed under the trade name “Aquaprase.” Origin is an unspecif...
Arkansas CandleA cluster of clear Quartz crystals in a candle-like formation. Also single crystals that show a greater than 7 to 1 length to width ratio.
AventurineA variety of quartz containing glistening fragments (usually mica, such as fuchsite, but also hematite), which can be cut and polished as a gemstone. Most commonly when the general public encounter this stone it is in the form of green stone beads that ca...
AzurchalcedonyChalcedony coloured by Chrysocolla, from Arizona, USA
Babel-QuartzA historical name given for a variety of quartz named for the fancied resemblance of the crystals to the successive tiers of the Tower of Babel.

In some cases, but not all, the morphology is caused by growth inhibition by other minerals (later dissolved...
Ball JasperJasper showing concentric red and yellow bands.
Jasper occurring in spherical masses.
BayateA local name for a brown ferruginous variety of Jasper.

Originally described from Oriente Province, Cuba.
BeekiteA name given to Chalcedony pseudomorphs after coral or shells.

Originally described from Devon, England, UK.
BergeritLocal name for a net-like jasper.
BinghamiteBinghamite refers to a diverse group of lapidary materials from the mines on the Cuyuna North Iron Range in Crow Wing County, Minnesota. It is related to Minnesota silkstone and Minnesota tigers' eye. In fact all three materials can be found in the same s...
Bird's Eye AgateA variety of eye agate where the eyes are supposed to resemble the eyes of a bird.
Blue ChalcedonyBlue colour caused by the Tyndall effect (light scattering by colloid sized particles). Transmitted light looks yellowish or reddish rather than blue.
Blue Lace AgateA pale blue banded variety of Agate (Chalcedony).
Blue QuartzAn opaque to translucent, blue variety of quartz, owing its colour to inclusions, commonly of fibrous magnesioriebeckite or crocidolite, or of tourmaline. The color may be caused by the color of the included minerals or by Rayleigh scattering of light at ...
Botswana AgateA variety of agate from Botswana, banded with fine, parallel lines, often coloured pink blending into white.
Brecciated AgateA naturally cemented matrix of broken agate fragments.
BuhrstoneA cellular flinty material used for millstones.
Bull QuartzMilky to greyish, massive.
Burnt amethystHeated amethyst; the heating results in a yellow-orange, yellow-brown, or dark brownish colour. Often incorrectly sold as citrine.
Cactus QuartzQuartz crystals encrusted by a second generation of smaller crystals grown on the prism faces. The small second generation crystals point away from the prism and their orientation is not related to the crystallographic orientation of the central crystal. ...
Cape May DiamondWaterworn transparent quartz pebbles. A locally applied marketing name/ploy to clear, colorless quartz beach pebbles occurring along the Delaware Bay beaches of Cape May County, New Jersey, USA. Cut stones from these pebbles are sold in tourist areas of t...
Capped QuartzQuartz crystals made of loosely connected or easily separable parts that correspond to different growth phases. This is caused by the deposition of thin continuous layers of, for example, clay minerals, on the crystal during growth. The typical result is ...
CarnelianA reddish variety of Chalcedony.
Catalinite
ChalcedonyDepending on the context, the term "chalcedony" has different meanings.

1. A more general term for all varieties of quartz that are made of microscopic or submicroscopic crystals, the so-called microcrystalline varieties of quartz. Examples are the diffe...
Chrome-ChalcedonyA variety of chalcedony colored deep green by Cr compounds. (Compare with the more common chrysoprase variety of chalcedony, which is colored by nickel.) Chrome chalcedony found in an ancient Roman gem collection may have come from one of the chromium dep...
ChrysojasperA variety of jasper colored by chrysocolla.
CitrineA yellow to yellow-orange or yellow-green variety of quartz.

Quartz colored by inclusions, or coatings, of any kind is not called citrine. Iron-stained quartz should not be mistaken for citrine.


A yellow-green citrine crystal with smoky phantoms.A cut ...
Clear Lake DiamondQuartz crystals from the Manke Ranch, Lake County, California.
Cloud AgateGreyish agate with patches of blurry, foggy inclusions.
CotteriteA variety of quartz with "metallic pearly lustre" coating normal quartz crystals.
Originally described from Rock Forest, Mallow, Co. Cork, Ireland.
Crazy Lace AgateAn agate composed of multicoloured twisting and turning bands.
CreoliteA red-and-white banded jasper. [Webster (1962), Gems 755]
Originally reported from California, USA.
CubosilicitePseudomorphs of Chalcedonly after Fluorite - small blue cubes
DallasiteA variety of jasper from Vancouver Island, British Columbia, Canada.
DamsoniteTrade name for a light violet to dark purple chalcedony from Arizona.
DarlingiteLocal name for a variety of Jasper. A kind of lydian stone.
Originally reported from Victoria, Australia.
Dendritic AgateChalcedony containing dendritic inclusions.
DiackethystA local name for translucent wine and amethystine coloured chalcedony pebbles.
Originally described from Craig, Montrose, Tayside (Angus), Scotland, UK.
Dotsero DiamondFanciful local name for quartz crystals enclosed in a geologically recent basalt flow. Being incompatible with basaltic lava, the quartz crystals are rounded by reaction with the surrounding lava. Apparently the crystals were detrital, and got picked up b...
DragoniteA rounded quartz pebble representing a quartz crystal that has lost its brilliancy and angular form; in gravels, once believed to be a fabulous stone obtained from the head of a flying dragon.
Egyptian JasperA brown variety jasper (brown alternating with black stripes - Egypt) or red (blood-red, flesh red, yellow, brown - found in Baden), originally described from Egypt.
EisenkieselA quartz that is colored red, orange or brown by hematite inclusions. Translucent to almost opaque.
The term "eisenkiesel" is sometimes also used in a wider sense, as a synonym of ferruginous quartz, for any quartz with iron oxides and hydroxide mineral ...
El DoradoiteTrade name for blue quartz or chalcedony.
Originally described from El Dorado Co., California, USA.
Ema eggTrade name for a river-tumbled pebble of transparent quartz with a frosted exterior resembling an egg shell, originally collected from rivers in Brazil, with one side sawn flat and polished as a window to view the interior. Pebbles of quartz and other min...
Enhydro AgateAn agate nodule partly filled with water.
Eye AgateAgate with concentric ring pattern, looking like an eye.
Faden Quartz"Faden quartz" is the anglicized version of the German "Fadenquarz". "Faden" (pronounced "fah-den") means "thread" and refers to a white line that runs through the crystal.
In French, these are called " quartz a âme "

Faden quartz forms in fissures in t...
Fairburn AgateA unique and rare variety of Fortification Agate from Fairburn, Custer Co., South Dakota, USA.
FensterquarzLiterally "window quartz". Skeletal quartz which has rhombohedral faces appearing like windows.
Ferruginous QuartzA variety of quartz colored red, brown, or yellow by inclusions of hematite or limonite, and usually massive and opaque.
Fire AgateA variety of chalcedony containing inclusions of goethite or limonite, producing an iridescent effect or "fire."
Fortification AgateAgate with sharp-angled bands which resemble the outlines of fortifications of a castle.
Fossil AgateAgate as a replacement material in fossils.
Haema-ovoid-agatesName proposed for a reddish agate with ovoidal patches of cacholong, etc.
Hair AmethystA name for acicular crystals of Amethyst.
HaytoriteAlthough the original specimens from Haytor Mine were pseudomorphs of quartz after datolite, the name has been frequently used in Cornwall also for quartz pseudomorphs after a veriety of other minerals, including calcite dolomite and siderite (see e.g. Co...
HerbeckiteA variety of Agate or Jasper impregnated with Iron Hydrate. [Clark, 1993 - "Hey's Mineral Index"]
Originally described from Hrbek Mine, Svatá Dobrotivá (St Benigna), Beroun (Beraun), Central Bohemia Region, Bohemia (Böhmen; Boehmen), Czech Republic.
Iris AgateAn iridescent variety of agate - when sliced into a thin section it exhibits all the colours of the spectrum when viewed in transmitted light.
Iris QuartzQuartz crystals displaying internal spectral colours under minor rhombohedral faces. This interference phenomenon is due to reflection and refraction on extremely thin parallel Brazil-law twinning lamellae or periodic etching of defects on z faces, result...
IrnimiteVery special multicolor black-blue-brown-white local variety of jasper or microquartzite associated with manganese ores of Taikan range in Eastern Siberia. Its coloration is caused by: black - manganese oxides (very often braunite), blue - alkali amphibol...
Jacinto de CompostelaIn Spanish mineralogical literature, the name is traditionally used exclusively for the red "floater" variety of authigenic quartzes from continental gypsum-bearing marls of the Triassic Keuper formation. (They may also be found occasionally in younger Te...
JasperGeologically the name has long been used for an opaque to slightly translucent, generally red or brown to variably coloured, impure chalcedony or microcrystalline chert, usually containing abundant fine inclusions of hematite, iron hydroxides and other mi...
Keystonite ChalcedonyA local trade name for Chalcedony coloured blue by Chrysocolla.
KinraditeAn orbicular jasper originally observed in the San Francisco area and named for lapidary J J Kinrade.
See: "Kinradite": Orbicular Jasper from San Francisco
Laguna AgateA colourful agate variety.
Originally described from Ojo Laguna, Chihuahua, Mexico.
Lake Superior AgateBelieved to be the world's oldest agates, over 1 billion years old, these are found throughout the northern US having been spread from the original Lake Superior region by glaciation. It has generally pale colouring.
Landscape AgateA variety of chalcedony with inclusions giving the appearance of a landscape scene.
Lithium QuartzA name in common trade use for a pink/purple translucent to opaque variety of quartz, possibly containing inclusions of a lithium-rich mineral such as lepidolite - however it could equally be a misleading/incorrect name, and should be regarded a simply a ...
Mexican Lace AgateLacy or wavy agate from Mexico.
Milky QuartzA semi-transparent to opaque white-coloured variety of quartz.
Mocha StoneA variety of agate (chalcedony) containing inclusions of pyrolusite.

Originally described from Mocha, Saudi Arabia.
Moss AgateA variety of Chalcedony frequently containing green mineral inclusions (eg Chlorite, Hornblende, etc.) or brown to black dendrites of iron or manganese oxides.
Mutzschen DiamondsClear variety of quartz (rock crystal) from Mutzschen, Saxony.
Occurs in voids of Permian volcanic rocks (rhyolites).
MyrickiteLocal name for a chalcedony with grey ground and red spots (inclusions of cinnabar).

Originally described from Myrick Spring, San Bernardino Co., California, USA.
Nipomo AgateChalcedony with inclusions of Marcasite.

Originally described from Nipomo, San Luis Obispo Co., California, USA.
Oil QuartzA variety of Quartz from Tyrol, Austria, which contains yellow stains in cracks. BM 1924,110 and 111 are two specimens in the Natural History Museum, London. [Clark, 1993 - "Hey's Mineral Index"]
OnyxIn correct usage, the name refers to a (usually) black and white banded variety of agate, or sometimes a monochromatic agate with dark and light parallel bands (brown and white for example) - but traditionally the name was reserved for black and white ban...
Owyhee Jasper
PasteliteVariety of jasper exhibiting pastel colors.
Pecos DiamondsColourful, doubly-terminated quartz crystals that occur in the Permian Seven Rivers Formation along the Pecos River valley in southeastern New Mexico.

PhantomquarzA variety of quartz that shows one or more phantoms.
(See phantom crystal).
PietersiteChalcedony with embedded fibers of amphibole minerals with varying degrees of alteration. Blue-gray, brown and yellow colors. The fibers cause a chatoyancy similar to that seen in tiger's eye, but tiger's eye is not made of chalcedony, it is macrocrystall...
Pigeon Blood AgateA blood-red and white variety of agate from Utah.
PlasmaA microgranular or microfibrous form of chalcedony coloured in various shades of green by disseminated silicate particles (variously attributed to celadonite, chlorite, amphibole, etc.).

Various descriptions of Plasma include
of a dullish green color wi...
Plume AgateA variety of chalcedony with contrasting colored, plume-like structures within the material.

Compare with moss agate.
PraseOriginally, the varietal name "prase" was applied to a dull leek-green colored quartzite (a rock, not a mineral*); but over the years it has been also applied to other materials, particularly a green colored jasper of similar color. For perhaps more than...
Prase-malachiteA term for Prase enclosing Malachite.
PrasioliteA green transparent variety of macrocrystalline quartz. Compare with prase and plasma.

Not to be confused with prasolite!
Pseudocubic QuartzCrystals with a (pseudo)cubic appearance that are dominated by a single rhombohedral form (usually r, { 1 0 -1 1 }). Since the angles of the rhombohedron differ only very little from that of a perfect cube (85.2° and 94.8°, respectively, instead of 90°...
Quartz GwindelQuartz crystals that grew along and are slightly rotated around a single a-axis. This results in twisted and tabular crystals. The twist reflects the handedness of the quartz crystals. With increasing distance from the base
- right-handed gwindels twist c...
QuartzineQuartzine is a fibrous variety of chalcedony. It is also called "length-slow chalcedony" and is usually intergrown with another, more common type of fibrous chalcedony, "length-fast chalcedony", that comprises most of the different varieties of chalcedony...
QuetzalitztliTranslucent, emerald green jasper from Guatemala, colored by inclusions of Cr-muscovite.
Riband AgateAccording to Hey's 3rd Ed. this is 'a banded agate', which doesn't tell us much!
Riband JasperA banded Jasper
Rock CrystalA transparent colourless variety of quartz.
Rose QuartzTwo varieties of quartz are commonly called "rose quartz".

1. One is found in translucent masses made of intergrown anhedral crystals. It occurs in different hues of pink, sometimes bluish, sometimes more reddish; irradiation may cause the formation of ...
Rutilated QuartzQuartz shot through with needles of Rutile.
Sagenite (of Kunz)A redefinition by Kunz in 1892 (possibly a misunderstanding) of the original name Sagenite as defined by Saussure to refer to a variety of quartz - see also Sagenite (of Saussure) and Rutilated Quartz - a more common modern name to refer to Quartz contain...
SardA brown to brownish-red translucent variety of chalcedony. Pliny the Elder stated that it was named after Sardis, in Lydia, where it was first discovered; but the name probably came with the stone from Persia (Persian sered = yellowish-red).
SardonyxA variety of Agate with reddish-brown and either black or white bands.
Sceptre QuartzSceptre quartzes (American English spelling: Scepter quartzes) are crystals in which a second generation crystal tip grew on top of another quartz crystal. In a typical scepter quartz, the younger tip is larger than the first tip, but it may also be small...
SchwimmsteinEarthy quartz, as nodular to mamillary masses, as coating on flint.
Specific weight < 1, therefore floating on water.
SeftoniteA translucent, moss green variety of chalcedony.
Shocked QuartzQuartz shocked under intense pressure (but limited temperature). During the pressure shock, the crystalline structure of quartz will be deformed along planes inside the crystal. These planes, which show up as lines under a microscope, are called planar de...
Smoky QuartzA smoky-gray, brown to black variety of quartz that owes its color to gamma irradiation and the presence of traces of aluminum built into its crystal lattice (Griffiths et al, 1954; O'Brien, 1955). The irradiation causes the aluminum Al(+3) atoms that rep...
Snakeskin AgateChalcedony with snakeskin-like surface pattern.
Star QuartzRefers to the shape of an aggregate of radiating crystals; not to be confused with the optical property "asterism".
Star quartz usually grows at low temperature, often around a core of chalcedony.
Suttroper QuarzName used for biterminated, milky quartz crystals originally described from Suttrop, Warstein, Sauerland, North Rhine-Westphalia, Germany. Generally used in the plural form, 'Suttroper Quarze', or more correctly (because Suttrop is not the only locality),...
Vogelaugenjaspis
Watercolour jasperVery special multicolor black-blue-brown-white local variety of Jasper or microquartzite associated with manganese ores of Taikan range in Eastern Siberia.
WilkiteA yellow, purple, pink, and green jasper from Willow Creek, Ada County, Idaho, USA.
YoungiteLocal name for agate or jasper coated by druzy quartz crystals.
Found near Guernsey, Platte Co., Wyoming, USA, in limestone rocks.

Common AssociatesHide

Associated Minerals Based on Photo Data:
12,833 photos of Quartz associated with FluoriteCaF2
11,848 photos of Quartz associated with CalciteCaCO3
9,409 photos of Quartz associated with PyriteFeS2
7,208 photos of Quartz associated with SphaleriteZnS
5,261 photos of Quartz associated with ChalcopyriteCuFeS2
4,935 photos of Quartz associated with GalenaPbS
4,498 photos of Quartz associated with HematiteFe2O3
4,423 photos of Quartz associated with SideriteFeCO3
4,145 photos of Quartz associated with DolomiteCaMg(CO3)2
3,407 photos of Quartz associated with RhodochrositeMnCO3

Related Minerals - Strunz-mindat GroupingHide

4.DA.ChibaiteSiO2 · n(CH4, C2H6, C3H8, i-C4H10) (n = 3/17 (max))Iso. m3 (2/m 3) : Fd3
4.DA.Carbon Dioxide IceCO2
4.DA.BosoiteSiO2 · nCxH2x+2Hex. 6/mmm (6/m 2/m 2/m) : P6/mmm
4.DA.10OpalSiO2 · nH2O
4.DA.10TridymiteSiO2Tric. 1
4.DA.15CristobaliteSiO2Tet. 4 2 2 : P41 21 2
4.DA.20MogániteSiO2Mon.
4.DA.25Melanophlogite46SiO2 · 6(N2,CO2) · 2(CH4,N2)Tet. 4/mmm (4/m 2/m 2/m)
4.DA.30LechatelieriteSiO2Amor.
4.DA.35CoesiteSiO2Mon. 2/m : B2/b
4.DA.40StishoviteSiO2Tet. 4/mmm (4/m 2/m 2/m) : P42/mnm
4.DA.45KeatiteSiO2Tet. 4 2 2 : P43 21 2
4.DA.50SeifertiteSiO2Orth. mmm (2/m 2/m 2/m) : Pbcn
4.DA.55Quartz-betaSiO2Hex. 6 2 2 : P64 2 2

Other InformationHide

Electrical:
piezoelectric, pyroelectric, may be triboluminescent.
Thermal Behaviour:
Transforms to beta-quartz at 573° C and 1 bar (100 kPa) pressure.
Health Risks:
Quartz is usually quite harmless unless broken or powdered. Broken crystals and masses may have razor-sharp edges that can easily cut skin and flesh. Handle with care. Do not grind dry since long-term exposure to finely ground powder may lead to silicosis.
Industrial Uses:
Ore for silicon, glassmaking, frequency standards, optical instruments, silica source for concrete setting, filtering agents as sand. A major component of sand.

Quartz in petrologyHide

An essential component of rock names highlighted in red, an accessory component in rock names highlighted in green.

References for QuartzHide

Reference List:
Sort by Year (asc) | by Year (desc) | by Author (A-Z) | by Author (Z-A)
Rülein von Calw, U. (1527) Querz. in: Ein nützlich Bergbüchlin: von allen Metallen / als Golt / Silber / Zcyn / Kupferertz / Eisenstein / Bleyertz / und vom Quecksilber, Loersfelt (Erffurd) 25, 38.
Agricola, G. (1530) Quarzum. in: Bermannus, Sive De Re Metallica, in aedibus Frobenianis (Basileae) 88, 129.
Agricola, G. (1546) Book V. Quartz. in: De Natura Fossilium, Froben (Basileae) 249-275.
Bras-de-Fer, L. (1778) (84) Terre (Élément). in: Explication Morale du Jeu de Cartes; Anecdote Curieuse et Interessante, (Bruxelles), 99-100.
Hoffmann, C.A.S. (1789) Mineralsystem des Herrn Inspektor Werners mit dessen Erlaubnis herausgegeben von C.A.S. Hoffmann. Bergmännisches Journal: 1: 369-398.
Berzelius, J.J. (1810) Zerlegung der Kieselerde durch gewöhnliche chemische Mittel. Annalen der Physik: 36: 89-102. [Discovery of silicon, quartz being made of silicon and oxygen]
Arago, F.J.D. (1811) Mémoire sur une modification remarquable qu'éprouvent les rayons lumineux dans leur passage à travers certains corps diaphanes et sur quelques autres nouveaux phénomènes d'optique. Mémoires de la classe des sciences mathématiques et physiques de l'Institut Impérial de France Année 1811. 1re partie: 92-134. [discovery of optical activity of quartz and of interference colors in polarized light]
Biot, J.B. (1812) Mémoire sur une nouveau genre d'oscillation, que les molecules de la lumiére éprouvent en traversant certains cristeaux. Mémoires de la classe des sciences mathématiques et physiques de l'Institut Impérial de France Année 1812. 1re partie: 1-371.
Weiss, C.S. (1816) Ueber den eigenthümlichen Gang des Krystallisations-systemes beim Quarz, und über eine an ihm neu beobachtete Zwillingskrystallisation. Mitteilungen der Gesellschaft Naturforschender Freunde, Berlin: 7: 163-181. [first description of Dauphiné twin law]
Herschel, J.F.W. (1822) On the rotation impressed by plates of rock crystal on the planes of polarization of the rays of light, as connected with certain peculiarities in its crystallization. Transactions of the Cambridge Philosophical Society: 1: 43-51.
Brewster, D. (1823) On circular polarization, as exhibited in the optical structure of the amethyst, with remarks on the distribution of the colouring matter in that mineral. Transactions of the Royal Society of Edinburgh: 9: 139-152.
Weiss, C.S. (1829) Über die herzförmig genannten Zwillingskrystalle von Kalkspath, und gewisse analoge von Quarz. Abhandlungen der Königlichen Akademie der Wissenschaften zu Berlin: 77-87.
Leydolt, F. (1855) Über eine neue Methode, die Structur und Zusammensetzung der Krystalle zu untersuchen, mit besonderer Berücksichtigung der Varietäten des rhomboedrischen Quarzes. Sitzungsberichte der mathematisch naturwissenschaftlichen Classe der kaiserlichen Akademie der Wissenschaften: 15: 59-81.
Rammelsberg, C. (1861) Ueber das Verhalten der aus Kieselsäure bestehenden Mineralien gegen Kalilauge. Annalen der Physik und Chemie: 112: 177-192.
Jenzsch, G. (1867) Ueber die am Quarze vorkommenden sechs Gesetze regelmäßiger Verwachsung mit gekreuzten Hauptaxen. Annalen der Physik: 206: 597-611.
Jenzsch, G. (1868) Ueber die Gesetze regelmäßiger Verwachsung mit gekreuzten Hauptaxen am Quarze. Annalen der Physik: 210: 540-551.
Firket, A. (1878) Sur une variété de quartz pulvérulent. Annales de la Société géologique de Belgique, 5, XC.
Judd, J.W. (1888) On the development of a lamellar structure in quartz-crystals by mechanical means. The Mineralogical Magazine and Journal of the Mineralogical Society: 8: 1-10.
Meyer, T. (1888) Action of hydrofluoric acid on a sphere of quartz. Proceedings of the Natural Academy of Sciences of Philadelphia: 40: 121.
Cesàro, G. (1890) Notes sur les figures de corrosion du quartz par l'acide fluorhydrique. Annales de la Société géologique de Belgique, 17, LV.
Abraham, A. (1913) Quartz fibreux. Annales de la Société géologique de Belgique, 40, B275.
Fenner, C.N. (1913) The stability relations of the silica minerals. American Journal of Sciences: 36: 331-384.
Zyndel, F. (1913) Über Quarzzwillinge mit nichtparallelen Hauptaxen. Zeitschrift für Krystallographie: 53(1): 15-52.
Adams, S. (1920) A microscopic study of vein quartz. Economic Geology: 15: 623-664.
Weber, L. (1922) Beobachtungen an schweizerischen Bergkristallen. Schweizerische mineralogische und petrographische Mitteilungen: 2: 276-282.
Bragg, W., Gibbs, R.E. (1925) The structure of α and β quartz. Proceedings of the Royal Society of London, Series A: 109(751) 405-427.
Gibbs, R.E. (1926) Structure of α quartz. Proceedings of the Royal Society of London, Series A: 110(754) 443-455.
Hart, G. (1927) The nomenclature of silica. American Mineralogist: 12: 383-395.
Sosman, R.B. (1927) The properties of silica. American Chemical Society, Monograph No.37, 856pp.
Gibson, R.E. (1928) The influence of pressure on the high-low inversion of quartz. Journal of Physical Chemistry: 32: 1197-1205.
Tarr, W.A., Lonsdale, J.T. (1929) Pseudo-cubic quartz crystals from Artesia, New Mexico. American Mineralogist: 14: 50-53.
Tolman, C. (1931) Quartz dikes. American Mineralogist: 16: 278-299.
Weil, R. (1931) Quelques observations concernant la structure du quartz. Compte Rendu 1er Réunion de l'Institut d'Optique: 2-11.
Schubnikow, A., Zinserling, K. (1932) Über die Schlag- und Druckfiguren und über die mechanischen Quarzzwillinge. Zeitschrift für Kristallographie: 74: 243-264.
Drugman, J. (1939) Prismatic cleavage and steep rhombohedral form in α-quartz. Mineralogical Magazine: 25: 259-263.
Koenigsberger, J.G. (1940) Die zentralalpinen Minerallagerstätten. Teil III. Wepf & Co. Verlag, Basel.
Raman, C.V., Nedungadi, T.M.K. (1940) The α-β transition of quartz. Nature: 145: 147.
Tomkeieff, S.I. (1941) Origin of the Name 'Quartz'. Mineralogical Magazine: 26: 172-178.
Frondel, C. (1945) History of the quartz oscillator-plate industry, 1941-1944. American Mineralogist: 30: 205-213.
Frondel, C. (1945) Secondary Dauphiné twinning in quartz. American Mineralogist: 30: 447-460.
Krishnan, R.S. (1945) Raman spectrum of quartz. Nature: 155: 452.
Thomas, L.A. (1945) Terminology of interpenetrating twins in α-quartz. Nature: 155: 424.
Armstrong, E. (1946) Relation between secondary Dauphiné twinning and irradiation-coloring in quartz. American Mineralogist: 31: 456-461.
Baker, G. (1946) Microscopic quartz crystals in brown coal, Victoria. American Mineralogist: 31: 22-30.
Friedman, I.I. (1947) The laboratory growth of quartz. American Mineralogist: 32: 583-588.
Faust, G.T. (1948) Thermal analysis of quartz and its use in calibration in thermal analysis studies. American Mineralogist: 33: 337-345.
Gault, H.R. (1949) The frequency of twin types in quartz crystals. American Mineralogist: 34: 142-162.
Tuttle, O.F. (1949) The variable inversion temperature of quartz as a possible geologic thermometer. American Mineralogist: 34: 723-730.
Chapman, C.A. (1950) Quartz veins formed by metamorphic differentiation of aluminous schists. American Mineralogist: 35: 693-710.
Friedlaender, C. (1951) Untersuchung über die Eignung alpiner Quarze für piezoelektrische Zwecke. Beiträge zur Geologie der Schweiz, Geotechnische Serie, Lieferung 29.
Brown, C.S., Kell, R.C., Thomas, L.A., Wooster, N., Wooster, W.A. (1952) Growth and properties of large crystals of synthetic quartz. Mineralogical Magazine: 29: 858-874.
Kozu, S. (1952) Japanese twins of quartz. American Journal of Science: Bowen Volume Part 1: 281-292.
Van Praagh, G., Willis, B.T.M. (1952) Striations on prism faces of quartz. Nature: 169: 623-624.
Fairbairn, H.W. (1954) The stress-sensitivity of quartz in tectonites. Tschermaks mineralogische und petrographische Mitteilungen: 4: 75-80.
Frederickson, A.F., Cox, J.E. (1954) Mechanism of "solution" of quartz in pure water at elevated temperatures and pressures. American Mineralogist: 39: 886-900.
Frederickson, A.F. (1955) Mosaic structure in quartz. American Mineralogist: 40: 1-9.
O'Brien, M.C.M. (1955) The structure of the colour centres in smoky quartz. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences: 231: 404-414.
Seifert, H. (1955) Über orientierte Abscheidungen von Aminosäuren auf Quarz. Die Naturwissenschaften: 42: 13. [epitaxy of amino acids]
Borg, I. (1956) Note on twinning and pseudo-twinning in detrital quartz grains. American Mineralogist: 41: 792-796.
Krauskopf, K.B. (1956) Dissolution and precipitation of silica at low temperatures. Geochimica et Cosmochimica Acta: 10: 1-26.
de Vries, A. (1958) Determination of the absolute configuration of α-quartz. Nature: 181: 1193.
Dapples, E.C. (1959) The behavior of silica in diagenesis. in: Ireland, H.A. (editor) Silica in Sediments. A symposium sponsored by the Society of Economic Paleontologists and Mineralogists Society of Economic Paleontologists and Mineralogists, Special Publication No.7: 36-54.
Denning, R.M., Conrad, M.A. (1959) Directional grinding hardness of quartz by peripheral grinding. American Mineralogist: 44: 423-428.
Krauskopf, K.B. (1959) The geochemistry of silica in sedimentary environments. in: Ireland, H.A. (editor) Silica in Sediments. A symposium sponsored by the Society of Economic Paleontologists and Mineralogists Society of Economic Paleontologists and Mineralogists, Special Publication No.7: 4-19.
Foster, R.J. (1960) Origin of embayed quartz crystals in acidic volcanic rocks. American Mineralogist: 45: 892-894.
Ballman, A.A. (1961) Growth and properties of colored quartz. American Mineralogist: 46: 439-446.
Bambauer, H.U. (1961) Spurenelementgehalte und -Farbzentren in Quarzen aus Zerrklüften der Schweizer Alpen. Schweizerische mineralogische und petrographische Mitteilungen: 41: 335-369.
Bambauer, H.U., Brunner, G.O., Laves, F. (1961) Beobachtungen über Lamellenbau an Bergkristallen. Zeitschrift für Kristallographie: 116: 173-181.
Bambauer, H.U., Brunner, G.O., Laves, F. (1962) Wasserstoff-Gehalte in Quarzen aus Zerrklüften der Schweizer Alpen und die Deutung ihrer regionalen Abhängigkeit. Schweizerische mineralogische und petrographische Mitteilungen: 42: 221-236.
Brace, W.F., Walsh, J.B. (1962) Some direct measurements of the surface energy of quartz and orthoclase. American Mineralogist: 47: 1111-1122.
Frondel, C. (1962) Dana's System of Mineralogy, 7th Edition: Vol. III: Silica Minerals. John Wiley, New York and London.
Bambauer, H.U., Brunner, G.O., Laves, F. (1963) Merkmale des OH-Spektrums alpiner Quarze (3μ-Gebiet). Schweizerische mineralogische und petrographische Mitteilungen: 43: 259-268.
Blatt, H., Christie, J.M. (1963) Undulatory extinction in quartz of igneous and metamorphic rocks and its significance in provenance studies of sedimentary rocks. Journal of Sedimentary Research: 33: 559-579.
Bloss, F.D., Gibbs, G.V. (1963) Cleavage in quartz. American Mineralogist: 48: 821-838.
Gansser, A. (1963) Quarzkristalle aus den kolumbianischen Anden (Südamerika). Schweizerische mineralogische und petrographische Mitteilungen: 43: 91-103.
Lang, A.R. (1965) Mapping Dauphiné and Brazil twins in quartz by X-ray topography. Applied Physics Letters: 7: 168-170.
Dennen, W.H. (1966) Stoichiometric substitution in natural quartz. Geochichimica et Cosmochimica Acta: 30: 1235-1241.
Lehmann, G., Moore, W.J. (1966) Color center in amethyst quartz. Science: 152: 1061-1062.
McLaren, A.C., Retchford, J.A., Griggs, D.T., Christie, J.M. (1967) Transmission electron microscope study of Brazil twins and dislocations experimentally produced in natural quartz. Physica Status Solidi: 19: 631-645.
Carr, R.M. (1968) The problem of quartz-corundum stability. American Mineralogist: 53: 2092-2095.
Carstens, H. (1968) A note on the origin of Brazil twins in lamellar quartz. Norsk Geologiske Tidsskrift: 48: 61-64.
Carstens, H. (1968) The lineage structure of quartz crystals. Contributions to Mineralogy and Petrology: 18: 295-304.
Frondel, C. (1968) Quartz twin on {3032}. Mineralogical Magazine: 36: 861-864.
Bambauer, H.U., Brunner, G.O., Laves, F. (1969) Light scattering of heat-treated quartz in relation to hydrogen-containing defects. American Mineralogist: 54: 718-724.
Kushiro, I. (1969) The system forsterite-diopside-silica with and without water at high pressures. American Journal of Science: 267: 269-294.
McLaren, A.C., Phakey, P.P. (1969) Diffraction contrast from Dauphiné twin boundaries in quartz. Physica Status Solidi: 31: 723-737.
Rice, S.J. (1969) Quartz family minerals. California Division of Mines and Geology Mineral Information Service: 22: 35-38.
Carmichael, I.S.E., Nicholls, J., Smith, A.I. (1970) Silica activity in igneous rocks. American Mineralogist: 55: 246-263.
Feigl, F.J., Anderson, J.H. (1970) Defects in crystalline quartz: electron paramagnetic resonance of E' vacancy centers associated with germanium impurities. Journal of Physics and Chemistry of Solids: 31: 575-596.
Calvert, S.E. (1971) Nature of silica phases in deep sea cherts of the North Atlantic Ocean. Nature Physical Science: 234: 133-134.
Mackenzie, F.T., Gees, R. (1971) Quartz: Synthesis at earth-surface conditions. Science: 173: 533-535.
Scott, S.D., O'Connor, T.P. (1971) Fluid inclusions in vein quartz, Silverfields Mine, Cobalt, Ontario. The Canadian Mineralogist 11, 263-271.
Bates, J.B., Quist, A.S. (1972) Polarized Raman spectra of β-quartz. The Journal of Chemical Physics: 56: 1528-1533.
Baëta, R.D., Ashbee, K.H.G. (1973) Transmission electron microscopy studies of plastically deformed quartz. Physica Status Solidi A: 18: 155-170.
Gross, G. (1973) Trigonale Symmetrie anzeigende Querstreifung bei Bergkristall. Schweizerische Mineralogische und Petrographische Mitteilungen: 53: 173-183.
Bettermann, P., Liebau, F. (1975) The transformation of amorphous silica to crystalline silica under hydrothermal conditions. Contributions to Mineralogy and Petrology: 53: 25-36.
Donnay, J.D.H., Le Page, Y. (1975) Twin laws versus electrical and optical characters in low quartz. The Canadian Mineralogist: 13: 83-85.
Barron, T.H.K, Huang, C.C., Pasternak, A. (1976) Interatomic forces and lattice dynamics of α-quartz. Journal of Physics C: Solid State Physics: 9: 3925-3940.
Chakraborty, D., Lehmann, G. (1976) Distribution of OH in synthetic and natural quartz crystals. Journal of Solid State Chemistry: 17: 305-311.
Chakraborty, D., Lehmann, G. (1976) On the structures and orientations of hydrogen defects in natural and synthetic quartz crystals. Physica Status Solidi A: 34: 467-474.
Le Page, Y., Donnay, G. (1976) Refinement of the crystal structure of low-quartz. Acta Crystallographica: B32: 2456-2459.
Van Goethem, L., Van Landuyt, J., Amelinckx, S. (1977) The α-β transition in amethyst quartz as studied by electron microscopy and diffraction. The interaction of Dauphiné with Brazil twins. Physica Status Solidi: 41: 129-137.
Flick, H., Weissenbach, N. (1978) Magmatische Würfelquarze in Rhyolithen (Quarzkeratophyren) des Rheinischen Schiefergebirges. Tschermaks Mineralogische und Petrographische Mitteilungen: 25: 117-129.
Donnay, J. D. H. and Le Page, Y. (1978): The vicissitudes of the low-quartz crystal setting or the pitfalls of enantiomorphism. Acta Crystallogr. A34, 584-594.
Robin, P.Y.F. (1979) Theory of metamorphic segregation and related processes. Geochimica et Cosmochimica Acta: 43(10): 1587-1600.
Maschmeyer, D., Niemann, K., Hake, K., Lehmann, G., Räuber, A. (1980) Two modified smoky quartz centres in natural citrine. Physics and Chemistry of Minerals: 6: 145-156.
Flörke, O.W., Mielke, H.G., Weichert, J., Kulke, H. (1981) Quartz with rhombohedral cleavage from Madagascar. American Mineralogist: 66: 596-600.
Sprunt, E.S. (1981) Causes of quartz cathodoluminescence colours. Scanning Electron Microscopy: 525-535.
Wright, A.F., Lehmann, M.S. (1981) The structure of quartz at 25 and 590°C determined by neutron diffraction. Journal of Solid State Chemistry: 36: 371-380.
Bohlen, S.R., Boettcher, A.L. (1982) The quartz-coesite transformation: a precise determination and the effects of other components. Journal of Geophysical Research: 87(B8): 7073-7078.
McLaren, A.C., Pitkethly, D.R. (1982) The twinning microstructure and growth of amethyst quartz. Physics and Chemistry of Minerals: 8: 128-135.
Richet, P., Bottinga, Y., Deniélou, L., Petitet, J.P., Téqui, C. (1982) Thermodynamic properties of quartz, cristobalite, and amorphous SiO2: drop calorimetry measurements between 1000 and 1800 K and a review from 0 to 2000 K. Geochimica et Cosmochimica Acta: 46: 2639-2658.
Serebrennikov, A.J., Valter, A.A., Mashkovtsev, R.I., Scherbakova, M.Ya. (1982) The investigation of defects in shock-metamorphosed quartz. Physics and Chemistry of Minerals: 8: 155-157.
Yasuda, T., Sunagawa, I. (1982) X-ray topographic study of quartz crystals twinned according to japan twin law. Physics and Chemistry of Minerals: 8(3): 121-127.
Maschmeyer, D., Lehmann, G. (1983) A trapped-hole center causing rose coloration of natural quartz. Zeitschrift für Kristallographie: 163: 181-186.
Scandale, E., Stasi, F., Zarka, A. (1983) Growth defects in a Quartz Druse. ac Dislocations. Journal of Applied Crystallography: 16: 39-403.
Sunagawa, I., Yasuda, T. (1983) Apparent re-entrant corner effect upon the morphologies of twinned crystals; a case study of quartz twinned according to Japanese twin law. Journal of Crystal Growth: 65: 43-49.
Barker, C., Robinson, S.J. (1984) Thermal release of water from natural quartz. American Mineralogist: 69: 1078-1081.
Bernhardt, H.-J., Alter, U. (1984) Induced growth striations in quartz crystals. Crystal Research Technology: 19: 453-460.
Rykart, R. (1984) Authigene Quarz-Kristalle. Lapis Mineralien Magazin: 9(6).
Weil, J.A. (1984) A review of electron spin resonance and its applications to the study of paramagnetic defects in crystalline quartz. Physics and Chemistry of Minerals: 10: 149-165.
Scandale, E., Stasi, F. (1985) Growth defects in Quartz Druses. a Pseudo-basal Dislocations. Journal of Applied Crystallography: 18: 275-278.
Bernhardt, H.-J. (1986) A pragmatic model for the simulation of self-induced striations in quartz crystals. Crystal Research Technology: 21: 983-994.
Sawyer, E.W., Robin, P.-Y.F. (1986) The subsolidus segregation of layer-parallel quartz-feldspar veins in greenschist to upper amphibolite facies metasediments. Journal of Metamorphic Geology: 4: 237-260.
Applin, K.R., Hicks, B.D. (1987) Fibers of dumortierite in quartz. American Mineralogist: 72: 170-172.
Hemingway, B.S. (1987) Quartz: Heat capacities from 340 to 1000 K and revised values for the thermodynamic properties. American Mineralogist: 72: 273-279.
Hurai, V., Stresko, V. (1987) Correlation between quartz crystal morphology and composition of fluid inclusions as inferred from fissures in Central Slovakia (Czechoslovakia). Chemical Geology: 61: 225-239.
Jayaraman, A., Wood, D.L., Maines, R.G. (1987) High-pressure Raman study of the vibrational modes in AlPO4 and SiO2 (α-quartz). Physical Review B: 35: 8316-8321.
Molenaar, N., de Jong, A.F.M. (1987) Authigenic quartz and albite in Devonian limestones: origin and significance. Sedimentology: 34: 623-640.
Ruppert, L.F. (1987) Applications of cathodoluminescence of quartz and feldspar to sedimentary petrology. Scanning Microscopy, 1(1), 63-72.
Graziani, G., Lucchesi, S., Scandale, E. (1988) Growth defects and genetic medium of a quartz druse from Traversella, Italy. Neues Jahrbuch für Mineralogie, Abhandlungen: 159: 165-179.
Owen, M.R. (1988) Radiation-damage halos in quartz. Geology: 16: 529-532.
Ramseyer, K., Baumann, J., Matter, A., Mullis, J. (1988) Cathodoluminescence colours of α-quartz. Mineralogical Magazine: 52: 669-677.
Sowa, H. (1988) The oxygen packings of low-quartz and ReO3 under high pressure. Zeitschrift für Kristallographie: 184: 257-268.
Davidson, P.M., Lindsley, D.H. (1989) Thermodynamic analysis of pyroxene-olivine-quartz equilibria in the system CaO-MgO-FeO-SiO2. American Mineralogist: 74: 18-30.
Drees, L.R., Wilding, L.P., Smeck, N.E., Senkayi, A.L. (1989) Silica in soils: quartz and disordered silica polymorphs. in Minerals in Soil Environments, Editor S.B. Weed. Soil Science Society of America (Madison Wisconsin, USA) 913-974.
Dubrovinskii, L.S., Nozik, Y.Z. (1989) Calculation of the anisotropic thermal parameters of the atoms of α-quartz. Soviet Physics - Doklady: 34: 484-485.
Hazen, R.M., Finger, L.W., Hemley, R.J., Mao, H.K. (1989) High-pressure crystal chemistry and amorphization of α-quartz. Solid State Communications: 72: 507-511.
Scandale, E., Stasi, F., Lucchesi, S., Graziani, G. (1989) Growth marks and genetic conditions in a quartz druse. Neues Jahrbuch für Mineralogie, Abhandlungen: 160: 181-192.
Rao, P.S., Weil, J.A., Williams, J.A.S. (1989) EPR investigation of carbonaceous natural quartz single crystals. The Canadian Mineralogist: 27: 219-224.
Blum, A.E., Yund, R.A., Lasaga, A.C. (1990) The effect of dislocation density on the dissolution rate of quartz. Geochimica et Cosmochimica Acta: 54: 283-297.
Brady, P.V., Walther, J.V. (1990) Kinetics of quartz dissolution at low temperature. Chemical Geology: 82: 253-264.
Dove, P.M., Crerar, D.A. (1990) Kinetics of quartz dissolution in electrolyte solutions using a hydrothermal mixed flow reactor. Geochimica et Cosmochimica Acta: 54: 955-969.
Kihara, K. (1990) An X-ray study of the temperature dependence of the quartz structure. European Journal of Mineralogy: 2: 63-77.
Ribet, I., Thiry, M. (1990) Quartz growth in limestone: example from water-table silicification in the Paris Basin. Geochemistry of the Earth's Surface and Mineral Formation. 2nd International Symposium, July 2, 1990, Aix en Provance, France. Chemical Geology: 84: 316-319.
Taijing, L., Sunagawa, I. (1990) Structure of Brazil twin boundaries in amethyst showing brewster fringes. Physics and Chemistry of Minerals: 17: 207-211.
Chernosky, J.V., Berman, R.G. (1991) Experimental reversal of the equilibrium andalusite + calcite + quartz = anorthite + CO2. The Canadian Mineralogist: 29: 791-802.
Cordier, P., Doukhan, J.C. (1991) Water speciation in quartz: A near infrared study. American Mineralogist: 76: 361-369.
Heaney, P.J., Veblen, D.R. (1991) Observations of the alpha-beta phase transition in quartz: A review of imaging and diffraction studies and some new results. American Mineralogist: 76: 1018-1032.
Lüttge, A., Metz, P. (1991) Mechanism and kinetics of the reaction 1 dolomite + 2 quartz = 1 diopside + 2 CO2 investigated by powder experiments. The Canadian Mineralogist: 29: 803-821.
Agrosì, G., Lattanzi, P., Ruggieri, G., Scandale, E. (1992) Growth history of a quartz crystal from growth marks and fluid inclusions data. Neues Jahrbuch für Mineralogie, Monatshefte: 7: 289-294.
Glinnemann, J., King, H.E., Schulz, H., Hahn, T., La Placa, S.J., Dacol, F. (1992) Crystal structures of the low-temperature quartz-type phases of SiO2 and GeO2 at elevated pressure. Zeitschrift für Kristallographie: 198: 177-212.
Lentz, D.R., Fowler, A.D. (1992) A dynamic model for graphic quartz-feldspar intergrowths in granitic pegmatites in the southwestern Grenville Province. The Canadian Mineralogist: 30: 571-585.
Peucker-Ehrenbrink, B., Behr, H.-J. (1993) Chemistry of hydrothermal quartz in the post-Variscan "Bavarian Pfahl" system, F.R. Germany. Chemical Geology: 103: 85-102.
Rink, W.J., Rendell, H., Marseglia, E.A., Luff, B.J., Townsend, P.D. (1993) Thermoluminescence spectra of igneous quartz and hydrothermal vein quartz. Physics and Chemistry of Minerals: 20: 353-361.
Berti G.(1994) Microcrystalline properties of quartz by means of XRPD measures. Adv. X-Ray Analysis: 37:359-366.
Cohen, R.E. (1994) First-principles theory of crystalline SiO2. in: Heaney, P.J., Gibbs, G.V., editors. Reviews in Mineralogy Volume 29 Silica - Physical behaviour, geochemistry and materials applications. Mineralogical Society of America, 369-402.
Cordier, P., Weil, J.A., Howarth, D.F., Doukhan, J.C. (1994) Influence of the (4H)Si defect on dislocation motion in crystalline quartz. European Journal of Mineralogy: 6: 17-22.
Dolino, G., Vallade, M. (1994) Lattice dynamical behavior of anhydrous silica. in: Heaney, P.J., Gibbs, G.V., editors. Reviews in Mineralogy Volume 29 Silica - Physical behaviour, geochemistry and materials applications. Mineralogical Society of America, 403-431.
Dove, P.M., Rimstidt, J.D. (1994) Silica-water interactions. in: Heaney, P.J., Gibbs, G.V., editors. Reviews in Mineralogy Volume 29 Silica - Physical behaviour, geochemistry and materials applications. Mineralogical Society of America, 259-308.
Gibbs, G.V., Downs, J.W., Boisen, M.B. Jr. (1994) The elusive SiO bond. in: Heaney, P.J., Gibbs, G.V., editors. Reviews in Mineralogy Volume 29 Silica - Physical behaviour, geochemistry and materials applications. Mineralogical Society of America, 331-368.
Goldsmith, D.F. (1994) Health effects of silica dust exposure. in: Heaney, P.J., Gibbs, G.V., editors. Reviews in Mineralogy Volume 29 Silica - Physical behaviour, geochemistry and materials applications. Mineralogical Society of America, 545-606.
Graetsch, H. (1994) Structural characteristics of opaline and microcrystalline silica minerals. in: Heaney, P.J., Gibbs, G.V., editors. Reviews in Mineralogy Volume 29 Silica - Physical behaviour, geochemistry and materials applications. Mineralogical Society of America, 209-232.
Heaney, P.J. (1994) Structure and chemistry of the low-pressure silica polymorphs. in: Heaney, P.J., Gibbs, G.V., editors. Reviews in Mineralogy Volume 29 Silica - Physical behaviour, geochemistry and materials applications. Mineralogical Society of America, 1-40.
Hemley, R.J., Prewitt, C.T., Kingma, K.J. (1994) High-pressure behavior of silica. in: Heaney, P.J., Gibbs, G.V., editors. Reviews in Mineralogy Volume 29 Silica - Physical behaviour, geochemistry and materials applications. Mineralogical Society of America, 41-81.
Knauth, L.P. (1994) Petrogenesis of chert. in: Heaney, P.J., Gibbs, G.V., editors. Reviews in Mineralogy Volume 29 Silica - Physical behaviour, geochemistry and materials applications. Mineralogical Society of America, 233-258.
Kronenberg, A.K. (1994) Hydrogen speciation and chemical weakening of quartz. in: Heaney, P.J., Gibbs, G.V., editors. Reviews in Mineralogy Volume 29 Silica - Physical behaviour, geochemistry and materials applications. Mineralogical Society of America, 123-176.
Langenhorst, F. (1994) Shock experiments on pre-heated α- and β-quartz: II. X-ray and TEM investigations. Earth and Planetary Science Letters: 128: 683-698.
Navrotsky, A. (1994) Thermochemistry of crystalline and amorphous silica. in: Heaney, P.J., Gibbs, G.V., editors. Reviews in Mineralogy Volume 29 Silica - Physical behaviour, geochemistry and materials applications. Mineralogical Society of America, 309-329
Rossman, G.R. (1994) Colored varieties of the silica minerals. in: Heaney, P.J., Gibbs, G.V., editors. Reviews in Mineralogy Volume 29 Silica - Physical behaviour, geochemistry and materials applications. Mineralogical Society of America, 433-467.
Swamy, V., Saxena, S.K., Sundman, B., Zhang, J. (1994) A thermodynamic assessment of silica phase diagram. Journal of Geophysical Research 99, 11787-11794.
Dong, G., Morrison, G., Jaireth, S. (1995) Quartz textures in epithermal veins, Queensland - classification, origin and implications. Economic Geology: 90: 1841-1856.
Onasch, C.M., Vennemann, T.W. (1995) Disequilibrium partitioning of oxygen isotopes associated with sector zoning in quartz. Geology: 23: 1103-1106.
Rykart, R. (1995) Quarz-Monographie - Die Eigenheiten von Bergkristall, Rauchquarz, Amethyst, Chalcedon, Achat, Opal und anderen Varietäten. Ott-Verlag, Thun.
Stevens Kalceff, M.A., Phillips, M.R. (1995) Cathodoluminescence microcharacterization of the defect structure of quartz. Physics Review: B: 52: 3122-3134.
Gratz, A.J., Fisler, D.K., Bohor, B.F. (1996) Distinguishing shocked from tectonically deformed quartz by the use of the SEM and chemical etching. Earth and Planetary Science Letters: 142: 513-521.
Plötze, M., Wolf, D. (1996) EPR- und TL-Spektren von Quartz: Bestrahlungsabhängigkeit der [TiO4 -/Li +] 0-Zentren. Bericht derJahrestagung der Deutschen Mineralogischen Gesellschaft: 8: 217 (abstr.).
Gaines, R.V., Skinner, C.H.W., Foord, E.E., Mason, B., Rosenzweig, A., King, V.T. (1997) Dana's New Mineralogy: The System of Mineralogy of James Dwight Dana and Edward Salisbury Dana, 8th. edition: 1573.
Niedermayr, G. (1997) Neue Beobachtungen über Hohlkanäle in alpinen Quarzen. Mineralien-Welt: 8(4): 40-44.
Carpenter, M.A., Salje, E.K.H., Gaeme-Barber, A., Wruck, B., Dove, M.T., Knight, K.S. (1998) Calibration of excess thermodynamic properties and elastic constant variations associated with the α ↔ β phase transition in quartz. American Mineralogist: 83: 2-22.
Gautier, J.-M., Schott, J., Oelkers, E.H. (1998) An experimental study of quartz precipitation and dissolution rates at 200°C. Mineralogical Magazine: 62: 509-510.
Hertweck, B., Beran, A., Niedermayr, G. (1998) IR-spektroskopische Untersuchungen des OH-Gehaltes alpiner Kluftquarze aus österreichischen Vorkommen. Mitteilungen der österreichischen Mineralogischen Gesellschaft: 143: 304-306.
Schäfer, K. (1999) Vogelschnäbel und Sterne - Quarz-Zwillinge: Kristallographische Schätze aus Idar-Oberstein. Lapis Mineralien Magazin: 24(10): 19-26.
Von Goerne, G., Franz, G., Robert, J.L. (1999) Upper thermal stability of tourmaline + quartz in the system MgO–Al2O3–SiO2–B2O3–H2O and Na2O–MgO–Al2O3–SiO2–B2O3–H2O–HCl in hydrothermal solutions and siliceous melts. The Canadian Mineralogist: 37: 1025-1039.
Bachheimer, J.-P. (2000) Comparative NIR and IR examination of natural, synthetic, and irradiated synthetic quartz. European Journal of Mineralogy: 12: 975-986.
Ghent, E.D., Stout, M.Z. (2000) Mineral equilibria in quartz leucoamphibolites (quartz—garnet—plagioclase—hornblende calc-silicates) from southeastern British Columbia, Canada. The Canadian Mineralogist: 38: 233-244.
Bons, P.D. (2001) The formation of large quartz veins by rapid ascent of fluids in mobile hydrofractures. Tectonophysics: 336: 1-17.
Götze, J., Plötze, M., Fuchs, H., Habermann, D. (2001) Origin, spectral characteristics and practical applications of the cathodoluminescence (CL) of quartz - a review. Mineralogy and Petrology: 71: 225-250.
Skála R., Hörz F. (2001) Unit-cell dimensions of experimentally shock-loaded quartz revisited. Meteoritics & Planetary Science: 36: 192-193.
Monger, H.C., Kelly, E.F. (2002) Silica minerals. in Soil Mineralogy with Environmental Applications, Soil Science Society of America (Madison Wisconsin, USA) 611-636.
Schlegel, M.L., Nagy, K.L., Fenter, P., Sturchio, N.C. (2002) Structures of quartz (1010)- and (1011)-water interfaces determined by X-ray reflectivity and atomic force microscopy of natural growth surfaces. Geochimica et Cosmochimica Acta: 66(17): 3037-3054.
Hyrsl, J., Niedermayr, G. (2003) Magic World: Inclusions in Quartz / Geheimnisvolle Welt: Einschlüsse in Quarz. Bode Verlag GmbH, Haltern. [in English and German]
Rodgers, K.A., Hampton, W.A. (2003) Laser Raman identification of silica phases comprising microtextural components of sinters. Mineralogical Magazine: 67: 1-13.
Rudnick, R.L., Gao, S. (2003) 3.01 Composition of the continental crust. Treatise On Geochemistry, Volume 3: The Crust. Elsevier Ltd. 1st Edition, 1-64.
Wangen, M., Munz, I.A. (2004) Formation of quartz veins by local dissolution and transport of silica. Chemical Geology: 209: 179-192.
Basile-Doelsch, I., Meunier, J.D., Parron, C. (2005) Another continental pool in the terrestrial silicon cycle. Nature: 433: 399-402.
Botis, S., Nokhrin, S.M., Pan, Y., Xu, Y., Bonli, T. (2005) Natural radiation-induced damage in quartz. I. Correlations between cathodoluminescence colors and paramagnetic defects. The Canadian Mineralogist: 43: 1565-1580.
de Hoog, J.C.M., van Bergen, M.J., Jacobs, M.H.G. (2005) Vapour-phase crystallisation of silica from SiF4-bearing volcanic gases. Annals of Geophysics: 48: 775-785.
Dove, P.M., Han, N., De Yoreo, J.J. (2005) Mechanisms of classical crystal growth theory explain quartz and silicate dissolution behavior. Proceedings of the National Academy of Science: 102: 15357-15362.
Götze, J., Plötze, M., Trautmann, T. (2005) Structure and luminescence characteristics of quartz from pegmatites. American Mineralogist: 90: 13-21.
Walter, F. (2005) Anhydrit als Einschluss in alpinen Quarzen der Ostalpen. Carinthia II: 195./115.: 85-96.
Walter, F., Ettinger, K. (2005) The origin of hollow tubes in Alpine quartz crystals. 3rd Symposion of the Hohe Tauern National Park for Research in Protected Areas, September 15th to 17th, 2005, Castle of Kaprun, Conference volume: 245-249.
Choudhury, N., Chaplot, S.L. (2006) Ab initio studies of phonon softening and high-pressure phase transitions of α-quartz SiO2. Physical Review B: 73: 094304-11.
Grimmer, H. (2006) Quartz aggregates revisited. Acta Crystallographica Section A: 62: 103-108.
Enami, M., Nishiyama, T., Mouri, T. (2007) Laser Raman microspectrometry of metamorphic quartz: a simple method for comparison of metamorphic pressures. American Mineralogist: 92: 1303-1315.
Pati, J.K., Patel, S.C., Pruseth, K.L., Malviya, V.P., Arima, M., Raju, S., Pati, P., Prakash, K. (2007) Geology and geochemistry of giant quartz veins from the Bundelkhand craton, central India and their implications. Journal of Earth Systems Science: 116: 497-510.
Hebert L.B., Rossman G.R. (2008) Greenish quartz found at the Thunder Bay Amethyst Mine Panorama, Thunder Bay, Ontario, Canada. The Canadian Mineralogist: 46: 111-124.
Ries, G., Menckhoff, K. (2008) Lösung und Neuwachstum auf Quarzkörnern eiszeitlicher Sande aus dem Hamburger Raum. Geschiebekunde aktuell: 24: 13-24.
Baur, W.H. (2009) In search of the crystal structure of low quartz. Zeitschrift für Kristallographie: 224: 580-592.
Botis, S.M., Pan, Y. (2009) Theoretical calculations of [AlO4/M+]0 defects in quartz and crystal-chemical controls on the uptake of Al. Mineralogical Magazine: 73: 537-550.
Korsakov, A.V., Perraki, M., Zhukov, V.P., De Gussem, K., Vandenabeele, P., Tomilenko, A.A. (2009) Is quartz a potential indicator of ultrahigh-pressure metamorphism? Laser Raman spectroscopy of quartz inclusions in ultrahigh-pressure garnets. European Journal of Mineralogy: 21: 1313-1323.
Lehmann, K., Berger, A., Götte, T., Ramseyer, K., Wiedebeck, M. (2009) Growth related zonations in authigenic and hydrothermal quartz characterized by SIMS, EPMA-, SEM-CL- and SEM-CC-imaging. Mineralogical Magazine: 73: 633-643.
Sunagawa, I., Iwasaki, H., Iwasaki, F. (2009) Growth and Morphology of Quartz Crystals: Natural and Synthetic. Terrapub, Tokyo, 201pp.
Thompson, R.M., Downs, R.T. (2010) Packing systematics of the silica polymorphs: The role played by O-O nonbonded interactions in the compression of quartz. American Mineralogist: 95: 104-111.
Wagner, T. Boyce, A.J., Erzinger, J. (2010) Fluid-rock interactions during formation of metamorphic quartz veins: a REE and stable isotope study from the Rhenish Massif, Germany. American Journal of Science: 310: 645-682.
Seifert, W., Rhede, D., Thomas, R., Forster, H.-J., Lucassen, F., Dulski, P., Wirth, R. (2011) Distinctive properties of rock-forming blue quartz: inferences from a multi-analytical study of submicron mineral inclusions. Mineralogical Magazine: 75: 2519-2534.
Götte, T., Ramseyer, K. (2012) Trace element characteristics, luminescence properties and real structure of quartz. in: Götze, J., Möckel, R., editors. Quartz: Deposits, mineralogy and analytics. Springer Verlag, 265-285.
Götze, J. (2012) Classification, mineralogy and industrial potential of SiO2 minerals. in: Götze, J., Möckel, R., editors. Quartz: Deposits, mineralogy and analytics. Springer Verlag, 1-27.
Götze, J. (2012) Mineralogy, geochemistry and cathodoluminescence of authigenic quartz from different sedimentary rocks. in: Götze, J., Möckel, R., editors. Quartz: Deposits, mineralogy and analytics. Springer Verlag, 287-306.
Haus, R., Prinz, S., Priess, C. (2012) Assessment of high purity quartz resources. in: Götze, J., Möckel, R., editors. Quartz: Deposits, mineralogy and analytics. Springer Verlag, 29-51.
Henn, U., Schultz-Guettler, R. (2012) Review of some current coloured quartz varieties. Journal of Gemmology: 33(1-4): 29-43.
Kempe, U., Götze, J., Dombon, E., Monecke, T., Poutivtsev, M. (2012) Quartz regeneration and its use as a repository of genetic information. in: Götze, J., Möckel, R., editors. Quartz: Deposits, mineralogy and analytics. Springer Verlag, 331-355.
Li, Z., Pan, Y. (2012) First-principles calculations of the E'1 center in quartz: structural models, 29Si hyperfine parameters and association with Al impurity. in: Götze, J., Möckel, R., editors. Quartz: Deposits, mineralogy and analytics. Springer Verlag, 161-175.
Müller, A., Wanvik, J.E., Ihlen, P.M. (2012) Petrological and chemical characterization of high-purity quartz deposits with examples from Norway. in: Götze, J., Möckel, R., editors. Quartz: Deposits, mineralogy and analytics. Springer Verlag, 71-118.
Plötze, M., Wolf, D., Krbetschek, M.R. (2012) Gamma-irradiation dependency of EPR and TL-spectral of quartz. in: Götze, J., Möckel, R., editors. Quartz: Deposits, mineralogy and analytics. Springer Verlag, 177-190.
Rusk, B. (2012) Cathodoluminescence textures and trace elements in hydrothermal quartz. in: Götze, J., Möckel, R., editors. Quartz: Deposits, mineralogy and analytics. Springer Verlag, 307-329.
Scholz, R., Chaves, M.L.S.C., Krambrock, K., Pinheiro, M.V.B., Barreto, S.B., de Menezes, M.G. (2012) Brazilian quartz deposits with special emphasis on gemstone quartz and its color treatment. in: Götze, J., Möckel, R., editors. Quartz: Deposits, mineralogy and analytics. Springer Verlag, 139-159.
Deer, W.A., Howie, R.A., Zussman, J. (2013) An introduction to the rock-forming minerals. Mineral Society of Great Britain and Ireland. 510pp.
Pabst, W., Gregorová, E. (2013) Elastic properties of silica polymorphs - a review. Ceramics - Silikáty: 57: 167-184.
White, W.M., Klein, E.M. (2014) 4.13 Composition of the oceanic crust. Treatise On Geochemistry, Volume 4: The Crust. Elsevier Ltd. 2nd Edition, 1-64.
Zhang, S., Liu, Y. (2014) Molecular-level mechanisms of quartz dissolution under neutral and alkaline conditions in the presence of electrolytes. Geochemical Journal: 48(2): 189-205.
Eder, S.D., Fladischer, K., Yeandel, S.R., Lelarge, A., Parker, S.C., Søndergård, E., Holst, B. (2015) A giant reconstruction of α-quartz (0001) interpreted as three domains of nano Dauphine twins. Nature, Scientific Reports: 5: 14545. doi: 10.1038/srep14545
Frelinger, S.N., Ledvina, M.D., Kyle, J.R., Zhao, D. (2015) Scanning electron microscopy cathodoluminescence of quartz: Principles, techniques and applications in ore geology. Ore Geology Reviews: 65: 840-852.
Momma, K., Nagase, T., Kuribayashi, T., Kudoh, Y. (2015) Growth history and textures of quartz twinned in accordance with the Japan law. European Journal of Mineralogy: 27: 71-80.
Skalwold, E.A., Bassett, W.A. (2015) Quartz: a bull’s eye on optical activity. Mineralogical Society of America, Chantilly, VA, 16 pages. ISBN 978-0-939950-00-3 [booklet, abstract and free download on the MSA website: http://www.minsocam.org/msa/openaccess_publications/#Skalwold_02]
Skalwold, E.A., Bassett, W.A. (2015) Double trouble: navigating birefringence. Mineralogical Society of America, Chantilly, VA, 20 pages. ISBN 978-0-939950-02-7 [booklet, abstract and free download on the MSA website: http://www.minsocam.org/msa/openaccess_publications/#Skalwold_01]
Vinx, R. (2015) Gesteinsbestimmung im Gelände. Springer Verlag, Berlin, Heidelberg, 480pp.
Calvo, M. (2016) Minerales y Minas de España. Vol VIII. Cuarzo y otros minerales de la sílice. Escuela Técnica Superior de Ingenieros de Minas de Madrid. Fundación Gómez Pardo. 399pp. [in Spanish]
Lin, X., Heaney, P.J. (2017) Causes of iridescence in natural quartz. Gems & Gemology: 53: 68-81.
Glazer, A.M. (2018): Confusion over the description of the quartz structure yet again. Journal of Applied Crystallography 51, 915-918.
Shigeru Ohba (2019): More fun with quartz crystals! IUCr Newsletter 27 (1). [https://www.iucr.org/news/newsletter/etc/articles?issue=141171&result_138339_result_page=9]
Hertweck, B., Beran, A. & Niedermayr, G. (2019): Der OH-Gehalt von Kluftquarzen aus den österreichischen Alpen. Mitteilungen der Österreichischen Mineralogischen Gesellschaft 165, 99-117. [https://www.uibk.ac.at/mineralogie/oemg/bd_165/oemg_2019_hertweck.pdf]
Akhavan, A. (2020) Die Flächen der Quarzkristalle. Teil I: Die sieben Grundformen. Mineralien Welt: 31(2): 34-53.
Stalder, R. (2021): OH point defects in quartz – a review. Europen Journal of Mineralogy: 33: 145–163; https://forum.amiminerals.it/viewtopic.php?f=5&t=16974&sid=a600cc655cd57435ba9f078b3d461169
Farfan, G.A., Rakovan, J., Ackerson, M.R., Andrews, B.J., Post, J.E. (2021) The origin of trapiche-like inclusion patterns in quartz from Inner Mongolia, China. American Mineralogist: 106: 1797-1808.
Akhavan, A. (2021) Die Flächen der Quarzkristalle. Teil II: Rhomboeder, oberflächlich betrachtet. Mineralien Welt: 32(6): 42-62.
Murri, M., Prencipe, M. (2021): Anharmonic Effects on the Thermodynamic Properties of Quartz from First Principles Calculations. Entropy: 23: 1366.
Sun, Liang, Huan Zhang, Zanyang Guan, Weiming Yang, Youjun Zhang, Toshimori Sekine, Xiaoxi Duan, Zhebin Wang, and Jiamin Yang. (2021) "Sound Velocity Measurement of Shock-Compressed Quartz at Extreme Conditions" Minerals 11, no. 12: 1334. https://doi.org/10.3390/min11121334
Keyser, W. (2021): Quartz chemistry of granitic pegmatites: Implications for classification, genesis and exploration. QUARTZ 2021: International Symposium on Quartz, Tønsberg, Norway, NGF Abstracts and Proceedings, Volume 2, 11. [https://www.researchgate.net/publication/357630925_Quartz_chemistry_of_granitic_pegmatites_Implications_for_classification_genesis_and_exploration]
Shah, Sajjad Ahmad, Yongjun Shao, Yu Zhang, Hongtao Zhao, and Lianjie Zhao. (2022) "Texture and Trace Element Geochemistry of Quartz: A Review" Minerals 12, no. 8: 1042. https://doi.org/10.3390/min12081042
Bob Morgan (2022) Reichenstein-Grieserntal Quartz Twins: Two Angles Named in a single Twin Law. Mineralogical Record 53:739-754

Internet Links for QuartzHide

Significant localities for QuartzHide

Showing 293 significant localities out of 91,220 recorded on mindat.org.


Warning: mysqli::query(): (HY000/3024): Query execution was interrupted, maximum statement execution time exceeded in /home/mindat/www/show_class.php on line 5043
ⓘ - Click for references and further information on this occurrence. ? - Indicates mineral may be doubtful at this locality. - Good crystals or important locality for species. - World class for species or very significant. (TL) - Type Locality for a valid mineral species. (FRL) - First Recorded Locality for everything else (eg varieties). Struck out - Mineral was erroneously reported from this locality. Faded * - Never found at this locality but inferred to have existed at some point in the past (e.g. from pseudomorphs).

All localities listed without proper references should be considered as questionable.
Afghanistan
 
  • Ghazni
    • Muqur District
Ikram Mineralogy
Argentina
 
  • Tucumán Province
    • La Cocha Department
      • El Sacrificio
        • Cerro Quico
[var: Citrine] Raúl Jorge Tauber Larry´s collection.
Australia
 
  • New South Wales
    • Clive Co.
[var: Citrine] Patrick Gundersen
  • Northern Territory
    • Central Desert Region
      • Harts Range (Harts Ranges; Hartz Range; Hartz Ranges)
        • Ambalindum Station
[var: Amethyst] McColl, D. (2002) Quartz Scepter Crystals from the Entia Valley, Harts Range, Central Australia. Mineralogical Record, 33(6), 515.
  • South Australia
    • Mt Lofty Ranges
      • South Mt Lofty Ranges (Adelaide Hills)
        • Ashton
Bottrill (unpub)
  • Tasmania
    • Central Coast Municipality
M Latham collection
    • Dorset municipality
[var: Smoky Quartz] Bottrill, R.S. & Baker, W.E. (2008) A Catalogue of the Minerals of Tasmania. Bull. 73. Tasmanian Geological Survey
R Bottrill, unpub data; Bottrill, R.S. & Baker, W.E. (2008) A Catalogue of the Minerals of Tasmania. Bull. 73. Tasmanian Geological Survey
  • Victoria
    • Alpine Shire
[Jasper var: Darlingite] Trans. R. Soc. Victoria, 1866, VII, 80; Proc. R. Soc. Victoria, 1897, N.S. IX, 86
Austria
 
  • Carinthia
    • Spittal an der Drau District
      • Großkirchheim
        • Zirknitz
          • Große Zirknitz valley
[var: Amethyst] Kandutsch, Wachtler (2000), Die Kristallsucher, Band 2, Athesiadruck Bozen
      • Heiligenblut am Großglockner
        • Große Fleiß valley
          • Hocharn
[var: Smoky Quartz] Wachtler, Kandutsch, Die Kristallsucher, Christian Weise Verlag, Bozen 2000
[var: Smoky Quartz] G. Niedermayr, I. Praetzel: Mineralien Kärntens, 1995
[var: Rutilated Quartz] Rudolf Hasler Collection
      • Lurnfeld
[var: Amethyst] Dr. H. Weninger (1976) Mineral-Fundstellen Steiermark und Kärnten
      • Mallnitz
G. Niedermayr, I. Praetzel: Mineralien Kärntens, 1995
[var: Rock Crystal] G. Niedermayr: Carinthia II 184./104.:254-255 (1994)
        • Seebach valley
Gerd Stefanik
      • Malta
Rudolf Hasler Collection
    • Wolfsberg District
      • Frantschach-Sankt Gertraud
        • Steinweißwald
[var: Rock Crystal] Niedermayr, G., Praetzel, I. (1995) Mineralien Kärntens. Verlag des Naturwissenschaftlichen Vereins für Kärnten, Klagenfurt, 232 pages, [in German].
Rudolf Hasler; Rudolf Hasler Collection
  • Styria
    • Deutschlandsberg District
      • Deutschlandsberg
        • Warnblick
          • Schwemmhoisl farm
G. Niedermayr, I. Praetzel: Mineralien Kärntens, 1995; Alker, A. (1975): Über die Mineralkluft im Amphibolit von Burgegg, Steiermark. Mitteilungen des naturwissenschaftlichen Vereins für Steiermark 105, 21-24.
  • Tyrol
    • Schwaz District
      • Finkenberg
[var: Amethyst] Christian Bracke Collection / Mineralien Welt 15 (6), 35-37 Gilg, H.A., Liebtrau, S., Staebler, G.A., Wilson, T. (editors) (2012) Amethyst: Uncommon Vintage ExtraLapis English No.16, Lithographie
      • Mayrhofen
[var: Amethyst] Lapis 29(9):32 (2004)
Belgium
 
  • Wallonia
    • Luxembourg
      • Bastogne
[var: Rock Crystal] Harjo Neutkens collection
    • Walloon Brabant
      • Rebecq
        • Bierghes
[var: Rock Crystal] Hatert, F., Deliens, M., Fransolet, A.-M., Van Der Meersche, E. (2002) Les minéraux de Belgique. 2ème édition, Muséum des Sciences Naturelles, Bruxelles, Belgium, 304 pages (in French).
        • Quenast
Hatert, F., Deliens, M., Fransolet, A.-M., Van Der Meersche, E. (2002) Les minéraux de Belgique. 2ème édition, Muséum des Sciences Naturelles, Bruxelles, Belgium, 304 pages (in French).
Bolivia
 
  • Cochabamba
    • Ayopaya Province
Collections of Alfredo Petrov and Dr. Jaroslav Hyrsl.
  • Potosí
    • Chayanta Province
[var: Amethyst] Alfredo Petrov, field trip observations, 2005.
  • Santa Cruz
    • Ángel Sandoval Province
      • La Gaiba mining district
[var: Amethyst] John Betts website
[var: Amethyst] Josep Sanchez-Lafuente collection.
Bosnia and Herzegovina
 
  • Federation of Bosnia and Herzegovina
    • Zenica-Doboj Canton
G. Sijarić (1985) Optical features of Albites in triassic and jurassic magmatic rocks in Bosnia. Faris Musija
Brazil
 
  • Minas Gerais
    • Galiléia
      • Laranjeiras
[var: Rose Quartz] Natural History Museum Vienna collection
RSA MINERAIS
  • Rio Grande do Sul
[var: Amethyst] Sauer, J.R. (1982) Brazil, Paradise of Gemstones. Gemological Institute of America, 135 pp. (pp. 82, 122).; Gilg, H.A., Morteani, G., Kostitsyn, Y., Preinfalk, C., Gatter, I., and Strieder, A.J. (2003) Genesis of amethyst geodes in basaltic rocks of the Serra Geral Formation (Ametista do Sul, Rio Grande do Sul, Brazil): a fluid inclusion, REE, oxygen, carbon, and Sr isotope study on basalt, quartz, and calcite. Mineralium Deposita, 38(8), 1009-1025.; Mossmann, D.J., Ehrman, J.M., Brüning, R., Semple, L., and Groat, L.A. (2009) "Skunk calcite". Mineral Paragenesis in an amethyst geode from Ametista, Rio Grande do Sul, Brazil. Mineralogical Record, 40, 121-125.
[var: Amethyst] [www.johnbetts-fineminerals.com]; Sauer, J.R. (1982) Brazil, Paradise of Gemstones. Gemological Institute of America, 135 pp. (pp. 80-81).
Bulgaria
 
  • Haskovo Province
    • Mineralni Bani Municipality
      • Spahievo
        • Spahievo ore field
[var: Amethyst] Ivan Pojarevski (bulgarianminerals.com) specimens.
Canada
 
  • Manitoba
Ann P. Sabina Rocks and Minerals for the collector 1991
  • Nova Scotia
    • Guysborough Co.
Robinson, G.W., et al. (1992) What's New in Minerals. The Mineralogical Record: 23(5): 428.
  • Nunavut
    • Qikiqtaaluk Region
      • Baffin Island
        • Nanisivik
[MinRec 21:533]; Dennis C. Arne, L. W. Curtis, S. A. Kissin (1991) Internal zonation in a carbonate-hosted Zn-Pb-Ag deposit, Nanisivik, Baffin Island, Canada. Economic Geology ; 86 (4): 699–717.
  • Ontario
    • Hastings County
      • Carlow Township
[var: Amethyst] Matthew Neuzil Collection
[var: Amethyst] Mason, A. (1976) The world of Rocks and Minerals. New York, N.Y., Larousse & Co., 108 pages.; Satterly, J. (1977) A Catalogue of the Ontario Localities Represented by the Mineral Collection of the Royal Ontario Museum; Ontario Geological Survey Miscellaneous Paper MP70, 464 pages.; Elliott, D.G. (1982) Amethyst from the Thunder Bay Region, Ontario. Mineralogical Record, 13, 67-70.; Grice, Joel D. (1989) Amethyst from Thunder Bay, Ontario: An Ancient Amulet. In: Famous mineral localities of Canada. Published by Fitzhenry & Whiteside Limited & the National Museum of Natural Sciences, 190 pages: 68-72; 156.
      • McTavish Township
[var: Amethyst] Rocks & Minerals (xxxx) 59, 262-266.; Grice, Joel D. (1989) Amethyst from Thunder Bay, Ontario: An Ancient Amulet. In: Famous mineral localities of Canada. Published by Fitzhenry & Whiteside Limited & the National Museum of Natural Sciences, 190 pages: 68-72.
Ontario Gem Company
China
 
  • Hubei
    • Huangshi
      • Daye Co.
[var: Amethyst] Moore, T.P. (2006): Mineralogical Record 37(5), 477-485.
  • Jiangsu
    • Nanjing
[Chalcedony var: Agate] Rob Woodside collection
Colombia
 
  • Boyacá Department
    • Western Boyacá Province
      • San Pablo de Borbur
Saenz, L. D. (2005): PETROGRAFÍA Y GEOTERMOMETRÍA DE LOS YACIMIENTOS DE ESMERALDA DE PEÑA BLANCA (SAN PABLO DE BORBUR, BOYACÁ, COLOMBIA)
Ecuador
 
  • Guayas Province
    • Guayaquil Canton
      • Guayaquil
        • Pascuales
          • La Germania
[var: Prase] Alejandro Félix Gutiérrez
France
 
  • Auvergne-Rhône-Alpes
    • Haute-Savoie
      • Bonneville
        • Chamonix-Mont-Blanc
          • Chamonix
G. Signorelli
    • Isère
      • Grenoble
        • Villard-Notre-Dame
Weiss, C.S. (1829) Über die herzförmig genannten Zwillingskrystalle von Kalkspath, und gewisse analoge von Quarz. Abhandlungen der Königlichen Akademie der Wissenschaften zu Berlin: 77-87.; Des Cloizeaux, A. (1855) Mémoire sur la cristallisation et la structure intérieure du quartz. Annales de Chimie et de Physique, 3ème série, 45, 129-316; Mallet-Bachellier, Paris, 188 pp. + 4 tables; Weil, R. (1930) Nouvelles observations sur le quartz. Type L. Comptes rendus hebdomadaires des séances de l'Académie des sciences, 191, 380-382.; Weil, R. (1931) Quelques observations concernant la structure du quartz. Compte Rendu 1er Réunion de l'Institut d'Optique: 2-11.; Poty, B. (1967) La croissance des cristaux de quartz dans le filons sur l'exemple du filon de La Gardette (Bourg d'Oisans) et des filons du massif du Mont-Blanc. Thesis. Minéralogie. Université de Nancy.; Bariand, P., Cesbron, F., Geffroy, J. (1977) Les minéraux, leurs gisements, leurs associations. Editions Minéraux et Fossiles, BRGM.; Belot, Victor R. (1978) Guide des minéraux, coquillages et fossiles: où les trouver en France, comment les reconnaître et les collectionner (Guides Horay). Pierre Horay (Ed.), 224 pp.
    • Loire
      • Montbrison
        • Essertines-en-Châtelneuf
[var: Smoky Quartz] F. Gonnard (1906) - Minéralogie des départements du Rhône et de la Loire, pp: 6 & 36
[var: Smoky Quartz] F. GONNARD (1906) - Minéralogie des départements du Rhône et de la Loire
    • Puy-de-Dôme
      • Issoire
        • La Chapelle-sur-Usson
[var: Amethyst] 207433; Jonathan Plasse collection S. Berger Collection
    • Rhône
      • Villefranche-sur-Saône
        • Les Ardillats
Favreau G., Legris J-R., Dardillac M. (1996), La Verrière (Rhône): Histoire et Minéralogie, Le Cahier des Micromonteurs, n°3, pp:3-28
  • Grand Est
    • Ardennes
      • Charleville-Mézières
Harjo
    • Bas-Rhin
      • Molsheim
        • Schirmeck
Alain Steinmetz and Thierry Brunsperger Collection
      • Sélestat-Erstein
        • Urbeis
Aufschluss 1/85
  • Provence-Alpes-Côte d'Azur
    • Alpes-de-Haute-Provence
      • Barcelonnette
        • Uvernet-Fours
Rostan P. (2002), Cristaux de quartz d'habitus fenestré dans les Alpes du Sud, Le Règne Minéral, n°45, pp: 5-17
    • Hautes-Alpes
      • Gap
        • Gap
Thierry JEAN
Hungary
 
  • Baranya County
    • Pécs District
      • Kővágótöttös
Szakáll & Jánosi: Minerals of Hungary, 1995
India
 
  • Tamil Nadu
    • Karur District
[var: Amethyst] Thomas P. Moore The Mineralogical Record - Archived What's New Articles: posted on 3/3/2006
Ireland
 
  • Connacht
    • Galway County
      • Renville
O’Reilly, C., Feely, M., McArdle, P., Mc Dermot, C. Geoghegan, M. & Keary, R. (1997). Mineral localities in the Galway Bay Area. Geol. Surv. Ireland. Special Report Series. RS/97/1(Mineral Resources) ISSN0790-0279, 70p. & 1:150,000 Geological and Mineral Localities Map of the Galway Bay Area.
    • Mayo County
      • Achill Island
[var: Amethyst] Nicholson, A. (1847). Ireland's welcome to the stranger: or An excursion through Ireland, in 1844 & 1845, for the purpose of personally investigating the condition of the poor. By A. Nicholson. Baker and Scribner.
    • Sligo County
      • Aughamore
Barry Flannery collection
      • Ballysadare
Stephen Moreton
  • Munster
    • Cork County
      • Mizen Peninsula
        • Ballydehob
          • Audley Mines
Barry Flannery (Personal Communication)
    • Tipperary County
      • Silvermines District
Moreton, S. (1999) Mineralogical Record, 30, 99-106. Barry Flannery (Personal Observation)
  • Ulster
    • Donegal County
[var: Smoky Quartz] R Lawson & S Moreton Communication
Italy
 
  • Aosta Valley
    • Courmayeur
Piccoli, G.C., Maletto, G., Bosio, P., and Lombardo, B. (2007) Minerali del Piemonte e della Valle d'Aosta. Associazione Amici del Museo "F. Eusebio" di Alba, L'Artigiana Srl - Azienda Grafica, Alba (Cuneo), 607 pages. Barelli, V. (1835) Cenni di statistica mineralogica degli Stati di S.M. il Re di Sardegna, ovvero Catalogo ragionato della raccolta formatasi presso l'Azienda Generale dell'Interno. Tipografia Giuseppe Fodratti, Torino, 686 pages; Jervis, G. (1873) I tesori sotterranei dell'Italia. Vol. 1: Regioni delle Alpi. Ermanno Loescher, Torino, XV+410 pages.
  • Emilia-Romagna
    • Metropolitan City of Bologna
      • Alto Reno Terme
Natural History Museum Vienna Collection
        • Porretta Terme
Gambari, L. (1868) Descrizione dei quarzi di Porretta. Atti della Società dei naturalisti e matematici di Modena, 3, 1-19; Bombicci, L. (1869) La collezione dei cristalli di quarzo aeroidro di Porretta. Memorie della R. Accademia delle Scienze dell'Istituto di Bologna, serie 2, 9, 56-60; Bombicci, L. (1874) Descrizione della mineralogia generale della provincia di Bologna. Seconda parte. Memorie della R. Accademia delle Scienze dell'Istituto di Bologna, serie 3, 5, 105-222; Jervis, G. (1874) I tesori sotterranei dell'Italia. Vol. 2: Regione dell’Appennino e vulcani attivi e spenti dipendentivi. Ermanno Loescher, Torino, XVIII+624 pp.; Chamberlin, R. T. (1908) The gases in rocks. Carnegie Institute of Washington, Publication 106, page 41; De Michele, V. (1974) Guida mineralogica d'Italia. Istituto Geografico De Agostini, Novara, 2 vol., 408 pp.; Mullis, J. (1988) Rapid subsidence and upthrusting in the Northern Apennines, deduced by fluid inclusion studies in quartz crystals from Poretta Terme. Schweizerische Mineralogische und Petrographische Mitteilung, 68, 157-170; Bargossi, G.M., Gamberini, F., Gasparotto, G., Grillini, G.C., Marocchi, G. (2004) Dimension and ornamental stones from the Tosco-Romagnolo and Bolognese Apennine. Periodico di Mineralogia, 73, Special Issue 3, 171-195; Castagliola, P., Cipriani, V., Pratesi, G., Niedermayr, G. (2006) Die 'Quarz-Diamanten' aus dem Apennin in Italien (Toskana und Emilia Romagna). Mineralien-Welt, 17, 2, 58-66.; Olivieri, O. S. and Miglioli, A. (2021): Hopper quartz crystals from Porretta Terme and Val Nervia, northern Italy. Australian Journal of Mineralogy 22 (2), 13-29.
Bombicci, L. (1874) Descrizione della mineralogia generale della provincia di Bologna. Seconda parte. Memorie della R. Accademia delle Scienze dell'Istituto di Bologna, serie 3, 5, 105-222; De Michele, V. (1974) Guida mineralogica d'Italia. Istituto Geografico De Agostini, Novara, 2 vol., 408 pp.
Bombicci, L. (1869) La collezione dei cristalli di quarzo aeroidro di Porretta. Memorie della R. Accademia delle Scienze dell'Istituto di Bologna, serie 2, 9, 56-60. Bombicci, L. (1874) Descrizione della mineralogia generale della provincia di Bologna. Seconda parte. Memorie della R. Accademia delle Scienze dell'Istituto di Bologna, serie 3, 5, 105-222.
      • Castel di Casio
Bombicci, L. (1874) Descrizione della mineralogia generale della provincia di Bologna. Seconda parte. Memorie della R. Accademia delle Scienze dell'Istituto di Bologna, serie 3, 5, 105-222; De Michele, V. (1974) Guida mineralogica d'Italia. Istituto Geografico De Agostini, Novara, 2 vol., 408 pp.; Bargossi, G.M., Gamberini, F., Gasparotto, G., Grillini, G.C., Marocchi, G. (2004) Dimension and ornamental stones from the Tosco-Romagnolo and Bolognese Apennine. Periodico di Mineralogia, 73, Special Issue 3, 171-195.
  • Lombardy
    • Bergamo Province
De Michele, V. (1974). Guida mineralogica d'Italia. Istituto Geografico De Agostini, Novara, 2 vol.
  • Piedmont
    • Cuneo Province
      • Valdieri
        • Terme di Valdieri
[var: Amethyst] Olimpo, Guido (1981) Ritrovamenti mineralogici nelle Valli del Gesso (Cuneo). Rivista Mineralogica Italiana, 5, 1 (1-1981), 13-18; Mari, Danielle, and Mari, Gilbert (1982) Mines et minéraux des Alpes-Maritimes. Editions Serre, Nice, 282 pp.; Piccoli, Gian Carlo (2002) Minerali delle Alpi Marittime e Cozie Provincia di Cuneo. Associazione Amici del Museo "F. Eusebio" di Alba, L'Artistica Savigliano, Savigliano (Cuneo), 362 pp.; Piccoli, Gian Carlo, Maletto, Gaspare, Bosio, Paolo, Lombardo, Bruno (2007) Minerali del Piemonte e della Valle d'Aosta. Associazione Amici del Museo "F. Eusebio" di Alba, L'Artigiana Srl - Azienda Grafica, Alba (Cuneo), 607 pp.
    • Metropolitan City of Turin
      • Traversella
[var: Amethyst] Torti, R. (1973) La miniera di Traversella e i suoi minerali. Gruppo Mineralogico Lombardo, Ed., Milano, 54 pp.; De Michele, V. (1974) Guida mineralogica d'Italia. Ed. De Agostini, Novara, 2 vol., 408 pp.; Gramaccioli, C.M. (1975) Minerali alpini e prealpini. Istituto Italiano Edizioni Atlas, Bergamo, 2 vol., 472 pp.; GMV Gruppo Mineralogico Valchiusella, Pagano, R., and Barresi, A. (2005) La miniera di Traversella: passato, presente e futuro. Rivista Mineralogica Italiana, 29, 1 (1/2005), 8-26; Piccoli, G.C., Maletto, G., Bosio, P., and Lombardo, B. (2007) Minerali del Piemonte e della Valle d'Aosta. Associazione Amici del Museo "F. Eusebio" di Alba, Ed., Alba, 607 pp. Gilg, H.A., Liebtrau, S., Staebler, G.A., Wilson, T. (editors) (2012) Amethyst: Uncommon Vintage ExtraLapis English No.16, Lithographie
      • Villar Focchiardo
[var: Smoky Quartz]
  • Sardinia
    • Sassari Province
      • Osilo
[var: Amethyst] No reference listed
  • Tuscany
    • Livorno Province
      • Campo nell'Elba
        • San Piero in Campo
Alessandro Genazzani collection
Barsotti, G., & Nannoni, R. (2006). Rocce, minerali e miniere delle isole dell'Arcipelago Toscano. Pacini editore, 152 pp.; F. Millosevich (1914) - I 5000 Elbani del Museo di Firenze - R. Ist. Studi Sup. Prat. Perf. Firenze; Giuliano bettini collection
        • Sant'Ilario in Campo
    • Lucca Province
      • Minucciano
        • Gorfigliano
Orlandi P., Dini A., Gemignani E., Pierotti L., Quilici U., Romani U., 2002. Paragenesi alpine nelle Alpi Apuane: I minerali delle vene di quarzo della Valle dell'Acqua Bianca, Gorfigliano (LU) Riv. Mineral. It., 26, 4: 216-223
      • Pietrasanta
        • Valdicastello Carducci
[var: Smoky Quartz] Baldi M., 1982. La miniera del Pollone a Valdicastello. Riv. Miner. Ital., 6: 46-58.
    • Massa-Carrara Province
Del Riccio, A. (1597) Istoria delle pietre. Barocchi, P., ed., 1979, anastatic reprint of the original manuscript preserved in the Biblioteca Riccardiana (Riccardian Library) in Florence, Studio per Edizioni Scelte, Firenze, 280 pp.; Gnoli, R., and Sironi, A., eds., 1996, anastatic reprint, Umberto Allemandi & C., Torino, 253 pp.; Aldrovandi, U. (1648) Musaeum metallicum. Liber V. Typis Io. Baptistae Ferronii, Bononia, page 943; Targioni Tazzetti, G. (1779) Relazioni d'alcuni viaggi fatti in diverse parti della Toscana per osservare le produzioni naturali, e gli antichi monumenti di essa. Tomo 12. Gartano Cambiaghi Stamp. Granducale, Firenze, VII+446 pp.; Spallanzani, L. (1784) Lettera seconda relativa a diversi oggetti fossili e montani al Sig. Carlo Bonnet scritta il giorno 12 Febbraio 1784. Memorie di Matematica e Fisica della Società Italiana, tomo 2, parte 2, 861-899; Rose, G. (1844) Über das Krystallisationssystem des Quarzes. Abhandlungen der Königlichen Akademie der Wissenschaften zu Berlin, Aus dem Jahre 1844, 217-274; Des Cloizeaux, A. (1855) Mémoire sur la cristallisation et la structure intérieure du quartz. Annales de Chimie et de Physique, 3ème série, 45, 129-316; Mallet-Bachellier, Paris, 188 pp. + 4 tables; D'Achiardi, A. (1872-73) Mineralogia della Toscana. Tipografia Nistri, Pisa, 2 vol., 678 pp.; Bombicci, L. (1892 a) Sulla coesistenza delle due inverse plagiedrie sopra una faccia di un cristallo di quarzo e sulle spirali di Airy presentate da una sezione ottica dello stesso cristallo e di altri. Memorie della R. Accademia delle Scienze dell'Istituto di Bologna, serie 5, 2, 722-729; Bombicci, L. (1892 b) Sulle modificazioni degli spigoli verticali nei cristalli di quarzo di Carrara e su quelle che strutturalmente vi corrispondono nei cristalli di altre specie minerali. Memorie della R. Accademia delle Scienze dell'Istituto di Bologna, serie 5, 2, 747-761; Aloisi, P. (1909) Il quarzo dei marmi di Carrara. Atti della Società Toscana di Scienze Naturali, Memorie, 25, 87-125; Tonani, F. (1955) Morfologia fine di cristalli di quarzo delle Alpi Apuane. Rendiconti della Società Mineralogica Italiana, 11, 288-315; Orlandi, P., Bracci, G., Dalena, D., Duchi, G., and Vezzalini, G. (1980) I minerali delle geodi della formazione marmifera di Carrara. Atti della Società Toscana di Scienze Naturali, Memorie, serie A, 87, 93-124; Orlandi, P., and Franzini, M. (1994) I minerali del marmo di Carrara. Cassa di Risparmio di Carrara - Amilcare Pizzi Editore S.p.A., Milano, 109 pp.; Orlandi, P., and Criscuolo, A. (2009) Minerali del marmo delle Alpi Apuane. Parco delle Alpi Apuane - Pacini Editore, Ospedaletto-Pisa, 180 pp.; Morino, A. and Passarino, G. (2014) Il quarzo dei marmi di Carrara. Rivista Mineralogica Italiana, 38, 1 (1-2014), 36-41; Biagioni, C., Orlandi, P., Camarda, S., Chinellato, M., Appiani, R., Del Chiaro, L., and Sanguineti, G. (2019) Minerals from marbles of Carrara and the Apuan Alps. LoGisma editore, Vicchio (Firenze) - Musumeci S.p.A., Quart (Aosta), 144 pp.
Kazakhstan
 
  • Jambyl Region
    • Moiynkum
[var: Amethyst] M. Chinellato, pers. comm., 2007; Evseev, A. A. [Евсеев, А.А.] (2004) Atlas of the World for mineralogist [Атлас мира для минералога]. Ecost Association [Ассоциация Экост], Moscow, page 146 (in Russian). Lieber, W. (1994) Amethyst - Geschichte, Eigenschaften, Fundorte. Christian Weise Verlag, München.
  • Pavlodar Region
    • May
[Chalcedony var: Agate] Bespaev, Kh.A., Uzhkenov, B.S., Aliaksarov, S.A., and Egembaev, K.M. [Беспаев, Х.А., Ужкенов, Б.С., Алиаскаров, С.А., и Егембаев, К.М.] (2001) Gemstones of Kazakhstan. Reference book. Volume II. Semi-precious and ornamental stones [Самоцветы Казахстана. Справочник. Том II. Ювелирно-поделочные и поделочные самоцветы]. Information-Analytical Center for Geology and Mineral Resources of the Republic of Kazakhstan [Информационно-аналитический центр геологии и минеральных ресурсов Республики Казахстан], Almaty, pages 106-107 (in Russian).
Kenya
 
  • Kitui County
[var: Amethyst] Moore, T. P. (2010): Denver Show 2009. Mineralogical Record, 41: 88-97
Madagascar
 
  • Alaotra-Mangoro
    • Andilamena
      • Andranotokana Massif
[var: Amethyst] Moore, T.(2001): What is new in Minerals. Tuscon Show 2001. Mineralogical Record 32(3), p 252 Gilg, H.A., Liebtrau, S., Staebler, G.A., Wilson, T. (editors) (2012) Amethyst: Uncommon Vintage ExtraLapis English No.16, Lithographie
  • Diana
    • Ambilobe
      • Ambatobe Anjavy Commune
        • Ankijabe
[var: Amethyst] http://www.madaquartz.com/pages/amethyste.html
Mexico
 
  • Guanajuato
    • Guanajuato Municipality
[var: Amethyst] [www.johnbetts-fineminerals.com] Gilg, H.A., Liebtrau, S., Staebler, G.A., Wilson, T. (editors) (2012) Amethyst: Uncommon Vintage ExtraLapis English No.16, Lithographie
[var: Amethyst] Kipfer, A. (1974) Ein neues Hobby: Kleinmineralien sammeln und präparieren. Franckh'sche Verlagshandlung, W. Keller & Co., Stuttgart, 64 pp.; Mineralogical Record (2000) 31(4) and opening spread.
    • Eduardo Neri Municipality
[var: Amethyst] Min Rec 35:6 pp29-37
  • Veracruz
    • Tatatila Municipality
[var: Amethyst] [www.johnbetts-fineminerals.com]
Morocco
 
  • Souss-Massa Region
    • Tata Province
[var: Amethyst] Jordi Fabre [Pers. Com. 2009]; Jordi Fabre Gilg, H.A., Liebtrau, S., Staebler, G.A., Wilson, T. (editors) (2012) Amethyst: Uncommon Vintage ExtraLapis English No.16, Lithographie
Namibia
 
  • Erongo Region
    • Dâures Constituency
      • Brandberg Area
[var: Amethyst] [www.thamesvalleyminerals.com] Gilg, H.A., Liebtrau, S., Staebler, G.A., Wilson, T. (editors) (2012) Amethyst: Uncommon Vintage ExtraLapis English No.16, Lithographie
        • Messum Igneous Complex
[var: Amethyst] Peter Seroka collection
Nepal
 
  • Bagmati Pradesh
Calonge, Y.(2011): Un extraordinaire groupe de quartz au Népal. Le Règne Minéral. 97: 25
Niger
 
  • Agadez
    • Aïr Mountains
      • South Aïr
[var: Amethyst] Sylvain Leroux information
Norway
 
  • Agder
    • Evje og Hornnes
      • Landsverk
Revheim, O. (2006) Landsverk 1, Jokeli-bruddet i Evje. Norsk Bergverksmuseum Skrift. 33: 41-50 Werner, R. (2017) Evje Mineralsti - Landsverk Quarries. Setesdalsmuseet/Aust-Agder museum and archive. 36 pp.
  • Innlandet
    • Løten
      • Klevfos Bru
[var: Amethyst] Moløkken, A. (1997): Ametysten fra Stange og Løten kommuner i Hedmark. STEIN 24 (2), 50-52; Mineralien-Welt 20 (6), 72-73 (2009) Gilg, H.A., Liebtrau, S., Staebler, G.A., Wilson, T. (editors) (2012) Amethyst: Uncommon Vintage ExtraLapis English No.16, Lithographie
    • Ringsaker
      • Helgøya
Álvaro Chicote Collection
    • Stange
[var: Amethyst] Moløkken, Arne (1990):Ametyst i Stange,Hedemark.STEIN 17 (3),14 (in norwegian)
  • Vestfold og Telemark
    • Holmestrand
      • Kjeksrød
[var: Amethyst] Nordrum, F.S., Larsen, A.O., Bergstrøm, T. & Larsen, S. (1997): Die Zeptheramethyste von Holmestrand. Mineralien Welt. 8 (4): 45-50
Peru
 
  • Ancash
    • Bolognesi Province
      • Huallanca District
        • Huanzala
Hyrsl & Rosales (2003) Mineralogical Record, 34, 241-254.; Econ Geol (1985) 80:416-478
    • Pallasca Province
      • Pampas District
Mineralogical Record 28, No. 4 (1997); collections of Rock Currier, Jack Crowley, Jaroslav Hyrsl and Alfredo Petrov.; Hyrsl & Rosales (2003) Mineralogical Record, 34, 241-254.; Hyrsl & Rosales (2003) Mineralogical Record, 34, 241-254.
    • Recuay Province
      • Ticapampa District
Mi.Rec. 28, no.4 (1997)
Poland
 
  • Lower Silesian Voivodeship
    • Strzelin County
      • Gmina Przeworno
        • Przeworno
Schumacher K. (1878) Die Gebirgsgruppe des Rummelberges bei Strehlen. Zeitschrift Deutsche Geologische Gesellschaft. Bd. 30. Berlin (In German)
Portugal
 
  • Viana do Castelo
    • Ponte da Barca
      • Touvedo (São Lourenço e Salvador)
Leal Gomes, C., Azevedo, A., Lopes Nunes, J., & Dias, P. A. (2009). Phosphate fractionation in pegmatites of Pedra da Moura II claim–Ponte da Barca–Portugal. Estudos Geológicos, 19(2), 172.
Romania
 
  • Hunedoara County
[var: Amethyst] W. Stöhr (2001): Porkura - ein klassischer Amethystfundort in Rumänien Lapis 26 (9), 13-xx; Rob Lavinsky
  • Satu Mare County
    • Turț
[var: Amethyst] Clain, E. & Haake, R. (2006): Die Blei-Zink-Lagerstätte von Turt, Oasgebirge, Rumänien. Mineralien-Welt 17 (5), 52-64. (in German) Gilg, H.A., Liebtrau, S., Staebler, G.A., Wilson, T. (editors) (2012) Amethyst: Uncommon Vintage ExtraLapis English No.16, Lithographie
Russia
 
  • Komi Republic
[var: Amethyst] Oleg Lopatkin Bukanov, V.V., Burlakov, E.V., Kozlov, A.V., Pozhidaev, N.A. (2012) Subpolar Urals: Minerals of the Rock Crystal Veins. Mineralogical Almanac:17(2), Moscow.
  • Magadan Oblast
    • Severo-Evensky District
[var: Amethyst] [www.johnbetts-fineminerals.com] Lieber, W. (1994) Amethyst - Geschichte, Eigenschaften, Fundorte. Christian Weise Verlag, München.
  • Moscow Oblast
    • Stupino Urban District
[Chalcedony var: Agate] http://www.pegmatite.ru/My_Collection/mn/agate_lg.jpg; Godovikov, A.A., Ripinen, O.I., and Motorin, S.G. [Годовиков, А.А., Рипинен, О.И., и Моторин, С.Г.] (1987) Agates [Агаты]. Nedra [Недра], Moscow, 368 pp. (in Russian); Volarovich, G.P. [Воларович, Г.П.] (1991) Colored stones of Podmoskovye [Цветные камни Подмосковья]. Nedra [Недра], Moscow, 208 pp. (in Russian); Feklichev, V.G. [Фкеличев, В.Г.] (1998) Mineral diversity of the Moscow region [Минералогическое разнообразие Подмосковья]. Sredi Mineralov (Almanac) [Среди минералов (альманах)], 103-112 (in Russian); Evseev, A. A. [Евсеев, А.А.] (2004) Atlas of the World for mineralogist [Атлас мира для минералога]. Ecost Association [Ассоциация Экост], Moscow, page 23 (in Russian).
  • Primorsky Krai
    • Dalnegorsk Urban District
[var: Ferruginous Quartz] Amir Akhavan
  • Sverdlovsk Oblast
[World of Stones 2:93]; Pavel M. Kartashov data
    • Beryozovsky
[var: Rock Crystal] [World of Stones 2/93 p.35]
Slovakia
 
  • Banská Bystrica Region
    • Banská Štiavnica District
[var: Amethyst] Ozdín, Daniel, Krejsek, Štepán (2016) Famous mineral localities: Banská Štiavnica (Schemnitz, Selmecbánya), Slovak Republic. The Mineralogical Record, 47 (3) 254-318 https://www.mindat.org/reference.php?id=12910402
  • Košice Region
    • Rožňava District
      • Dobšiná
[Chalcedony var: Agate] Ozdín D. & Števko M., 2010: Unikátny výskyt achátov v serpentinizovaných peridotitoch v Dobšinej. Minerál, 18, 4, 331-335.
  • Trenčín Region
    • Partizánske District
      • Veľký Klíž
Slavomír ŠIMKO
Slovenia
 
  • Škofja Loka
Matija Vukovski Collection
South Africa
 
  • Limpopo
    • Waterberg District Municipality
      • Bela-Bela Local Municipality
        • Bela-Bela
[var: Milky Quartz] Paul Meulenbeld collection Photo ID: 881739
  • Mpumalanga
    • Nkangala District Municipality
      • Thembisile Hani Local Municipality
        • Mkobola
[var: Amethyst] www.mindat.org/mesg-55-48596.html Gilg, H.A., Liebtrau, S., Staebler, G.A., Wilson, T. (editors) (2012) Amethyst: Uncommon Vintage ExtraLapis English No.16, Lithographie
South Korea
 
  • South Gyeongsang Province
[var: Amethyst] Yang, K. H., Yun, S. H., & Lee, J. D. (2001). A fluid inclusion study of an amethyst deposit in the Cretaceous Kyongsang Basin, South Korea. Mineralogical Magazine, 65(4), 477-487. Lieber, W. (1994) Amethyst - Geschichte, Eigenschaften, Fundorte. Christian Weise Verlag, München.
Spain
 
  • Asturias
    • Siero
      • La Collada mining area
        • Huergo
Calvo, Miguel. (2016). Minerales y Minas de España. Vol. VIII. Cuarzo y otros minerales de la sílice. Escuela Técnica Superior de Ingenieros de Minas de Madrid. Fundación Gómez Pardo. 399 págs.; Calvo, M. (2016). Minerales y Minas de España. Vol. VIII. Cuarzo y otros minerales de la sílice. Escuela Técnica Superior de Ingenieros de Minas de Madrid. Fundación Gómez Pardo. 399 págs.
  • Castile and Leon
    • Salamanca
      • Villasbuenas
[var: Citrine] Arroyo, A. and Calvo, M. (1995). El cuarzo citrino de Villasbuenas (Salamanca). Revista de minerales. 1: 86-89.
  • Catalonia
    • Girona
      • Riudarenes
        • Can Sala
[var: Amethyst] Curtó, C.; Mérida, J.C.; Evangelio, S.: Las amatistas de la cantera Massabé, Sils, Girona. Revista de Minerales, vol.III, nº 3 Marzo 2007. Calvo, Miguel. (2016). Minerales y Minas de España. Vol. VIII. Cuarzo y otros minerales de la sílice. Escuela Técnica Superior de Ingenieros de Minas de Madrid. Fundación Gómez Pardo. 399 págs.
      • Sils
        • Massabè
Calvo, M. (2016). Minerales y Minas de España. Vol. VIII. Cuarzo y otros minerales de la sílice. Escuela Técnica Superior de Ingenieros de Minas de Madrid. Fundación Gómez Pardo. 399 págs.
  • Galicia
    • Pontevedra
      • Porriño
[var: Smoky Quartz] Calvo, M., Viñals, J. and Vila, F. (2009) Mineralogy of the pegmatites and miarolitic cavities in the granitic batholit of Porriño, Pontevedra, galicia, Spain. Mineral Up, (2009-1), 6-23
  • Murcia
    • Cartagena
      • Sierra Minera de Cartagena-La Unión
        • Llano del Beal
          • Barranco Los Pajaritos-Cabezo de Don Juan
[var: Amethyst] Calvo, M. (1996). Mineralogía. La Unión. Bocamina, 2, 14-35 Calvo Rebollar, Miguel. (2016). Minerales y Minas de España. Vol. VIII. Cuarzo y otros minerales de la sílice. Escuela Técnica Superior de Ingenieros de Minas de Madrid. Fundación Gómez Pardo. 399 págs.
  • Valencian Community
    • Valencia
      • Chella
Calvo, M. (2016). Minerales y Minas de España. Vol VIII.Cuarzo y otros minerales de la sílice. Escuela Técnica Superior de Ingenieros de Minas de Madrid. Fundación Gómez Pardo. 399 págs.
      • Domeño
Casanova Honrubia, Juan Miguel & Canseco Caballé, Manuel, 2002, Minerales de la Comunidad Valenciana : 237 p. Ed. Caja de Ahorros del Mediterráneo. Alicante Calvo, Miguel. (2016). Minerales y Minas de España. Vol. VIII. Cuarzo y otros minerales de la sílice. Escuela Técnica Superior de Ingenieros de Minas de Madrid. Fundación Gómez Pardo. 399 págs.
Switzerland
 
  • Bern
    • Interlaken-Oberhasli
      • Guttannen
        • Oberaar lake area
          • Zinggenstöcke
[var: Smoky Quartz] Stalder, H.A. (1964) Petrographische und mineralogische Untersuchungen im Grimselgebiet (mittleres Aarmassiv). Schweizerische Mineralogische und Petrographische Mitteilungen, 44, 187–398.
            • Vorderer Zinggenstock
[var: Rock Crystal] Altmann, J.G. (1751) Versuch einer historischen und physischen Beschreibung der helvetischen Eisbergen. Heidegger und Compagnie, Zürich, 12 + 271 pp.; Waeber, A. (1889) Der Krystallfund am Zinkenstock 1719 nach David Märki’s Bericht von 1721. Jahrbuch des S.A.C. [Jahrbuch des Schweizer Alpen-Clubs], 25, 380-411; Hartmann, H. (1909) Hasli im Weissland vor 200 Jahren: unter Berücksichtigung seine Kristallindustrie. Blätter für bernische Geschichte, Kunst und Altertumskunde, 5, 43-64; Stalder, H.A. (1964) Petrographische und mineralogische Untersuchungen im Grimselgebiet (mittleres Aarmassiv). Schweizerische Mineralogische und Petrographische Mitteilungen, 44, 187–398; Stalder, H.A., Wagner, A., Graeser, S., and Stuker, P. (1998) Mineralienlexikon der Schweiz. Verlag Wepf & Co., Basel, pages 334 and 336; Artl, T. (2020) Nach 300 Jahren wiederentdeckt: Die Kristallkluft von 1719 am Zinggenstock, Schweiz. Lapis, 45, 6 (June 2020), 32–43; Artl, T., and Bolliger, (2020) Die Kristallhöhle von 1719 am Zinggenstock. Mitteilungen der Naturforschenden Gesellschaft in Bern, 77, 70-89.
[var: Smoky Quartz] Stalder, H.A., Wagner, A., Graeser, S., and Stuker, P. (1998) Mineralienlexikon der Schweiz. Verlag Wepf & Co., Basel, pages 301 and 336.
  • Grisons
    • Surselva Region
      • Tujetsch
Jahn, S. (2004) Klassische Weltfundstelle: Val Giuv. Mineralien Welt, 15 (1): 34-61
  • Ticino
    • Vallemaggia
      • Cevio
        • Bavona Valley
          • Robièi (Alpe di Robièi; Lake Robièi area)
            • Cavagnöö Glacier (Cavagnoli Glacier; Cavagnöö area; Cavagnoli area)
Taddei, C. (1937) Dalle Lepontine al Ceneri. Note di geo-mineralogia. Istituto Editoriale Ticinese, Bellinzona, 182 pp.; Weiß, S. (1982) Das Cavagnoli-Gebiet. Lapis, 7, 7, 17-25; Stalder, H. A., Wagner, A., Graeser, S., and Stuker, P. (1998) Mineralienlexikon der Schweiz. Verlag Wepf & Co. AG, Basel, page 209; Weiß, S., and Brack, P. (2018) Tessin. ExtraLapis, 55, 122 pp.
Turkey
 
  • Istanbul Province
[Chalcedony] Agricola (1546) De Natura Fossilium, p. 466
Uruguay
 
  • Artigas Department
[var: Amethyst] [www.johnbetts-fineminerals.com]; Giulio Morteani, Y. Kostitsyn, C. Preinfalk, H. A. Gilg (2010) The genesis of the amethyst geodes at Artigas (Uruguay) and the paleohydrology of the Guaraní aquifer: structural, geochemical, oxygen, carbon, strontium isotope and fluid inclusion study. International Journal of Earth Sciences 99:927-947
USA
 
  • Alaska
    • Prince of Wales-Hyder Census Area
      • Ketchikan Mining District
        • Prince of Wales Island
Min Rec 35:5 pp383-404, 419-420
  • Arkansas
    • Montgomery County
Smith, Arthur E. Jr. (1996) Collecting Arkansas Minerals. L. Ream Publishing, Idaho 149p
  • California
    • Calaveras Co.
      • Valley Springs area
Jake Harper: Field work, 1990 - 2110.
    • San Bernardino Co.
      • Kingston Range
        • Kingston Range District
          • Kingston Peak
[var: Amethyst] Calzia, J. P. et al. 1987. Mineral Resources of the Kingston Range Wilderness Study Area, San Bernardino County, California. U.S. Geological Survey Bulletin 1709-D, 34 p., maps. Gilg, H.A., Liebtrau, S., Staebler, G.A., Wilson, T. (editors) (2012) Amethyst: Uncommon Vintage ExtraLapis English No.16, Lithographie
    • San Luis Obispo Co.
      • Santa Lucia Mts (Santa Lucia Range)
        • San Simeon
Ron Layton collection
  • Colorado
    • Larimer County
      • Red Feather Lakes
[var: Amethyst] Rocks & Min.: 59:11.
[Chalcedony] Personally collected by Donald Gilbert Garcia in 2016
    • Ouray County
      • Ouray Mining District
        • The Amphitheater
[var: Milky Quartz] Eckel, E.B. (1997), Minerals of Colorado.
  • Connecticut
    • Hartford County
      • Avon
Rowan M. Lytle; Harold Moritz collection
      • Canton
        • Rattlesnake Hill
[var: Amethyst] Kenneth Holt specimen (locality info corrected courtesy of John Betts); Mineralogical Record (1990) 21:203-213; Rocks & Minerals (1995) 70:396-409
      • East Granby
Wolfe, C. W. and Vilks, I. (1960): Pseudomorphs after Datolite, Prehnite and Apophyllite from East Granby, Connecticut. Am. Mineral. 45, 443-447.
      • New Britain
Harold Moritz collection
Januzzi, Ronald E. (1976), Mineral Localities of Connecticut and Southeastern New York State. The Mineralogical Press, Danbury, Connecticut.
      • Newington
Harold Moritz collection
    • Litchfield County
      • Morris
Januzzi, Ronald E. and David Seaman. (1976), Mineral Localities Connecticut and Southeastern New York State and Pegmatite Minerals of the World. The Mineralogical Press, Danbury, Connecticut.
      • Woodbury
        • Orenaug Hills
Bill Barrett Coll.; Garabedian, James A. (1998), Secondary Mineralization of Half-Moon Vesicles in the Mesozoic Basalt of the O&G#2 Quarry, Woodbury, Connecticut. University of Connecticut Master of Science Thesis.
    • Middlesex County
      • East Hampton (Chatham)
        • Airline Railroad
Rowan M. Lytle Collection
      • Haddam
        • Haddam Neck
[var: Smoky Quartz] Davis, James W. (1901): The Minerals of Haddam, Conn. Mineral Collector, v. 8, no. 4, pp. 50-54, and no. 5, pp. 65-70.; Scovil, Jeffrey A. (1992): Famous Mineral Localities: the Gillette Quarry, Haddam Neck, Connecticut. (Mineralogical Record, 23(1):19-28.); Schooner, Richard. (1958) THE MINERALOGY OF THE PORTLAND-EAST HAMPTON-MIDDLETOWN-HADDAM AREA IN CONNECTICUT (With a few notes on Glastonbury and Marlborough).
Seaman, David (1976): "Pegmatite Minerals of the World" in: Januzzi, Ronald E. and David Seaman.(1976): Mineral Localities of Connecticut and Southeastern New York State and Pegmatite Minerals of the World. (The Mineralogical Press: Danbury, Connecticut).; Harold Moritz field observations.
Williams (circa 1945 and 1899); Harold Moritz collection
      • Portland
        • Collins Hill
          • Strickland pegmatite
Schooner, Richard. (1955): 90 Minerals from 1 Connecticut Hill. Rocks & Minerals: 30(7-8): 351-8.; Cameron, Eugene N., Larrabee, David M., McNair, Andrew H., Page, James T., Stewart, Glenn W., and Shainin, Vincent E. (1954): Pegmatite Investigations 1942-45 New England; USGS Professional Paper 255: 333-338.; Schooner, Richard. (1958): The Mineralogy of the Portland-East Hampton-Middletown-Haddam Area in Connecticut (With a few notes on Glastonbury and Marlborough). Published by Richard Schooner; Ralph Lieser of Pappy’s Beryl Shop, East Hampton; and Howard Pate of Fluorescent House, Branford, Connecticut.
    • New Haven County
      • Beacon Falls
Specimens collected by Jeremy Zolan in Feb., 2006; Harold Moritz collection
[var: Smoky Quartz] Harold Moritz collection
      • East Haven
Powell, Richard C. and Wolfgang Vogt. (1987), Cinque Quarry, A Suburban Site in Connecticut Makes Collecting a Cinch. Rock and Gem: (6): 36-39.
[var: Smoky Quartz] Vener, Herm. (1987): Report on the Road Cut [Mclay Avenue] off Grannis St [Laurel Street] Just Past the Cinque Quarry. Triassic Valley Bulletin.
[var: Amethyst] Brace, John P. (1823), Miscellaneous Localities of Minerals. American Journal of Science: s.1, 6: 250-1.
Bill Barrett collection
    • New London County
      • North Stonington
Weber, Marcelle H. and Earle C. Sullivan. (1995): Connecticut Mineral Locality Index. Rocks & Minerals (Connecticut Issue): 70(6): 407.
      • Salem
A. Berluti collection; Henderson, William A., Jr, and Michael Haritos. (1989), Amethyst Scepters, Salem, New London County, Connecticut. Rocks & Minerals: 64(6).
    • Tolland County
      • Stafford
Zodac, Peter (1948), Diamond Ledge, West Stafford, Conn. Rocks & Minerals: 23: 611.
      • Willington
        • West Willington
Ague, J. J. (1995): Deep Crustal Growth of Quartz, Kyanite and Garnet into Large-Aperature, fluid-filled fractures, northeastern Connecticut, USA. Journal of Metamorphic Geology: 13: 299-314.; Horowitz, Irving L. (2003): The Remarkable Quartz Crystals of West Willington, Tolland County, Connecticut. Rocks & Minerals: 78(4): 257-261.
[var: Amethyst] Harold Moritz collection
      • Plainfield
        • Moosup
[var: Amethyst] Harold Moritz collection
[var: Amethyst] Clark, Bill. (2001). Connecticut Quartz: Interesting Specimens from a former Collecting Site. Rock & Gem: 31(8).
      • Windham
        • Willimantic
[var: Smoky Quartz] Wells, H. L. (1887), Bismutosphaerite from Willimantic and Portland. American Journal of Science: s. 3, 34: 271-4.
  • Georgia
    • Wilkes County
      • Jacksons Crossroads
[var: Amethyst] Min Rec 36:3 pp 288-289 [www.johnbetts-fineminerals.com]
  • Idaho
    • Boise County
[var: Smoky Quartz] Ted Johnson Collection
  • Kentucky
T. Kennedy collection
  • Maine
    • Oxford County
      • Albany
[var: Rose Quartz] Barry Heath and Frank Perham; King, V. (ed.), 2009, Maine feldspar, Families, and Feuds.
[var: Rose Quartz] King, V. and Foord, E., 1994, Mineralogy of Maine, King, V. Maine Feldspar, Families, and Feuds.; Cameron, Eugene N.; and others (1954) Pegmatite investigations, 1942-45, in New England. USGS Professional Paper 255.
      • Greenwood
Rocks & Min.: 62: 443; King, V. and Foord, E., 1994, Mineralogy of Maine.; Mineral News (1993) 9:2 p. 8
      • Hebron
        • Mount Rubellite
[var: Rose Quartz] Stan Perham personal communication, 1963.
      • Newry
[var: Rose Quartz] King, V. T., 2006, Minerals of Halls Ridge and Plumbago-Puzzle Mountain, Newry, ... Maine, Mineral News, v. 22(6): p. 1-3.
[var: Rose Quartz] King, V. and Foord, E., 1994, Mineralogy of Maine, v. 1.; Mineralogical Record 22:382
      • Paris
King, V. T. and Foord, E. E., 1994, Mineralogy of Maine, Descriptive Mineralogy, volume 1, Maine Geological Survey, Augusta, Maine, USA, pp. 418 + 88 plates. "Maine Mineral Localites, 3rd Ed." by Thompson, W.B., et.al. , 1998 Mineralogical Record 22:382; Encar Roda-Robles, William Simmons, Alexander Falster, Alfonso Pesquera, Pedro-Pablo Gil-Crespo (2018) Paragenetic and compositional evolution of tourmaline from the Mt. Mica pegmatite (Maine, USA). in abstracts of the 22nd IMA Meeting Melbourne p 498; Myles M. Felch, William B. Simmons, Alexander U. Falster, and Karen L. Webber (2016) A large scale boundary layer texture in the Mt. Mica pegmatite, Paris, Oxford County, Maine. in Second Eugene E. Foord Pegmatite Symposium July 15-19, 2016 Colorado School of Mines campus, Golden, Colorado Hernández-Filiberto L, Roda-Robles E, Simmons WB, Webber KL. Garnet as Indicator of Pegmatite Evolution: The Case Study of Pegmatites from the Oxford Pegmatite Field (Maine, USA). Minerals. 2021; 11(8):802. https://doi.org/10.3390/min11080802
      • Rumford
[var: Rose Quartz] King, V. and Foord, E., 1994, Mineralogy of Maine, v. 1.
      • Stow
        • Deer Hill
[var: Amethyst] [www.johnbetts-fineminerals.com]; Mineralogical Record (1990) 21:203-213
      • Sweden
[var: Amethyst] Mineralogical Record (1990) 21:203-213
    • Sagadahoc County
      • Topsham
Edith Trebilcock
  • Massachusetts
    • Bristol County
      • Acushnet
No reference listed
    • Essex County
[Jasper] William Prescott (1852) Journal of the Essex County Natural History Society: containing various Communications to the Society pp 78-91
    • Norfolk County
      • Bellingham
[var: Amethyst] Harvard Museum of Natural History, no.119196; Mineralogical Record (1990) 21:203-213
Gleba, 1978. Massachusetts Mineral & Fossil Localities
      • Wrentham
[var: Amethyst] Michael W. Kieron collection; Mineralogical Record (1990) 21:203-213
    • Worcester County
      • Southborough
[var: Amethyst] [www.johnbetts-fineminerals.com]
  • Michigan
    • Houghton Co.
      • Calumet Township
        • Calumet
          • Calumet & Hecla Mine
[Chalcedony var: Agate] Rosemeyer, T. 2011 New from the Keweenaw: Part 4 - Recent Mineral Finds in Michigan's Copper Country. Rocks & Minerals 86:205-227
Mineralogy of Michigan (2004) Heinrich & Robinson
    • Marquette Co.
      • Negaunee
        • Goose Lake
Mineralogy of Michigan (2004) Heinrich & Robinson
  • Mississippi
[Chalcedony var: Agate] Carl Dietrich
  • Montana
    • Custer Co.
[Chalcedony var: Moss Agate] The River Runs North - the Story of Montana Moss Agate by Tom Harmon (author)
    • Jefferson Co.
      • Boulder Batholith
        • Delmoe Lake area
Ryan Sweeney Collection
        • Toll Mountain
[var: Amethyst] Rocks & Minerals 47:3 pp160-164; U.S. Geological Survey, 2005, Mineral Resources Data System: U.S. Geological Survey, Reston, Virginia.
  • Nevada
    • Washoe County
      • Hallelujah Junction area
[var: Amethyst] Rob Lavinsky Gilg, H.A., Liebtrau, S., Staebler, G.A., Wilson, T. (editors) (2012) Amethyst: Uncommon Vintage ExtraLapis English No.16, Lithographie
[var: Sceptre Quartz] Ref: Schlegel, J. (1999) Report to the Mineralogical Society of Southern California: Field Collected Quartz, v. Amethyst measuring 15x10cm; Crystal Tips #1, Hallelujah Mine, Petersen Mountain, Washoe County, Nevada; May 31st.
  • New Hampshire
    • Rockingham County
      • Raymond
Randy Lahey
  • New Mexico
    • Eddy County
[var: Pseudocubic Quartz] Tarr, W.A., Lonsdale, J.T. (1929) Pseudo-cubic quartz crystals from Artesia, New Mexico. American Mineralogist, 14, 50-53.
    • Lincoln County
Min Rec 22:5 pp359-366 The Smoky Bear Quartz Claims Lincoln County New Mexico
  • New York
    • Ulster Co.
      • Wawarsing
        • Ellenville
Dana 7:I:592.; Econ Geol (1990) 85:182-196
        • Spring Glen
Econ Geol (1990) 85:182-196
  • North Carolina
    • Lincoln Co.
      • Iron Station
[var: Amethyst] www.grandfather.com/museum/amethyst.htm Genth,F.A.,1891,The Minerals Of North Carolina;USGS Bulletion No.74
  • Pennsylvania
    • Philadelphia Co.
      • Hestonville
Samuel S. Gordon (1922) Mineralogy of Pennsylvania.; pg. 234
  • Rhode Island
    • Newport County
      • Portsmouth
[var: Amethyst] Miller, C. E. (1971) Rhode Island Minerals and Their Locations, O. D. Hermes, Ed., University of Rhode Island, Kingston
    • Providence County
      • Burrillville
        • Harrisville
[var: Amethyst] Mineralogical Record (1990) 21:203-213
      • Cumberland
[www.johnbetts-fineminerals.com]; Rocks & Minerals (1986) 61:264-275
      • Lincoln
        • Lime Rock
Miller, C. E. (1971) Rhode Island Minerals and Their Locations, O. D. Hermes, Ed., University of Rhode Island, Kingston; Rocks & Min.: 17:51; 20:463-464.; Rocks & Minerals (1986) 61:264-275; Rocks & Minerals (1986): 61: 286-289
    • Washington County
      • Hopkinton
        • Ashaway
[var: Amethyst] [Rakovan et al, 1995 - "Amethyst on Milky Quartz from Hopkinton, Rhode Island",; Mineralogical Record (1990) 21:203-213; Rocks & Minerals (1986): 61: 247-250 Gilg, H.A., Liebtrau, S., Staebler, G.A., Wilson, T. (editors) (2012) Amethyst: Uncommon Vintage ExtraLapis English No.16, Lithographie
      • South Kingstown
Miller, C. E. (1971) Rhode Island Minerals and Their Locations, University of Rhode Island, Kingston
  • South Carolina
    • Abbeville County
      • Due West
[var: Amethyst] [www.johnbetts-fineminerals.com]
  • South Dakota
    • Custer Co.
      • Custer Mining District
        • Custer
[var: Rose Quartz] Rocks & Min.: 10:145; 16:360-363; 57:54.
[var: Rose Quartz] R&M 75:3 pp 156-169
  • Utah
    • Salt Lake County
      • Big Cottonwood Mining District
        • Argenta
U.S. Geological Survey, 2005, Mineral Resources Data System: U.S. Geological Survey, Reston, Virginia.; Calkins, F. C.; Butler, B. S.; Heikes, V. C. (1943) Geology and ore deposits of the Cottonwood-American Fork area, Utah, with sections on history and production. USGS Professional Paper: 201
  • Vermont
    • Bennington County
Matthew Lambert
  • Washington
    • Chelan Co.
      • Wenatchee Mining District
Huntting, M. (1956): Inventory of Washington Minerals, Part II, Metallic Minerals, Vol. 1, p. 113; Lasmanis, R. Et Al (1990): Metal Mines of Washington-Preliminary Report, p.14; Linda D. Gill, 2008; Collected at 1800 level
    • King Co.
      • Snoqualmie Mining District
Min Record:20(5):390; Minerals of Washington, B. Cannon, 1975; Rocks and Minerals 66:6, p.469
        • Denny Mountain
[var: Amethyst] UBC specimen
        • Hansen Creek
Eric He's Collection; Ray Claude (1995) Mineral Sites of King County, Washington: 27
        • Middle Fork of the Snoqualmie River
Cannon, B. (1975): Minerals of Washington, p.71
[var: Amethyst] Bob Jackson, mine owner; Rocks & Minerals (1991) 66:466-476
Minerals of Washington, Bart Cannon, 1975; Rocks and Minerals 66:6, p.469
Vietnam
 
  • Bà Rịa-Vũng Tàu Province
    • Bà Rịa
"Mario Lazzerini Denchi' Collection"
Zambia
 
  • Luapula Province
[var: Citrine] Peter Beckwith collection
 
Mineral and/or Locality  
Mindat Discussions Facebook Logo Instagram Logo Discord Logo
Mindat.org is an outreach project of the Hudson Institute of Mineralogy, a 501(c)(3) not-for-profit organization.
Copyright © mindat.org and the Hudson Institute of Mineralogy 1993-2023, except where stated. Most political location boundaries are © OpenStreetMap contributors. Mindat.org relies on the contributions of thousands of members and supporters. Founded in 2000 by Jolyon Ralph.
Privacy Policy - Terms & Conditions - Contact Us / DMCA issues - Report a bug/vulnerability Current server date and time: June 8, 2023 12:53:46 Page generated: June 8, 2023 04:33:42
Go to top of page