本頁使用了標題或全文手工轉換
維基百科,自由的百科全書
脊椎動物的眼睛示意圖
亞洲人眼常見的棕色虹膜
具藍灰色虹膜的人眼

(英語:eye)又稱眼睛目、目睭,是視覺器官,可以感知光線,轉換為神經中電化學的脈衝。眼球(eyeball)又稱眼珠,是複雜性生物眼眶內部,由眼球壁與眼內容物組成近球狀的視覺器官。

生物中比較複雜的眼睛是一個光學系統,可以收集周遭環境的光線,藉由虹膜調整進入眼睛的強度,利用可調整的晶狀體聚焦,投射到對光敏感的視網膜產生影像,將影像轉換為電的訊號,透過視神經傳遞到大腦視覺系統及其他部份。眼睛依其辨色能力可以分為十種不同的種類,有96%的動物其眼睛都是複雜的光學系統[1]。其中軟體動物脊索動物節肢動物的眼睛有成像的功能[2]

微生物的「眼睛」構造最簡單,只偵測環境的光暗,這對於晝夜節律牽引英語Entrainment (chronobiology)有關[3]。若是更複雜的眼睛,視網膜上的感光神經節細胞沿着視網膜下丘腦路徑英語en:retinohypothalamic tract傳送信號到視叉上核英語Suprachiasmatic nucleus來影響影響生理調節,也送到頂蓋前核英語pretectal area控制瞳孔光反射英語pupillary light reflex

簡介[編輯]

歐洲野牛的眼睛

複雜的眼睛可以區分形狀及顏色。許多動物(尤其是掠食類動物)的視知覺需要大區域的雙眼視覺來提高深度知覺英語depth perception。另外一些動物的眼睛位置可以使其視野達到最大,像是,不過其視覺就是單眼視覺英語monocular vision了。

最早演化出眼睛的動物是在約6億年前,寒武紀大爆發[4]。這些動物的最近共同祖先有視覺需要的生物化學機能,動物的分類共有39種(包括已滅絕動物門)[a],其中有6個門中的96%種的動物有較複雜的眼睛[1]。在大部份的脊椎動物及一些軟體動物中,光可以進入眼睛,投影到眼睛後面,對光敏感的細胞,稱為視網膜。視網膜中的視錐細胞(偵測顏色)及視杆細胞(偵測亮度)偵測光線,轉換到神經上的信號。視覺信號藉由視神經傳送到大腦,這類的眼睛多半是球形的,其中有透明的膠狀物質,稱為玻璃體,前面有對焦的晶狀體虹膜,虹膜周圍肌肉的伸展及收縮會改變虹膜的大小,因此調整進入眼睛光線的多少[5],若有足夠光線時,也可以減少像差[6]。大部份頭足綱兩棲動物的晶狀體是固定形狀的,焦距調整則是由伸縮晶狀體來達成,類似相機調整焦距的方式[7]

大多數節肢動物具有複眼,是由許多的小平面組成,可能是一個眼睛提供單一的像素資訊,也可能是一個眼睛提供多個資訊。每一個小平面的感測器會有其自己的晶狀體及感光細胞,有些眼睛甚至有28,000個感測器,以六角形排列,以產生完整的360°視覺。複眼對物體的移動十分靈敏。有些節肢動物(像是捻翅目)的複眼只有幾個小平面,每個都有獨立的視網膜可產生影像。每一個眼睛觀察不同的事物,在腦中會產生整個眼睛所得到的融合影像,因此可以產生高解像度的影像。

蝦蛄的眼睛可以處理從到紅外線延伸到紫外線范圍的高光譜影像,是世界上最複雜的彩色視覺系統[8]。已滅絕的三葉蟲也有獨一無二的複眼,用透明的方解石晶體作為眼睛中的晶狀體,因此其眼睛不像大部份的動物一様是軟的。眼睛中的晶狀體會隨三葉蟲不同而不同,最少的只有一個,最多的在一個眼睛裏有上千個晶狀體。

單眼和複眼不同,只有一個晶狀體,像蠅虎科的生物有許多對視野很小的單眼,再配合其他較小的眼睛提供外圍視覺英語peripheral vision。有些昆蟲幼蟲(例如毛蟲)有另一種單眼,只有大約的視覺。蝸牛的眼睛稱為眼點英語ocellus,是非常簡單的眼睛,有感光細胞,但無法將光線投影到其他細胞,嚴格來說只有辨別亮暗的功能,沒有一般定義的視覺功能,這可以讓蝸牛避免直接的日照。像生活在深海噴口附近的生物,其複眼已被調整為偵測熱泉產生的紅外線,因此可以發現熱泉而避開[9]

眼的類型[編輯]

南極蝦的複眼構造
蜻蜓的複眼

單眼(Simple eye)[編輯]

單眼在動物界中相當常見,帶有水晶體結構的眼睛至少在動物演化過程中(立方水母甲殼動物環節動物頭足類動物脊椎動物)歷經了7次演化。

眼斑(Pit eyes)[編輯]

單細胞光感受器[編輯]

色素杯狀眼點(pigment cup ocelli)[編輯]

  • 由單一細胞或是多個感覺細胞組成。
  • 色素細胞阻擋特定來路的光線。
  • 文昌魚或是渦蟲可見。

窩眼[編輯]

  • 也作盆眼,感覺細胞在感覺上皮的下陷區域聚集。
  • 在水母軟體動物中可見。在水母中,其感光器官被稱為感覺棍,有重力感。

暗箱眼[編輯]

  • 感覺上皮深陷,光透過一個小孔進入
  • 成像和方向感比窩眼有所改善,形成暗的倒像
  • 鸚鵡螺可見。

泡眼[編輯]

  • 成像更佳,其分泌物有透鏡作用
  • 某些蝸牛可見

透鏡眼[編輯]

注意:脊椎動物的透鏡眼和頭足動物的透鏡眼是典型的趨同演化,相似的構造,相似的作用,但是來源的胚層不同。

脊椎動物(如鳥類)、七鰓鰻眼睛的視網膜是反向的,其感光細胞位於視網膜的反面。光要穿過整個視網膜才能到達感光細胞,使成像變得模糊。頭足綱動物(如章魚烏賊)的視網膜是正向的,牠們的感光細胞位於視網膜的正面,神經位於感光細胞後面,因此頭足綱動物沒有盲點[10]
脊椎動物和頭足動物透鏡眼的差別
反置眼 外翻眼
光感受器逆入射光排列 光感受器正對入射光排列
個體發育過程中不同細胞層的摺疊形成。
透鏡結構來自於頭表皮
來自表皮的眼泡。
透鏡結構來源於分泌物
見於脊椎動物 見於頭足動物

複眼(Compound eye)[編輯]

聚焦[編輯]

來自遠處物體的光線和來自近處物體的光線經過眼球。

為了能使光線聚集到一點,它們必須被折射。折射的多少取決於觀察物體的距離。一個遠的物體要求晶體的曲折程度要小於近的物體。很多折射發生在具有固定曲率的角膜上,同時根據折射的要求通過調節肌肉來控制晶體完成剩下的折射。

人類眼球的結構[編輯]

1:玻璃體 2:鋸齒緣 3:睫狀肌 4:睫狀韌帶英語Ciliary zonules 5:施萊姆氏管英語Schlemm's canal 6:瞳孔 7:前房英語Anterior chamber 8:角膜 9:虹膜 10:晶狀體 11:晶狀體核 12:睫狀突英語Ciliary process 13:結膜 14:下斜肌 15:下直肌 寫輪16:內直肌 17:視網膜動脈和靜脈 18:視乳頭英語optic disc 19:硬腦膜鞘英語Dura_mater 20:視網膜中央動脈英語Central retinal artery 21:視網膜中央靜脈英語Central retinal vein 22:視神經 23:渦靜脈英語Vorticose veins 24:球筋膜英語Tenon's capsule 25:黃斑部 26:中心凹英語Fovea centralis 27:鞏膜 28:脈絡膜 29:上直肌 30:視網膜

眼球結構分為:

眼睛的問題[編輯]

斜視手術

眼睛的類型[編輯]

參看[編輯]

註解[編輯]

  1. ^ 有關動物一共有多少門,學者還沒有共識,因此數字可能會隨來源不同而不同

文內註釋[編輯]

  1. ^ 1.0 1.1 Land, M. F.; Fernald, R. D. The evolution of eyes. Annual Review of Neuroscience. 1992, 15: 1–29. PMID 1575438. doi:10.1146/annurev.ne.15.030192.000245. 
  2. ^ Frentiu, Francesca D.; Adriana D. Briscoe. A butterfly eye's view of birds. BioEssays. 2008, 30 (11–12): 1151–62. PMID 18937365. doi:10.1002/bies.20828. 
  3. ^ Circadian Rhythms Fact Sheet. National Institue of General Medical Sciences. [3 June 2015]. (原始內容存檔於2020-03-13). 
  4. ^ Breitmeyer, Bruno. Blindspots: The Many Ways We Cannot See. New York: Oxford University Press. 2010: 4. ISBN 978-0-19-539426-9. 
  5. ^ Nairne, James. Psychology. Belmont: Wadsworth Publishing. 2005. ISBN 0-495-03150-X. OCLC 61361417. 
  6. ^ Bruce, Vicki; Green, Patrick R. and Georgeson, Mark A. Visual Perception: Physiology, Psychology and Ecology. Psychology Press. 1996: 20. ISBN 0-86377-450-4. 
  7. ^ BioMedia Associates Educational Biology Site: What animal has a more sophisticated eye, Octopus or Insect? 互聯網檔案館存檔,存檔日期2008-03-05.
  8. ^ Who You Callin' "Shrimp"? – National Wildlife Magazine. Nwf.org. 2010-10-01 [2014-04-03]. (原始內容存檔於2010-08-09). 
  9. ^ Cronin, T.W.; Porter, M.L. Exceptional Variation on a Common Theme: the Evolution of Crustacean Compound Eyes. Evolution: Education and Outreach. 2008, 1 (4): 463–475. doi:10.1007/s12052-008-0085-0可免費查閱. 
  10. ^ 我們眼睛裏的視網膜貼反了嗎? | 知識採蜜

延伸閱讀[編輯]

[在維基數據]

維基文庫中的相關文本:欽定古今圖書集成·明倫彙編·人事典·目部》,出自陳夢雷古今圖書集成

外部連結[編輯]