刘志(上海科技大学物质科学与技术学院副院长、大科学中心主任)_百度百科
收藏
0有用+1
0

刘志

上海科技大学物质科学与技术学院副院长、大科学中心主任
展开83个同名词条
刘志,正教授 [2]博士生导师 [1]上海科技大学物质科学与技术学院副院长 [2],上海科技大学大科学中心主任 [3]
中文名
刘志
国    籍
中国
毕业院校
北京大学(学士)斯坦福大学(硕士、博士)
职    称
研究员
性    别

人物简历

播报
编辑
毕业于北京大学地球物理系与物理系。
2001年和2005年在美国斯坦福大学分别取得电子工程硕士与物理学博士。
2005 年后在斯坦福大学和斯坦福线性加速器中心担任助理研究员。
2007年起在美国劳伦斯伯克利国家实验室先后担任研究员、常任研究员,主持原位光电子能谱研究工作。 [4]
后全职回国,现任上海科技大学物质学院副院长,上海科技大学大科学中心主任。 [2]
上海市第十六届人民代表大会代 [5]

学术兼职

播报
编辑
SCI期刊上发表论文170多篇,引用4700余次。上海科技大学、中科院上海微系统研究所、上海光源国家科学中心学术委员会委员;任Scientific Reports等杂志的编委;现主持国家重大科技基础设施“活细胞结构与功能成像等线站工程”和国家重大科研仪器设备研制专项“基于上海同步辐射光源的能源环境新材料原位电子结构综合研究平台(SiP•ME2)研制”。 [2]

研究方向

播报
编辑
主要从事同步辐射谱学及其他相关技术的应用研究。特别是利用近常压光电子能谱对材料表界面的原位表征测量。 [2]

发表文章

播报
编辑
近期部分科研成果(*通讯作者或共同通讯作者):
1.Zhu, Y. F. et al. Role of Manganese Oxide in Syngas Conversion to Light Olefins. ACS Catal. 7, 2800-2804, doi:10.1021/acscatal.7b00221 (2017).
2.* Mao, B.-H. et al. In situ study of the electronic structure of atomic layer deposited oxide ultrathin films upon oxygen adsorption using ambient pressure XPS. Catalysis Science & Technology 6, 6778-6783, doi:10.1039/c6cy00575f (2016).
3.* Favaro, M. et al. Unravelling the electrochemical double layer by direct probing of the solid/liquid interface. Nature Communications 7, doi:10.1038/ncomms12695 (2016).
4.* Eriksson, S. K. et al. In-Situ Probing of H2O Effects on a Ru-Complex Adsorbed on TiO2 Using Ambient Pressure Photoelectron Spectroscopy. Topics in Catalysis 59, 583-590, doi:10.1007/s11244-015-0533-3 (2016).
5.* Bernardi, F. et al. Control of the surface atomic population of Rh0.5Pd0.5 bimetallic nanoparticles supported on CeO2. Catal. Today 260, 95-99, doi:10.1016/j.cattod.2015.06.024 (2016).
6.Zhang, Y. et al. Hexagonal Boron Nitride Cover on Pt(111): A New Route to Tune Molecule-Metal Interaction and Metal-Catalyzed Reactions. Nano Lett. 15, 3616-3623, doi:10.1021/acs.nanolett.5b01205 (2015).
7.* Lichterman, M. F. et al. Direct observation of the energetics at a semiconductor/liquid junction by operando X-ray photoelectron spectroscopy. Energy Environ. Sci. 8, 2409-2416, doi:10.1039/c5ee01014d (2015).
8.* Karslioglu, O. et al. Aqueous solution/metal interfaces investigated in operando by photoelectron spectroscopy. Faraday Discussions 180, 35-53, doi:10.1039/c5fd00003c (2015).
9.* Crumlin, E. J. et al. X-ray spectroscopy of energy materials under in situ/operando conditions. Journal of Electron Spectroscopy and Related Phenomena 200, 264-273, doi:10.1016/j.elspec.2015.06.008 (2015).
10.* Axnanda, S. et al. Using Tender X-ray Ambient Pressure X-Ray Photoelectron Spectroscopy as A Direct Probe of Solid-Liquid Interface. Scientific Reports 5, doi:10.1038/srep09788 (2015).
11.* Mao, B.-H. et al. A near ambient pressure XPS study of subnanometer silver clusters on Al2O3 and TiO2 ultrathin film supports. Physical Chemistry Chemical Physics 16, 26645-26652, doi:10.1039/c4cp02325k (2014).
12.* Liu, X., Yang, W. & Liu, Z. Recent Progress on Synchrotron-Based In-Situ Soft X-ray Spectroscopy for Energy Materials. Advanced Materials 26, 7710-7729, doi:10.1002/adma.201304676 (2014).
13.* Yu, Y. et al. CO2 activation and carbonate intermediates: an operando AP-XPS study of CO2 electrolysis reactions on solid oxide electrochemical cells. Physical Chemistry Chemical Physics 16, 11633-11639, doi:10.1039/c4cp01054j (2014).
14.Yao, Y. et al. Graphene cover-promoted metal-catalyzed reactions. Proceedings of the National Academy of Sciences of the United States of America 111, 17023-17028, doi:10.1073/pnas.1416368111 (2014).
15.Scheele, M. et al. PbS Nanoparticles Capped with Tetrathiafulvalenetetracarboxylate: Utilizing Energy Level Alignment for Efficient Carrier Transport. Acs Nano 8, 2532-2540, doi:10.1021/nn406127s (2014).
16.* Dejoie, C. et al. Learning from the past: Rare epsilon-Fe2O3 in the ancient black-glazed Jian (Tenmoku) wares. Scientific Reports 4, doi:10.1038/srep04941 (2014).
17.* Axnanda, S. et al. In Situ Characterizations of Nanostructured SnOx/Pt(111) Surfaces Using Ambient-Pressure XPS (APXPS) and High-Pressure Scanning Tunneling Microscopy (HPSTM). Journal of Physical Chemistry C 118, 1935-1943, doi:10.1021/jp409272j (2014).
18.Zhu, Z. et al. Structure and Chemical State of the Pt(557) Surface during Hydrogen Oxidation Reaction Studied by in Situ Scanning Tunneling Microscopy and X-ray Photoelectron Spectroscopy. Journal of the American Chemical Society 135, 12560-12563, doi:10.1021/ja406497s (2013).
19.* Zhang, C. et al. Mechanistic Studies of Water Electrolysis and Hydrogen Electro-Oxidation on High Temperature Ceria-Based Solid Oxide Electrochemical Cells. Journal of the American Chemical Society 135, 11572-11579, doi:10.1021/ja402604u (2013).
20.Starr, D. E., Liu, Z., Haevecker, M., Knop-Gericke, A. & Bluhm, H. Investigation of solid/vapor interfaces using ambient pressure X-ray photoelectron spectroscopy. Chemical Society Reviews 42, 5833-5857, doi:10.1039/c3cs60057b (2013).
21.* Mao, B.-H. et al. In situ characterization of catalytic activity of graphene stabilized small-sized Pd nanoparticles for CO oxidation. Applied Surface Science 283, 1076-1079, doi:10.1016/j.apsusc.2013.07.078 (2013).
22.* Mao, B.-H. et al. Oxidation and reduction of size-selected subnanometer Pd clusters on Al2O3 surface. Journal of Chemical Physics 138, doi:10.1063/1.4807488 (2013).
23.* Yu, Y. et al. Carbon deposits and Pt/YSZ overpotentials in CO/CO 2 solid oxide electrochemical cells. ECS Transactions 57, 3119-3126, doi:10.1149/05701.3119ecst (2013).Liu, X. et al. Distinct charge dynamics in battery electrodes revealed by in situ and operando soft X-ray spectroscopy. Nature Communications 4, doi:10.1038/ncomms3568 (2013).
24.* Axnanda, S. et al. Direct Work Function Measurement by Gas Phase Photoelectron Spectroscopy and Its Application on PbS Nanoparticles. Nano Lett. 13, 6176-6182, doi:10.1021/nl403524a (2013).
25.Butcher, D. R. et al. Mobility on the reconstructed Pt(100)-hex surface in ethylene and in its mixture with hydrogen and carbon monoxide. Chemical Communications 49, 6903-6905, doi:10.1039/c3cc42312c (2013).
26.* Crumlin, E. J., Bluhm, H. & Liu, Z. In situ investigation of electrochemical devices using ambient pressure photoelectron spectroscopy. Journal of Electron Spectroscopy and Related Phenomena 190, 84-92, doi:10.1016/j.elspec.2013.03.002 (2013).
27.Chen, X. et al. Properties of Disorder-Engineered Black Titanium Dioxide Nanoparticles through Hydrogenation. Scientific Reports 3, doi:10.1038/srep01510 (2013).
28.Blomberg, S. et al. In Situ X-Ray Photoelectron Spectroscopy of Model Catalysts: At the Edge of the Gap. Phys. Rev. Lett. 110, doi:10.1103/PhysRevLett.110.117601 (2013). [2]