人类首张黑洞照片正式发布,有哪些重要意义?

相关问题 人类公布首张黑洞照片,这是低技术的累积,还是高技术达成? [图片] 北京时间 4 月 10 日晚 9 点,人类首张黑洞照片正式发布,新华网直…
关注者
21,128
被浏览
14,293,618

1,464 个回答

第一张……

国家天文台苟利军研究员@Flyingspace

这次的直接成像除了帮助我们直接确认了黑洞的存在,同时也通过模拟观测数据对爱因斯坦的广义相对论做出了验证。在视界面望远镜的工作过程和后来的数据分析过程中,科学家们发现,所观测到的黑洞阴影和相对论所预言的几乎完全一致,令人不禁再次感叹爱因斯坦的伟大。

爱因斯坦

另外一个重要意义在于,科学家们可以通过黑洞阴影的尺寸限制中心黑洞的质量了。这次就对M87中心的黑洞质量做出了一个独立的测量。在此之前,精确测量黑洞质量的手段非常复杂。

受限于观测分辨率和灵敏度等因素,目前的黑洞细节分析还不完善。未来随着更多望远镜加入,我们期望看到黑洞周围更多更丰富的细节,从而更深入地了解黑洞周围的气体运动、区分喷流的产生和集束机制,完善我们对于星系演化的认知与理解。

出品:科普中国


左文文(上海天文台):

如果要评选出2019年最有价值和最受期待的照片,那么非下面这张照片莫属。这是5500万光年外的大质量星系M87中心超大质量黑洞的黑洞阴影照片,也是人类拍摄的首张黑洞照片。它是黑洞存在的直接“视觉”证据,从强引力场的角度验证了爱因斯坦广义相对论。

图1:M87星系中心超大质量黑洞(M87*)的图像,上图为2017年4月11日的图像,图中心的暗弱区域即为“黑洞阴影”,周围的环状不对称结构是由于强引力透镜效应和相对论性射束(beaming)效应所造成的。由于黑洞的旋转效应,图片上显示了上(北)下(南)的不对称性。

这张照片于2017年4月拍摄,2年后才“冲洗”出来。2019年4月10日由黑洞事件视界望远镜(Event Horizon Telescope, EHT)合作组织协调召开全球六地联合发布。

给黑洞拍照,有三个科学意义:

1. 对黑洞阴影的成像将能提供黑洞存在的直接“视觉”证据。黑洞是具有强引力的,给黑洞拍照最主要的目的就是在强引力场下验证广义相对论,看看观测结果是否与理论预言一致。

2. 有助于理解黑洞是如何“吃”东西的。黑洞的“暗影”区域非常靠近黑洞吞噬物质形成的吸积盘的极内部区域,这里的信息尤为关键,综合之前观测获得的吸积盘更外侧的信息,就能更好地重构这个物理过程。

3. 有助于理解黑洞喷流的产生和方向。某些朝向黑洞下落的物质在被吞噬之前,会由于磁场的作用,沿着黑洞的转动方向被喷出去。以前收集的信息多是更大尺度上的,科学家没法知道在靠近喷流产生的源头处发生了什么。如果现在对黑洞暗影的拍摄,就能助天文学家一臂之力。

图2:哈勃空间望远镜拍摄的M87,图片版权:NASA

黑洞照片应该是这样:圆形阴影+光环

一百年前,爱因斯坦广义相对论提出后不久,便有科学家探讨了黑洞周围的光线弯曲现象。上世纪70年代,James Bardeen及Jean-Pierre Luminet等人计算出了黑洞的图像。上世纪90年代,Heino Falcke等天文学家们首次基于广义相对论下的光线追踪程序,模拟出银河系中心黑洞Sgr A*的样子,引入了黑洞“阴影”的概念

理论预言,受黑洞强引力场的影响,黑洞吸积或喷流产生的辐射光被黑洞弯曲,使得天空平面(与视线方向垂直的面)被黑洞“视边界”(apparent boundary)的圆环一分为二:在视边界圆环以内的光子,只要在视界面以外,就能逃离黑洞,但受到很强的引力红移效应,亮度低;而视边界圆环以外的光子,能绕着黑洞绕转多圈,积累的亮度足够高。

图3:广义相对论预言,将会看到一个近似圆形的暗影被一圈光子圆环包围。由于旋转效应,黑洞左侧更亮。图片版权:D. Psaltis and A. Broderick

从视觉上看,视边界内侧的亮度明显更弱,看起来就像一个圆形的阴影,外面包围着一个明亮的光环。故此也得名黑洞 “阴影”(black hole shadow)。这个阴影有多大呢?史瓦西黑洞的阴影直径是视界直径的5.2倍;如果黑洞转得快,阴影直径也有约4.6倍视界半径。如此看来,黑洞视边界的尺寸主要与黑洞质量有关系,而与黑洞的自转关系不大。

后来,更多科学家针对黑洞成像开展了大量的研究,均预言黑洞阴影的存在。因此,对黑洞阴影的成像能够提供黑洞存在的直接“视觉”证据。

今天只是起点,未来将看到更多精彩

其实,人类关于黑洞的理论预言出现的时间不短,VLBI技术也并不是近十年才成熟。为什么现在才“拍”到第一张黑洞照片呢?一个重要的原因是,想要利用VLBI技术构成一个等效口径足够大、灵敏度足够高的望远镜,需要在全球各地广泛地分布着足够多的这类望远镜。过去十年中,技术的突破、新射电望远镜的不断建成并加入EHT项目、算法的创新等,终于让天文学家们打开了一扇关于黑洞和黑洞视界研究的全新窗口。

参与此次EHT观测的上海天文台专家一致表示,对M87*黑洞的顺利成像绝不是EHT的终点站。

一方面,对于M87*的观测结果分析还能更加深入,从而获得黑洞周围的磁场性质,对理解黑洞周围的物质吸积及喷流形成至关重要。

另一方面,大家翘首以待的银河系中心黑洞Sgr A*的照片也要出炉了。

EHT项目本身还将继续“升级”,还会有更多的观测台站加入EHT,灵敏度和数据质量都将提升,让我们一起期待,未来看到M87*和Sgr A*的更高清照片,发现照片背后的黑洞奥秘。

总之,人类既然已经拍到第一张黑洞照片,那黑洞成像的春天还会远吗?


作者:左文文(中科院上海天文台)

出品:科学大院

100 年前的 1919 年爱丁顿远征西非观测日全食验证了爱因斯坦的预言质量确实可以令时空弯曲

52 年前的 1967惠勒第一次提出黑洞一词用以指称一种只在理论上存在的极端致密令时空无限弯曲的天体

2019 年 4 月 10 日我们终于亲眼目睹黑洞存在的直接证据横跨地球直径的 8 台望远镜强强联手组成史诗般的视界面望远镜奉上了人类的第一张黑洞照片——

视界面望远镜拍到的 M87 星系中心黑洞照片
视界面望远镜拍到的 M87 星系中心黑洞照片

一个世纪的求索我们终于等到了今天

轻舟既过万重山犹忆往昔峥嵘岁月稠

——现在请让我们一同回顾这张必将载入史册的珍贵影像经历了怎样漫长的百年酝酿

目录
爱因斯坦叕对了
黑洞真的存在吗
给黑洞画张素描
给黑洞拍张照片
意中意外视界面

爱因斯坦叕对了

1915 年爱因斯坦用他天才的物理直觉提出广义相对论颠覆了人类对时空本质的认知

我们可以借惠勒之言概括广义相对论的精髓时空决定物质如何运动物质决定时空如何弯曲

宇宙万物原本被认为只是广袤时空舞台上的演员在广相的世界里却成为舞台本身的建构师

广义相对论给出很多重要的预言其中很多在刚问世时都显得过分光怪陆离让人不敢相信

然而 100 年来这些预言逐一获得实验和观测的证实让爱氏取得物理学史中至高无上的地位

广义相对论预言大质量天体会让周围的时空发生显著弯曲背景星光行经此处会随着时空的弯曲而被偏折

1919 年英国天文学家亚瑟·爱丁顿和同事分别率领一支远征队赶赴巴西和西非利用日全食的宝贵时机测量太阳附近恒星的位置——对比星图他们发现这些恒星的位置似乎稍微远离了日面而且远离的幅度符合广义相对论的预言

Memoirs of the Royal Astronomical Society LXII, Appendix Plate 1
Memoirs of the Royal Astronomical Society LXII, Appendix Plate 1

这是爱因斯坦提出广义相对论之后第一个专门为验证广相预言而实施的重要观测结果一出立刻让爱因斯坦名声大噪

当天体质量更大弯曲星光的效应更明显中间的大质量天体就仿佛一个汇聚光线的凸透镜让背景光源呈现扭曲放大的多个虚像广义相对论预言的这种现象被称为引力透镜效应

而引力透镜成像在宇宙中已经被广泛发现

形形色色的强引力透镜效应现象「爱因斯坦环」(哈勃望远镜拍摄)
形形色色的强引力透镜效应现象爱因斯坦环哈勃望远镜拍摄

1974 年美国天文学家拉塞尔·赫尔斯和约瑟夫·泰勒使用当时世界上最大的单口径射电望远镜位于美国波多黎各的 305 米阿雷西博望远镜发现了一颗位于双星中的毫秒脉冲星

广义相对论预言两个天体相互绕转时会由于搅动时空发出引力波而损失轨道能量让两颗星之间的距离趋于衰减

两位天文学家发现这颗脉冲星的脉冲到达时间系统性地逐步偏移而这种偏移刚好符合广义相对论预言中双体系统因发出引力波而产生轨道衰减的情况

这是对广义相对论的一次严格检验

赫尔斯泰勒二人凭借这一发现获得了 1993 年诺贝尔物理学奖

2015 年美国激光干涉引力波天文台LIGO更是第一次直接探测到双黑洞并合事件产生的引力波

促成这一发现的几位物理学家几乎立即斩获了 2017 年诺贝尔物理学奖

更不用说我们每个人手中应用着卫星定位系统的电子设备全都受益于广义相对论如果不对地球引力及卫星运动的相对论效应进行改正卫星定位系统将完全无法给出正确位置

祝贺你已经多次成功参与广义相对论的实验检验

对广相检验历史有兴趣的读者

可以参考文末给出的 Tests of General Relativity: A Review 这篇文章

黑洞真的存在吗

1916 年广义相对论提出仅仅一年之后

一个名叫卡尔·史瓦西的德国天文学家在第一次世界大战的前线战地医院卧病时写下一篇探索广义相对论的论文

他给出广义相对论中描述时空性质的爱因斯坦场方程的第一个精确解根据这个解对于任何物体都有一个与其质量相对应的半径如果将其全部质量压缩到这个半径内这些物质就将无止尽的向中心掉落形成一个时空极端弯曲的奇点

这个半径后来被称作史瓦西半径任何物质包括光都无法从史瓦西半径内逃出

如果这个极端不可思议的预言也能得到证明无疑将会是广义相对论的又一座丰碑

但一开始天文学家不相信自然界可以产生那么致密的天体

1931 年印度裔天文学家钱德拉塞卡指出小恒星演化的遗骸靠电子简并压维持存在的致密天体白矮星一旦质量超过 1.4 倍太阳质量就无法继续依靠电子简并压而维持存在势必继续坍缩为中子星

1939 年美国理论物理学家奥本海默等人又指出当中子星的质量超过某一极限根据 LIGO 引力波观测的结果这个极限目前被认为是 2.17 倍太阳质量就连中子简并压也无法维持中子星的存在超重的中子星也必然继续坍缩下去——而且似乎没有什么力量可以再阻挡这种坍缩

看来宇宙似乎有办法把物质压进史瓦西半径以内

奇点这个让物理学失效的地方却让一些理论物理学家寝食难安惠勒一度质疑形成奇点之后原先的物质为何可以变成一个无物质的几何点

随着理论研究的深入物理学界逐渐廓清疑虑建立了对这种极端天体各项性质的共识它也于 1967 年被惠勒正式命名为黑洞但来自一些非主流科学家的异议也始终存在他们不断试图用黑洞之外的理论描述致密天体的结局

随着一系列简介天文观测证据的出现黑洞学说的事实基础逐渐坚实起来

1972 年美国天文学家使用探空火箭搭载的 X 射线探测器发现了位于天鹅座的一个强 X 射线源天鹅座 X-1

发现天鹅座 X-1 时使用的空蜂(Aerobee)火箭结构示意图
发现天鹅座 X-1 时使用的空蜂Aerobee火箭结构示意图


黑洞成为解释宇宙中强 X 射线源形成机制的一把钥匙

如果黑洞这样的致密天体位于一对密近双星中它将掠食伴星的物质来自伴星的物质在掉进黑洞的过程中会形成一个旋进下落的吸积盘由于物质在吸积盘的不同半径处公转速度不同相邻物质团块之间会产生剧烈摩擦使吸积盘达到极高的温度从而释放出强烈的 X 射线

正在蚕食伴星的黑洞吸积盘
正在蚕食伴星的黑洞吸积盘

由于磁场的作用一部分吸积盘上的物质会被从垂直于吸积盘的方向上向两侧喷出

黑洞的极端致密让吸积盘物质掉落进黑洞之前有机会把自身引力势能的很大比例转化成其他形式的能量释放出来核聚变的质能利用率只有 1% 左右而黑洞吸积盘释放出的引力势能折合成质量则相当于掉落物质总质量的 30% 多这既是吸积盘上极高温度的成因也让吸积盘喷流得以加速到接近光速

因此除了 X 射线双星很多迸发出近光速喷流的星系中心也被认为寄居有超大质量黑洞

例如室女座星系团中心的大质量椭圆星系 M87

在这张图上我们只能看到一侧的喷流是因为以接近光速喷出的喷流具有强烈的相对论性多普勒集束效应——朝向我们而来的物质显得明显更亮背离我们而去的物质显得极为暗淡

再比如有人连续跟踪银河系中心恒星运动十多年从其轨道计算出中心天体拥有巨大的质量并且限制在非常小的尺度内结论同样指向超大质量黑洞以下是使用真实测量数据制作并包含未来十几年预测的模拟动画

但上面这些归根结底只是间接证据

LIGO 发现双黑洞并合产生的引力波可以视为黑洞确实存在的一个准直接证据——但毕竟我们只是到了黑洞并合的时空涟漪——不亲眼总还是不太踏实

由于黑洞吸积盘能够释放出强大的辐射星系中央大质量黑洞的存在与否还对星系演化有着极为关键的影响可以说当代天文学对星系演化的理解严重依赖于确实存在星系中心超大质量黑洞这个假设

如果最终居然证实没有黑洞的话现在的天文教科书就要全部重写了