朱式幸福: 111年大學學測-數學A詳解

2022年1月22日 星期六

111年大學學測-數學A詳解

111學年度學科能力測驗試題-數學A考科

一、單選題(占 30 分)

解答:$$C^n_2 \gt 100 \Rightarrow  {n(n-1)\over 2}  \gt 100 \Rightarrow n^2-n-200\gt 0\\ \Rightarrow n \gt {1+\sqrt{801}\over 2} \Rightarrow n\ge 15 (28\lt \sqrt{801} \lt 29) \\ 當n=15時,至少提供C^{15}_1+C^{15}_2=15+{15\times 14\over 2}=120種選法,故選\bbox[red,2pt]{(4)}$$
解答:$${9\over 4}\log_a b= \log_b a ={\log_a a\over \log_a b} \Rightarrow (\log_a b)^2={4\over 9} \Rightarrow \log_a b={2\over 3} \Rightarrow a^{2/3}=b \Rightarrow a^2=b^3,故選\bbox[red,2pt]{(1)}$$
解答

$$黑點分佈情形趨近直線y=2x(藍色直線),\\因此將黑點投影到與y=2x垂直的紅色直線y=-x/2時,\\黑點會集中投影到原點,此時變異數最小,故選\bbox[red,2pt]{(5)}$$
解答:$$\log a_1,\log a_3,\log a_6成等差 \Rightarrow \log a_1+\log a_6=2\log a_3 \Rightarrow \log (a_1a_6)=\log a_3^2 \\ \Rightarrow  a_1a_6=a_3^2 \Rightarrow a_1(a_1+5d)=(a_1+2d)^2 \Rightarrow a_1^2+ 5a_1d=a_1^2+4a_1d+4d^2 \\ \Rightarrow  a_1d-4d^2=0 \Rightarrow d(a_1-4d)=0 \Rightarrow a_1=4d \\ \Rightarrow \log a_1,\log a_3,\log a_6的公差=\log a_3-\log a_1= \log {a_3\over a_1} =\log {6d\over 4d} =\log {3\over 2},故選\bbox[red,2pt]{(3)}$$
解答:$$P={染病且採檢為陰\over 染病且採檢為陰+未染病且採檢為陰} ={  30\%\times 20\% \over   30\%\times 20\%+ 70\% \times 60\%}   \\ \Rightarrow P'={染病且採檢3次皆為陰\over 染病且採檢3次皆為陰+未染病且採檢3次皆為陰} ={  30\%\times (20\%)^3 \over   30\%\times (20\%)^3+ 70\%\times (60\%)^3} \\ \Rightarrow {P\over P'}={  30\%\times 20\% \over   30\%\times 20\%+ 70\% \times 60\%} \times {30\%\times (20\%)^3+ 70\%\times (60\%)^3\over 30\%\times (20\%)^3}=8,故選\bbox[red,2pt]{(2)}$$
解答:$$三直線所圍三角形為正三角形\Rightarrow L_1與L_2的角平分線與L垂直 \\ \Rightarrow 直線L斜率為-{9\over 11} \Rightarrow L:y=-{9\over 11}(x-2)+{1\over 3} \Rightarrow 27x+33y=65,故選\bbox[red,2pt]{(5)}$$

二、多選題(占 30 分)

解答:$$(1)\times: n=0滿足原式,但不滿足|5n-7n|\ge 21\\ (2)\bigcirc: |5n-21|\ge 7|n| \Rightarrow {7|n|\over |5n-21|} \le 1 \Rightarrow -1\le {7n\over 5n-21}\le 1\\(3)\times: n=0滿足原式,但不滿足7n\le 5n-21 \\(4)\bigcirc: |5n-21|\ge 7|n| \Rightarrow (|5n-21|)^2\ge (7|n|)^2 \\(5)\times:|5n-21|\ge 7|n| \Rightarrow (5n-21)^2 \ge 49n^2 \Rightarrow 24n^2+210n-441\le 0\\ \qquad \Rightarrow 3(4n-7)(2n+21)\le 0  \Rightarrow -{21\over 2}\le n\le {7\over 4} \\\qquad \Rightarrow n=-10,-9,\dots,0,1,共12個\\,故選\bbox[red,2pt]{(2,4)}$$
解答:$$(1) \bigcirc:\cases{A(0,2)\\ B(1,0)\\ C(4,1)} \Rightarrow \cases{\overline{AB}=\sqrt 5\\ \overline{BC}=\sqrt{10} \\ \overline{AC}=\sqrt{17}} \Rightarrow \overline{AC}最長 \\(2) \times:\overline{BC}\gt \overline{AB} \Rightarrow \sin A\gt \sin C \\(3) \times:\cases{\overline{AB}^2 =5\\ \overline{BC}^2=10\\ \overline{AC}^2=17} \Rightarrow \overline{AC}^2 \gt \overline{AB}^2+ \overline{BC}^2 \Rightarrow \angle B為鈍角 \Rightarrow \triangle ABC為鈍角三角形 \\(4)\bigcirc: \cos B= {\overline{AB}^2+\overline{BC}^2-\overline{AC}^2 \over 2\cdot \overline{AB}\cdot \overline{BC}} ={-2\over 10\sqrt 2} =-{\sqrt 2\over 10} \Rightarrow \sin B={7\sqrt 2\over 10}\\(5)\times: {\overline{AC}\over \sin B}=2R \Rightarrow R={1\over 2}\times {\sqrt{17}\over 7\sqrt 2/10} ={5\over 14}\sqrt{34} \gt {5\over 14}\times {28\over 5}=2 \Rightarrow R\gt 2\\\qquad 註:{28\over 5}=5.6 \Rightarrow 5.6^2=31.36\lt 34 \Rightarrow \sqrt{34}\gt {28\over 5}\\,故選\bbox[red,2pt]{(1,4)} $$
解答:$$為節省版面,令 \vec u=\overrightarrow{AB},\vec v= \overrightarrow{AC} ,\vec p=\overrightarrow {AP},\vec q=\overrightarrow{AQ},\vec r=\overrightarrow{AR} ;\\(1)\times: 若\cases{a= 0.4\\ b=0.05},則0\lt a+b\lt 1 \Rightarrow \overrightarrow{AR}=0.4 \cdot \overrightarrow{AB}+0\cdot \overrightarrow{AC} \Rightarrow R\in \overline{AB},R不在內部\\ (2)\times: \cases{|\overrightarrow{AP}|^2 =|a\vec u+b\vec v|^2=a^2|\vec u|^2 + b^2|\vec v|^2 +2ab\vec u \cdot \vec v \\|\overrightarrow{AQ}|^2 =|b\vec u+a\vec v|^2= b^2|\vec u|^2 + a^2|\vec v|^2 +2ab\vec u\cdot \vec v} \Rightarrow |\overrightarrow{AP}|^2 -|\overrightarrow{AQ}|^2 =(|\vec u|^2-|\vec v|^2)(a^2-b^2)\\ \qquad 由題意知:a\ne b,除非\overline{AB}=\overline{AC},否則|\overrightarrow{AP}|\ne |\overrightarrow{AQ}|\\(3)\bigcirc: \triangle ABP={1\over 2}\sqrt {\mathcal{P}}={1\over 2}\sqrt{|\vec u|^2|\vec p|^2-(\vec u\cdot \vec p)^2} \Rightarrow \mathcal{P}=|\vec u|^2|a\vec u+b\vec v|^2-(\vec u\cdot (a\vec u+b\vec v))^2 \\\qquad =|\vec u|^2(a^2|\vec u|^2+b^2|\vec v|^2 +2ab(\vec u\cdot \vec v))- (a|\vec u|^2+b(\vec u\cdot \vec v))^2 \\ \qquad = (a^2|\vec u|^4+b^2|\vec u|^2|\vec v|^2 +2ab|\vec u|^2(\vec u\cdot \vec v))- (a^2|\vec u|^4+b^2(\vec u\cdot \vec v)^2 +2ab|\vec u|^2 (\vec u \cdot \vec v))\\ \qquad =b^2(|\vec u|^2|\vec v|^2-(\vec u\cdot \vec v)^2)\\ \qquad 同理,\triangle ACQ面積={1\over 2}\sqrt{\mathcal{Q}} ={1\over 2} \sqrt{|\vec v|^2|\vec q|^2-(\vec v\cdot \vec q)^2} \Rightarrow \mathcal{Q}= |\vec v|^2|b\vec u+a\vec v|^2-(\vec v\cdot (b\vec u+a\vec v))^2 \\ \qquad =b^2(|\vec u|^2|\vec v|^2-(\vec u\cdot \vec v)^2)\\ \qquad\Rightarrow  \mathcal{P}= \mathcal{Q},即\triangle ABP= \triangle ACQ\\ (4)\bigcirc:\cases{\overrightarrow{PQ}= \overrightarrow{PA}+\overrightarrow{AQ} =(-a\vec u-b\vec v) +(a\vec v+b\vec u) =  (a-b)(-\vec u+\vec v)\\ \overrightarrow{BC}=\overrightarrow{BA}+ \overrightarrow{AC}=-u+v} \\ \qquad\Rightarrow \overrightarrow{PQ} \parallel \overrightarrow{BC} \Rightarrow \text{dist}(P,\overline{BC})= \text{dist}(Q,\overline{BC}) \Rightarrow \triangle BCP面積= \triangle BCQ面積\\(5)\times: 由(3)知:\triangle ABP={1\over 2}\sqrt{b^2(|\vec u|^2||\vec v|^2-(\vec u\cdot \vec v)^2} \Rightarrow \triangle ABR={1\over 2}\sqrt{(b-0.05)^2(|\vec u|^2||\vec v|^2-(\vec u\cdot \vec v)^2}\\\qquad 若b=0.0001 \Rightarrow b^2 \lt (b-0.05)^2,此時\triangle ABP \lt \triangle ABR (本題無限制R在\triangle ABC內)\\故選\bbox[red,2pt]{(3,4)} $$
解答:$$(1)\bigcirc:g(x)=f(-x)-3=-ax^3+bx^2-cx+3-3= -ax^3+bx^2-cx\\\qquad \Rightarrow (0,0)在y=g(x)圖形上;又(1,0)為y=g(x)的對稱中心\Rightarrow (2,0)也在y=g(x)圖形上\\ \qquad \Rightarrow g(0)=g(1)=g(2)=0 \Rightarrow g(x)=0有三相異實根0,1,2\\(2)\bigcirc: 由(1)知:g(x)=kx(x-1)(x-2) \Rightarrow g(-1)=-6k \lt 0 \Rightarrow k\gt 0 \Rightarrow -a\gt 0 \Rightarrow a\lt 0\\(3)\times: y=g(x)的對稱中心坐標為({b\over 3a},g({b\over 3a}))= (1,0) \Rightarrow {b\over 3a}=1\\\qquad \Rightarrow y=f(x)的對稱中心坐標為(-{b\over 3a},f(-{b\over 3a})) =(-1,f(-1)),\\\qquad 又f(-x)=g(x)+3 \Rightarrow f(-1)=g(1)+3=0+3=3 \Rightarrow y=f(x)的對稱中心坐標為(-1,3)\\(4)\times: g(x)=kx(x-1)(x-2) \Rightarrow f(x)=k(-x)(-x-1)(-x-2)+3 =-kx(x+1)(x+2)+3\\ \qquad \Rightarrow f(100)=-k\cdot 100\cdot 101\cdot 102+3 \Rightarrow 只要0\lt k<{3\over 100\cdot 101\cdot 102}\Rightarrow f(100) \gt 0 \\(5)\times: f(x)=-kx(x+1)(x+2)+3 = -kx^3-3kx^2-2kx+3 \Rightarrow f'(x)=-3kx^2-6kx-2k\\ \qquad \Rightarrow f'(-1)=-3k+6k-2k=k =-a \ne a\\,故選\bbox[red,2pt]{(1,2)}$$
解答


$$(1)\times: ACFD為矩形\Rightarrow E-ACFD為五面體\\(2)\bigcirc: ADEB與ADFC的夾角= \angle BAC,又\cases{\overline{BC}\gt \overline{AC}\\ \angle ACB=90^\circ } \Rightarrow \angle BAC \gt 45^\circ\\(3) \bigcirc: 令\cases{F(0,0,0)\\ A(0,a,5)\\ B(6,a,0)\\ C(0,a,0)\\ D(0,0,5)\\ E(6,0,0)} \Rightarrow \cases{\overline{EA}^2=a^2+61\\ \overline{EB}^2=a^2 \\ \overline{EC}^2= a^2+36 \\\overline{AB}^2=61 \\ \overline{BC}^2=36}\\\qquad \Rightarrow \cases{\cos \angle AEB ={(\overline{EA}^2+\overline{EB}^2-\overline{AB}^2)/ 2\cdot \overline{EA}\cdot \overline{EB}} =a/\sqrt{a^2+61}\\ \cos \angle CEB (\overline{EB}^2+\overline{EC}^2-\overline{BC}^2)/ 2\cdot \overline{EB}\cdot \overline{EC} =a/\sqrt{a^2+36}} \\ \qquad \Rightarrow \cos \angle AEB \lt \cos \angle CEB \Rightarrow \angle CEB \lt \angle AEB \\(4)\bigcirc: \cases{\tan \angle AEC=\overline{AC}/\overline{EC} =5/\overline{EC}\\ \sin \angle CEB=\overline{BC}/\overline{EC} =6/\overline{EC}} \Rightarrow \sin \angle CEB \gt \tan \angle AEC \\(5) \times: \cases{\sin \angle AEC= \overline{AC} /\overline{AE} = 5/\sqrt{a^2+61} \\ \sin \angle CEB=\overline{BC}/\overline{EC} = 6/\sqrt{a^2+36}} \Rightarrow \sin \angle AEC \lt \sin \angle CEB \Rightarrow \angle AEC \lt \angle CEB\\,故選\bbox[red,2pt]{(2,3,4)}$$
解答:$$令(g(x))^2=f(x)p(x)+g(x),由於g(x)為二次式  \Rightarrow (g(x))^2 為四次式  \Rightarrow  f(x)為三次式 或四次式;\\若f(x)為三次式\Rightarrow  f(x)=0至少有一實數解,與題意不合,因此f(x)為四次式;\\ \Rightarrow (g(x))^2=f(x)\cdot k+g(x),其中k為一常數  \Rightarrow f(x)={1\over k}g(x)(g(x)-1)\\ 依題意:f(x)=0無實數解 \Rightarrow g(x)(g(x)-1)=0無實數解 \Rightarrow \cases{g(x)(g(x)-1) \gt 0\\ g(x)(g(x)-1)\lt 0}\\ \Rightarrow \cases{g(x)\gt 1 或g(x)\lt 0(不合,g(x)為凹向上)\\ 0\lt g(x)\lt 1 (不合,g(\infty)=\infty \not \lt 1)} \Rightarrow g(x) \gt 1,故選\bbox[red,2pt]{(1,2)}$$

三、選填題(占 25 分)

解答:$$若X\sim b(n,p) \Rightarrow E(X)=np,現在前九次抽金卡及第十次抽金卡皆為二項式分配\\,因此十連抽期望值=9\times 2\%+ 1\times 10\% = 0.28\\而23000枚代幣可抽\lfloor {23000\over 1500}\rfloor=15次,期望值=15\times 0.28=\bbox[red,2pt]{4.2}$$
解答:$$\left[\begin{array}{ccc|c}1 & 2 & b & 7\\ 0 & b & 5 & -5\\ 0 & 0 & b & 0 \end{array} \right] \Rightarrow \cases{x+2y+bz=7\\ by+5z=-5\\ bz=0} \Rightarrow \cases{x=7+10/b\\ y=-5/b\\z=0} \\代回原方程組之3x+8y+az=1 \Rightarrow 21+{30\over b}-{40\over b}+0=1 \Rightarrow b={1\over 2} \Rightarrow \cases{x=27 \\ y=-10}\\ 代回原方程組之x+ay+{8\over 3}z=7 \Rightarrow x+ay=7 \Rightarrow 27-10a=7 \Rightarrow a=2 \\ \Rightarrow \bbox[red, 2pt]{\cases{a=2\\ b={1\over 2}}}$$
解答

$${\triangle ADE\over \triangle ABC}={\overline{DE}^2\over \overline{BC}^2}= {9\over 16} \Rightarrow {\overline{DE} \over \overline{BC}} ={3\over 4} \Rightarrow \overline{DE} ={3\over 4}\cdot 16=12\\ \triangle BCG三角為30^\circ-60^\circ-90^\circ \Rightarrow h=\overline{CG}=\overline{BC}\div 2=8 \\\Rightarrow 梯形DBCE面積 =(12+16)\times 8\div 2=112 ={7\over 16}\triangle ABC \\ \Rightarrow \triangle ABC=112\times {16\over 7}= 256\\ \triangle BCE=16\times 8\div 2=64 \Rightarrow \triangle ABE=\triangle ABC-\triangle BCE=256-64=\bbox[red,2pt]{192}$$
解答:$$L:{x\over 2}-1=y+1=-2z,因此P\in L \Rightarrow P(2t+2,t-1,-{1\over 2}t),t\in \mathbb{R} \Rightarrow L的方向向量\vec u=(2,1,-{1\over 2})\\ \cases{平面x-y+2z=3 的法向量\vec n_1=(1,-1,2)\\ 假設平面E的法向量\vec n_2=(a,b,c)} \Rightarrow \vec n_1\times \vec n_2=\vec u \Rightarrow (2b+c,c-2a,-a-b)=(2,1,-{1\over 2})\\ \Rightarrow \vec n_2=(a, {1\over 2}-a,1+2a);又L'在E的投影為L \Rightarrow \vec n_1\bot \vec n_2 \Rightarrow \vec n_1\cdot \vec n_2=0\\ \Rightarrow (1,-1,2)\cdot (a, {1\over 2}-a,1+2a)= 6a+{3\over 2}=0 \Rightarrow a=-{1\over 4} \Rightarrow \vec n_2=(-{1\over 4},{3\over 4},{1\over 2})\\ (2,-1,0)\in E \Rightarrow E的方程式:-{1\over 4}(x-2)+{3\over 4}(y+1)+{1\over 2}z=0 \Rightarrow x\bbox[red,2pt]{-3}y\bbox[red,2pt]{-2}z=\bbox[red,2pt]{5}$$
解答:$$\cases{A(-1,2,1)\\ B(-4,1,3)\\ C(2,0,-3)} \Rightarrow \cases{\vec a=\overrightarrow{AB}=(-3,-1,2) \\ \vec b= \overrightarrow{AC}=(3,-2,-4)} \Rightarrow \cases{\vec n=\vec a \times \vec b=(8,-6,9)\\ 平行四邊形面積=\sqrt{|\vec a|^2| \vec b|^2-(\vec a\cdot \vec b)^2}= \sqrt{181}}\\ \Rightarrow 過A且法向量為\vec n之平面E方程式:8(x+1)-6(y-2)+9(z-1)=0 \Rightarrow 8x-6y+9z=-11\\另一面之頂點P(\cos\theta,\sin \theta,0) \Rightarrow dist(P,E)=\left|{ 8\cos \theta-6\sin\theta +11\over \sqrt{8^2+(-6)^2+9^2}} \right| =\left|{10\sin(\alpha-\theta)+11\over \sqrt{181}} \right| \\ \Rightarrow dist(P,E)之最大值={21\over \sqrt{181}} \Rightarrow 平行六面體最大體積=\sqrt{181}\times {21\over \sqrt{181}} =\bbox[red,2pt]{21}$$

第貳部分、混合題 或非選擇題(占 15 分)

解答:$$\cases{A(\sqrt 3,0)\\ B(x,\sqrt{4-x^2})} 滿足\overline{AB}=1 \Rightarrow (x-\sqrt 3)^2+(4-x^2)=1 \Rightarrow 2\sqrt 3 x=6 \\ \Rightarrow x=\sqrt 3 \Rightarrow B(\sqrt 3,1),故選\bbox[red,2pt]{(4)}$$
解答
$$\cases{A'(x,\sqrt{3-x^2})\\ B'(-2,0)},滿足\overline{A'B'}=1 \Rightarrow (x+2)^2+(3-x^2)=1 \Rightarrow x=-{3\over 2} \Rightarrow A'(-{3\over 2},{\sqrt 3\over 2})\\ \triangle OA'B'三邊長分別為\cases{\overline{OA'}=\sqrt 3\\ \overline{OB'}= 2\\ \overline{A'B'}=1} \Rightarrow \cases{\angle OA'B'=90^\circ\\ \angle OB'A'=60^\circ\\ \angle A'OB'=30^\circ } \Rightarrow \cases{\cos \angle OA'B' = \cos 90^\circ=0\\ A'極坐標=(\sqrt 3\cos 150^\circ,\sqrt 3\sin 150^\circ)}\\ \Rightarrow \bbox[red,2pt]{\cases{\cos \angle OA'B'=0\\ A'極坐標=(\sqrt 3\cos {5\pi\over 6}, \sqrt 3\sin {5\pi\over 6})\Rightarrow (r,\theta)=(\sqrt 3,150^\circ)}}\\另區域R如下圖斜線區域$$


解答
$$上圖藍色面積=扇形OBC-直角\triangle OAB = {30\over 360}\times 4\pi -{1\over 2}\times \sqrt 3\times 1= {\pi \over 3}-{\sqrt 3\over 2}\\ 第一象限環形面積={1\over 4}(4\pi-3\pi)={\pi\over 4} \Rightarrow \Omega = {\pi\over 4}-({\pi \over 3}-{\sqrt 3\over 2}) ={\sqrt 3\over 2}-{\pi\over 12}\\ 上圖棕色面積=直角\triangle OA'B'-扇形OA'C' = {\sqrt 3\over 2}-{\pi\over 4} \\ \Rightarrow R在第二象限面積={\pi\over 4}-({\sqrt 3\over 2}-{\pi\over 4})={\pi \over 2}-{\sqrt 3\over 2}\\ R={\sqrt 3\over 2}-{\pi\over 12} +{\pi \over 2}-{\sqrt 3\over 2}={5\pi\over 12} \Rightarrow \bbox[red,2pt]{\cases{\Omega= {\sqrt 3\over 2}-{\pi\over 12}  \\ R={5\pi\over 12}}}$$

=========================== END =============================

解題僅供參考,其他大學學測試題及詳解

6 則留言:

  1. 其實R的面積可以用補的變成扇形面積

    回覆刪除
  2. 第16題做一次外積不就有了 誤人子弟,極座標跟大考中心給的答案也不一樣 真夠破

    回覆刪除
  3. 第11題的選項5的sin AEC 是AC/AE嗎?

    回覆刪除