重新定義益生菌功效!新創益生菌 TW01 可降低大腸癌、抗PM2.5 - 康健雜誌
瀏覽數 10,509
贊助

重新定義益生菌功效!新創益生菌 TW01 可降低大腸癌、抗PM2.5

這篇文章可以用聽的

00:00
00:00

2023年,「自然(Nature)期刊」證實了空氣汙染會造成肺癌疾病。且世界正受空汙與菸害所產生的微粒(PM)所苦,接連造成呼吸道損傷,而誘發出全身性發炎、免疫失調、抵抗力下降,導致肺炎,提高肺癌機率(如圖一)。
另外,台灣高居世界之冠的癌症,便是大腸癌發生率。此與國人飲食精緻化、家族遺傳等有密切相關,根據衛生福利部公佈國人平均每13人就有1人終其一生可能罹患大腸癌。
而此兩項疾病皆列入台灣十大死因,面對這樣的威脅,科學發現從「腸」計議是破解之道。

圖一、空污如何導致肺癌的《自然期刊》新聞稿

人體90%疾病竟跟乳酸菌有關

人體消化道從口腔、食道、胃、小腸、大腸、直腸到肛門,總長度約6~9公尺,表面積約為280平方公尺,全部攤開有一個網球場大,且腸道佔據了人體70%免疫能力。

面臨自然界到處充滿看不見的威脅,人體每天都在開戰。面對病原菌的入侵,腸道中的乳酸菌將作為對抗的第一道防線。而事實上乳酸菌不只是侷限於腸道作用,縱觀從眼睛、私密處、泌尿道、上呼吸道,這些都與腸道乳酸菌有著千絲萬縷的關係。

偌大腸道中就有上百兆的共生菌、上千類的菌種,它們遍及人體各地,提供完整的佈防機制。由於菌叢生態數目非常大,菌種種類又多,故平時益生菌應以長期補充,且以菌種多樣化的方式進行。而益生菌在定植腸道後,會產生有益代謝物,便能啟動免疫防禦及降低腸內毒素,進而減少腸漏現象、降低毒素竄流器官,以達到理想的健康狀態。 

重新定義益生菌,台灣人的益生菌

市售益生菌那麼多,是否有適合亞洲人補充的菌株?又或者說,益生菌是否分成東西方體質?其實正確來講,所謂的東西方體質益生菌,指的是飲食及生活在不同情況下,腸道裡面的菌叢生態也會產生不同的變化。

例如:西方人油脂吃的多,腸道就發展出較多能分解油脂的「擬桿菌」;東方人愛吃米食,腸道就發展出較多能增加醣類代謝的「普氏菌」,尤其愛吃纖維的人,普氏菌更高達60%。所以這證明了,我們的飲食會偏愛某種乳酸菌的定植率。

只要借助這個邏輯,就可以逆向研究台灣國人的飲食,找出頻率最高的食物。再從這食物中找出相伴相隨的乳酸菌,提煉出來做為國人的益生菌,這樣就很符合台灣人的益生菌。

根據國際咖啡組織(ICO)統計,台灣平均每人每年喝掉122杯咖啡。在如此高頻率的飲食下,新創益生菌 TW01 (Lactobacillus acidophilus TW01)就是從此契機中誕生。 TW01 是從台灣古坑原生咖啡豆中進行發酵,且成功從發酵液的上千株菌中,找到唯一有效的菌株。耗時一年半的找尋,最終找到符合台灣人的飲食習慣,適合台灣人的菌株。

不單如此,乳酸菌的存活易受 pH 值影響,特別是在 pH3 以下會對菌體產生最大傷害。在相關研究中大多是以 pH3 進行耐酸測試。但新創益生菌「TW01」,是在更嚴苛的 pH2 條件下測試30分鐘,發現菌數竟無太大損傷,證實耐酸程度強悍。另耐鹼測試以0.3%膽鹽進行,也表現出耐鹼能力(如圖二)。

圖二、乳酸菌株腸胃道耐性試驗結果

三效合一,新創益生菌TW01

台灣首支三效合一益生菌 Lactobacillus acidophilus TW01 證實可降低大腸癌風險、抗PM2.5、活化免疫平衡。TW01 是由江欣樺營養師領軍開發,正式攻破國人十大死因中的大腸癌、肺炎,帶領益生菌走向新紀元。 

TW01 益生菌功效一、降低大腸癌風險

新創益生菌 TW01,進入腸道吸取碳源當作養分,之後進入貝爾斑進行免疫調節,並促使B細胞分泌免疫球蛋白IgA,且IgA處在腸道黏膜最外層的黏液層,可以阻擋細菌對上皮細胞的破壞,減少腸漏現象,進而減少腸內毒素產生(如圖三)。

圖三、益生菌與腸漏症的關係

研究成果
經實驗證實,TW01菌數從百萬/CFU到1億/CFU,均發現能抑制 Caco2 (人類結腸腺癌細胞),也就是抑制大腸癌細胞,且隨菌數越高抑制效果越好。不僅如此,在 TW01 作用下,還能促進腸道細胞傷口復原。(如圖四)

圖四、TW01抑制Caco-2人類結腸線癌細胞以及幫助腸道細胞傷口修復

TW01 益生菌功效二、抗PM2.5

  1. TW01 可以強化腸道黏膜,降低內毒素進入肺部。並且 TW01 所產生的短鏈脂肪酸(SCFA)及細菌素,能抑制腸內壞菌滋生。而 SCFA 可做為腸黏膜上皮細胞能量來源,可以強化腸道黏膜的完整性,避免內毒素進入血液循環,並經肺—腸軸線,因此能降低毒素進入肺部機率。(如圖五)
  2. TW01 降低呼吸道損傷,經免疫反應所產生的 IgA 成為了上呼吸道對抗細菌、病毒能力。(如圖五)
  3. TW01 透過肺—腸軸線將抗氧化物送至肺部,可以降低肺部損傷。(如圖五)
圖五、TW01抗PM2.5的功效機轉

研究成果
經實驗證實, TW01 能有效提升抗氧化物質,使呼吸道對抗 PM2.5 的能力提升一倍,且 TW01 也能大幅提升受損細胞的存活率。面對受到PM2.5 損害的呼吸道,TW01具有先防禦、後修復的趨勢能力。(如圖六)

圖六、TW01的實證功效

TW01 益生菌功效三、達到免疫調節

人體內有非常多種生化因子,並且會不斷傳送訊號,決定是否要產生免疫攻擊,以及攻擊的程度有多強、攻擊的時間有多長。免疫反應太低,保護能力就會不足;免疫反應太強,身體就會受損,甚至引起過敏。(如圖七)

圖七、益生菌的免疫調節

研究成果
從研究結果看來,TW01能夠喚起許多具有指標意義的免疫細胞激素,同時又能啟動緩解反應的細胞因子。對於免疫系統與相關疾病來說,TW01能夠啟動也能夠節制,讓免疫的戰力增強,但也更有紀律。(如圖八)

圖八、TW01的免疫調節效能以及細胞安全性

新世紀材料,TW01也能當作後生元

後生元是益生菌的代謝產物,具耐高溫、耐鹽鹼、耐胃酸特性。研究團隊也發現,當 TW01 成為死菌後,也變成了「後生元」,並且同樣具有免疫調節的能力。這項發現增加了 TW01 在食品加工的應用範圍,很適合當成補湯類的功能性添加,例如雞精或魚精。(如圖九)

圖九、TW01也能當作後生元

1+1大於2,TW01啟動體內額外好菌繁殖

市售益生菌中,最大的兩群益生菌便是乳酸桿菌屬(Lactobacillus)及雙歧桿菌屬(Bifidobacterium)。眾所皆知腸道裡的菌都會搶地盤,當益生菌進入腸道後,約一周內就會定植下來,並分泌有益的代謝物(如短鏈脂肪酸、細菌素)。短鏈脂肪酸能穿透壞菌,抑制其能量代謝使壞菌餓死而減少,也會試圖增加好菌地盤的優勢,讓蠢蠢欲動的壞菌不敢造次。

此外,經實驗證實,TW01屬於乳酸桿菌屬(Lactobacillus)在發揮其功能時,竟也能提高不同屬間的雙歧桿菌增長。意思是TW01自己能打仗還能找到同盟國作戰,這項發現無疑對腸道好菌的地盤多了一份不可撼動的力量。(如圖十)

圖十、TW01可以增加小鼠腸道的雙歧桿菌屬

榮獲國家新創獎,台灣人的益生菌 

台灣首支三效合一益生菌(Lactobacillus acidophilus TW01),江欣樺營養師表示,因自己鼻竇炎且長期受空氣污染PM2.5困擾,也為了想找到適合台灣人的益生菌,一心投入學界開始研發。最終,在台灣古坑咖啡豆發酵液裡面的上千株菌中,找到唯一有效的菌株。

TW01益生菌耗時三年開發,研發經費已高達2千萬台幣,但取得成就非凡,並獲得2023年國家新創獎,獲得國家肯定,也是該年度益生菌品類中唯一獲獎者。並且 TW01 獲得台灣發明專利、美國發明專利、日本發明專利、法國艾菲爾國際發明競賽金獎及加拿大發明特別獎。希望此菌株TW01能造福更多台灣人的健康,揚名國際,為台灣爭光。

了解更多保健八卦,也可以收聽 >>阿江悄悄話Podcast

參考資料References:
1. Benjamin, J.L.; Hedin, C.R.; Koutsoumpas, A.; Ng, S.C.; McCarthy, N.E.; Prescott, N.J.; Pessoa-Lopes, P.; Mathew, C.G.; Sanderson,
J.; Hart, A.L.; et al. Smokers with Active Crohn’s Disease Have a Clinically Relevant Dysbiosis of the Gastrointestinal Microbiota.
Inflamm. Bowel Dis. 2011, 18, 1092–1100. [CrossRef]

2. Thangavel, P.; Park, D.; Lee, Y.C. Recent Insights into Particulate Matter (PM2.5)-Mediated Toxicity in Humans: An Overview. Int.
J. Environ. Res. Public Health 2022, 19, 7511. [CrossRef]

3. Zhao, J.; Li, M.; Wang, Z.; Chen, J.; Zhao, J.; Xu, Y.; Wei, X.; Wang, J.; Xie, J. Role of PM2.5 in the Development and Progression of
COPD and Its Mechanisms. Respir. Res. 2019, 20, 120. [CrossRef]

4. Håglin, L.M.; Törnkvist, B.; Bäckman, L.O. High Serum Phosphate and Triglyceride Levels in Smoking Women and Men with
CVD Risk and Type 2 Diabetes. Diabetol. Metab. Syndr. 2014, 6, 39. [CrossRef]

5. Wang, Q.; Liu, S. The Effects and Pathogenesis of PM2.5 and Its Components on Chronic Obstructive Pulmonary Disease. Int. J.
Chron. Obstruct. Pulmon. Dis. 2023, 18, 493–506. [CrossRef]

6. Luo, F.; Guo, H.; Yu, H.; Li, Y.; Feng, Y.; Wang, Y. PM2.5 Organic Extract Mediates Inflammation Through the ERβ Pathway to
Contribute to Lung Carcinogenesis in vitro and vivo. Chemosphere 2021, 263, 127867. [CrossRef]

7. Long, M.H.; Zhang, C.; Xu, D.Q.; Fu, W.L.; Gan, X.D.; Li, F.; Wang, Q.; Xia, W.; Xu, D.G. PM2.5 Aggravates Diabetes via the
Systemically Activated IL-6-Mediated STAT3/SOCS3 Pathway in Rats’ Liver. Environ. Pollut. 2020, 256, 113342. [CrossRef]

8. Lugg, S.T.; Scott, A.; Parek, D.; Naidu, B.; Thickett, D.R. Cigarette Smoke Exposure and Alveolar Macrophages: Mechanisms for
Lung Disease. Thorax 2021, 77, 94–101. [CrossRef]

9. Jung, S.H.; Bae, C.H.; Kim, J.H.; Park, S.D.; Shim, J.J.; Lee, J.L. Lactobacillus casei HY2782 and Pueraria lobata Root Extract Complex
Ameliorates Particulate Matter-Induced Airway Inflammation in Mice by Inhibiting Th2 and Th17 Immune Responses. Prev.
Nutr. Food Sci. 2022, 27, 188–197. [CrossRef]

10. Madan, J.C.; Koestler, D.C.; Stanton, B.A.; Davidson, L.; Moulton, L.A.; Housman, M.L.; Housman, M.L.; Guill, M.F.; Morrison,
H.G.; Sogin, M.L.; et al. Serial analysis of the gut and respiratory microbiome in cystic fibrosis in infancy: Interaction between
intestinal and respiratory tracts and impact of nutritional exposures. mBio 2012, 3, e00251-12. [CrossRef]

11. Marsland, B.J.; Trompette, A.; Gollwitzer, E.S. The Gut-Lung Axis in Respiratory Disease. Ann. Am. Thorac. Soc. 2015, 12 (Suppl.
S2), S150–S156. [CrossRef] [PubMed]

12. Sencio, V.; Machado, M.G.; Trottein, F. The Lung-Gut Axis during Viral Respiratory Infections: The Impact of Gut Dysbiosis on
Secondary Disease Outcomes. Mucosal Immunol. 2021, 14, 296–304. [CrossRef] [PubMed]

13. Nam, W.; Kim, H.; Bae, C.; Kim, J.; Nam, B.; Lee, Y.; Kim, J.; Park, S.; Lee, J.; Sim, J. Lactobacillus HY2782 and Bifidobacterium
HY8002 Decrease Airway Hyperresponsiveness Induced by Chronic PM2.5 Inhalation in Mice. J. Med. Food 2020, 23, 575–583.
[CrossRef]

14. Deng, X.; Rui, W.; Zhang, F.; Ding, W. PM2.5 Induces Nrf2-Mediated Defense Mechanisms against Oxidative Stress by Activating
PIK3/AKT Signaling Pathway in Human Lung Alveolar Epithelial A549 Cells. Cell Biol. Toxicol. 2013, 29, 143–157. [CrossRef]
[PubMed]

15. Liu, C.; Yang, D.; Liu, Y.; Piao, H.; Zhang, T.; Li, X.; Zhao, E.; Zhang, D.; Zheng, Y.; Tang, X. The Effect of Ambient PM2.5 Exposure
on Survival of Lung Cancer Patients after Lobectomy. Environ. Health 2023, 22, 23. [CrossRef]
Foods 2023, 12, 3278 12 of 13

16. Cheng, T.Y.; Chang, C.C.; Luo, C.S.; Chen, K.Y.; Yeh, Y.K.; Zheng, J.Q.; Wu, S.M. Targeting Lung-Gut Axis for Regulating Pollution
Particle-Mediated Inflammation and Metabolic Disorders. Cells 2023, 12, 901. [CrossRef]

17. Wang, W.; Zhou, J.; Chen, M.; Huang, X.; Xie, X.; Li, W.; Cao, Q.; Kan, H.; Xu, Y.; Ying, Z. Exposure to Concentrated Ambient
PM2.5 Alters the Composition of Gut Microbiota in a Murine Model. Part. Fibre Toxicol. 2018, 15, 17. [CrossRef]

18. Chiu, Y.H.; Chiu, H.P.; Lin, M.Y. Synergistic Effect of Probiotic and Postbiotic on Attenuation of PM2.5-Induced Lung Damage
and Allergic Response. J. Food Sci. 2023, 88, 513–522. [CrossRef]

19. Wang, X.; Hui, Y.; Zhao, L.; Hao, Y.; Guo, H.; Ren, F. Oral Administration of Lactobacillus paracasei L9 Attenuates PM2.5-Induced
Enhancement of Airway Hyperresponsiveness and Allergic Airway Response in Murine Model of Asthma. PLoS ONE 2017, 12,
e0171721. [CrossRef]

20. Artanti, D.; Sari, Y.E.S.; Azizah, F.; Puwaningsih, N.V.; Rohmayani, V.; Nasrullah, D. Effect of Giving Probiotic Supplement
Lactobacillus acidophilus La-14 as an Immunomodulator to Maintain a Respiratory System in Mus musculus. Iran. J. Microbiol. 2021,
13, 381–388. [CrossRef]

21. Naruszewicz, M.; Johansson, M.L.; Zapolska-Downar, D.; Bukowska, H. Effect of Lactobacillus plantarum 299v on Cardiovascular
Disease Risk Factors in Smokers. Am. J. Clin. Nutr. 2002, 76, 1249–1255. [CrossRef] [PubMed]

22. Huang, W.C.; Wei, C.C.; Huang, C.C.; Chen, W.L.; Huang, H.Y. The Beneficial Effects of Lactobacillus plantarum PS128 on HighIntensity, Exercise-Induced Oxidative Stress, Inflammation, and Performance in Triathletes. Nutrients 2019, 11, 353. [CrossRef]

23. Mutiarahmi, C.N.; Hartady, T.; Lesmana, R. Use of Mice as Experimental Animals in Laboratories that Refer to the Principles of
Animal Welfare: A Literature Review. Indones. Med. Vet. 2021, 10, 134–145. [CrossRef]

24. Huang, H.; Li, K.; Lee, Y.; Chen, M. Preventive Effects of Lactobacillus Mixture against Chronic Kidney Disease Progression
through Enhancement of Beneficial Bacteria and Downregulation of Gut-Derived Uremic Toxins. J. Agric. Food Chem. 2021, 69,
7353–7366. [CrossRef] [PubMed]

25. Garcia, E.J.; Oldoni, T.L.; Alencar, S.M.; Reis, A.; Loguercio, A.D.; Grande, R.H. Antioxidant Activity by DPPH Assay of Potential
Solutions to Be Applied on Bleached Teeth. Braz. Dent. J. 2012, 23, 22–27. [CrossRef]

26. Yusof, N.B.M.; Hasan, M.H.; Armayni, U.A.; Ahmad, M.S.B.; Mohsin, H.F.; Wahab, I.A. The Ferrous Ion Chelating Assay of
Pandanus Extracts. Open Conf. J. 2013, 4, 155. [CrossRef]

27. Aguilar Diaz De Leon, J.; Borges, C.R. Evaluation of Oxidative Stress in Biological Samples Using the Thiobarbituric Acid Reactive
Substances Assay. J. Vis. Exp. 2020, 12, e61122. [CrossRef]

28. Luo, S.M.; Wu, Y.P.; Huang, L.C.; Huang, S.M.; Hueng, D.Y. The Anti-Cancer Effect of Four Curcumin Analogues on Human
Glioma Cells. Onco Targets Ther. 2021, 14, 4345–4359. [CrossRef]

29. Cheng, M.Y.; Liu, H.; Zhang, T.M.; Xu, J.Y. Different Forms of Adiponectin Reduce the Apoptotic and Damaging Effect of Cigarette
Smoke Extract on Human Bronchial Epithelial Cells. Exp. Ther. Med. 2016, 12, 4168–4174. [CrossRef]

30. Kumar, P.; Nagarajan, A.; Uchil, P.D. Analysis of Cell Viability by the MTT Assay. Cold Spring Harb. Protoc. 2018, 2018, 469–471.
[CrossRef]

31. Luo, S.M.; Tsai, W.C.; Tsai, C.K.; Chen, Y.; Hueng, D.Y. ARID4B Knockdown Suppresses PI3K/AKT Signaling and Induces
Apoptosis in Human Glioma Cells. Onco Targets Ther. 2021, 14, 1843–1855. [CrossRef]

32. Wang, Y.; Li, D.; Song, L.; Ding, H. Ophiopogonin D Attenuates PM2.5-Induced Inflammation via Suppressing the AMPK/NF-κB
Pathway in Mouse Pulmonary Epithelial Cells. Exp. Ther. Med. 2020, 20, 139. [CrossRef]

33. Pu, X.J.; Li, J.; Zhou, Q.L.; Pan, W.; Li, Y.Q.; Zhang, Y.; Wang, J.; Jiao, Z. Rosiglitazone Inhibits PM2.5-Induced Cytotoxicity in
Human Lung Epithelial A549 Cells. Ann. Transl. Med. 2018, 6, 152. [CrossRef]

34. Lin, C.H.; Tseng, C.Y.; Chao, M.W. Administration of Lactobacillus paracasei HB89 Mitigates PM2.5-Induced Enhancement of
Inflammation and Allergic Airway Response in Murine Asthma Model. PLoS ONE 2020, 15, e0243062. [CrossRef] [PubMed]

35. Donaldson, K.; Stone, V.; Borm, P.J.; Jimenez, L.A.; Gilmour, P.S.; Schins, R.P.; Knaapen, A.M.; Rahman, I.; Faux, S.P.; Brown, D.M.;
et al. Oxidative Stress and Calcium Signaling in the Adverse Effects of Environmental Particles (PM10). Free Radic. Biol. Med.
2003, 34, 1369–1382. [CrossRef] [PubMed]

36. Pereira, G.; Bell, M.L.; Belanger, K.; de Klerk, N. Fine Particulate Matter and Risk of Preterm Birth and Pre-Labor Rupture of
Membranes in Perth, Western Australia 1997-2007: A Longitudinal Study. Environ. Int. 2014, 73, 143–149. [CrossRef] [PubMed]

37. Fu, H.; Liu, X.; Li, W.; Zu, Y.; Zhou, F.; Shou, Q.; Ding, Z. PM2.5 Exposure Induces Inflammatory Response in Macrophages via
the TLR4/COX-2/NF-κB Pathway. Inflammation 2020, 43, 1948–1958. [CrossRef]

38. Grzywa-Celi ´nska, A.; Krusi ´nski, A.; Milanowski, J. ‘Smoging kills’—Effects of Air Pollution on Human Respiratory System. Ann.
Agric. Environ. Med. 2020, 27, 1–5. [CrossRef]

39. Plesca, D.; Mazumder, S.; Almasan, A. DNA Damage Response and Apoptosis. Methods Enzymol. 2008, 446, 107–122. [CrossRef]

40. Ueda, K.; Sakai, C.; Ishida, T.; Morita, K.; Kobayashi, Y.; Horikoshi, Y.; Baba, A.; Okazaki, Y.; Yoshizumi, M.; Tashiro, S.; et al.

Cigarette Smoke Induces Mitochondrial DNA Damage and Activates cGAS-STING Pathway: Application to a Biomarker for
Atherosclerosis. Clin. Sci. 2023, 137, 163–180. [CrossRef]

41. Agami, R.; Bernards, R. Distinct Initiation and Maintenance Mechanisms Cooperate to Induce G1 Cell Cycle Arrest in Response
to DNA Damage. Cell 2000, 102, 55–66. [CrossRef] [PubMed]

42. Salim, S.Y.; Kaplan, G.G.; Madsen, K.L. Air Pollution Effects on the Gut Microbiota: A Link between Exposure and Inflammatory
Disease. Gut Microbes 2014, 5, 215–219. [CrossRef] [PubMed]

43. Sambuy, Y.; De Angelis, I.; Ranaldi, G.; Scarino, M.L.; Stammati, A.; Zucco, F. The Caco-2 Cell Line as a Model of the Intestinal
Barrier: Influence of Cell and Culture-Related Factors on Caco-2 Cell Functional Characteristics. Cell Biol. Toxicol. 2005, 21, 1–26.
[CrossRef] [PubMed]

44. Cachon, B.F.; Firmin, S.; Verdin, A.; Ayi-Fanou, L.; Billet, S.; Cazier, F.; Martin, P.J.; Aissi, F.; Courcot, D.; Sanni, A.; et al.
Proinflammatory effects and oxidative stress within human bronchial epithelial cells exposed to atmospheric particulate matter
(PM(2.5) and PM(>2.5)) collected from Cotonou, Benin. Environ. Pollut. 2014, 185, 340–351. [CrossRef]

45. Zou, Y.; Jin, C.; Su, Y.; Li, J.; Zhu, B. Water soluble and insoluble components of urban PM2.5 and their cytotoxic effects on
epithelial cells (A549) in vitro. Environ. Pollut. 2016, 212, 627–635. [CrossRef]

46. Guo, S.; Gillingham, T.; Guo, Y.; Meng, D.; Zhu, W.; Walker, W.A.; Ganguli, K. Secretions of Bifidobacterium infantis and Lactobacillus
acidophilus Protect Intestinal Epithelial Barrier Function. J. Pediatr. Gastroenterol. Nutr. 2017, 64, 404–412. [CrossRef]

47. Lépine, A.F.P.; de Wit, N.; Oosterink, E.; Wichers, H.; Mes, J.; de Vos, P. Lactobacillus acidophilus Attenuates Salmonella-Induced
Stress of Epithelial Cells by Modulating Tight-Junction Genes and Cytokine Responses. Front. Microbiol. 2018, 9, 1439. [CrossRef]

48. Suzuki, T. Regulation of the Intestinal Barrier by Nutrients: The Role of Tight Junctions. Anim. Sci. J. 2020, 91, e13357. [CrossRef]

49. Er, S.; Koparal, A.T.; Kivanc, M. Cytotoxic effects of various lactic acid bacteria on Caco-2 cells. Turk. J. Biol. 2015, 39, 23–30.
[CrossRef]

50. Systematic Investigation of the Effect of Lactobacillusacidophilus TW01 on Potential Prevention of Particulate Matter(PM)2.5-Induced Damage Using a Novel In Vitro Platform Sioumin Luo and Mingju Chen *

猜你喜歡

活動看板

其他人也看