(PDF) Tresguerres- Fisiologia Humana 3 ed | Maria Vielma - Academia.edu
Fisiología HUMANA NOTA La medicina es una ciencia sometida a un cambio constante. A medida que la investigación y la experiencia clínica amplían nuestros conocimientos, son necesarios cambios en los tratamientos y la farmacoterapia. Los editores de esta obra han contrastado sus resultados con fuentes consideradas de confianza, en un esfuerzo por proporcionar información completa y general, de acuerdo con los criterios aceptados en el momento de la publicación. Sin embargo, debido a la posibilidad de que existan errores humanos o se produzcan cambios en las ciencias médicas, ni los editores ni cualquier otra fuente implicada en la preparación o la publicación de esta obra garantizan que la información contenida en la misma sea exacta y completa en todos los aspectos. Por ello, se recomienda a los lectores que contrasten dicha información con otras fuentes. Por ejemplo y en particular, se aconseja revisar el prospecto informativo que acompaña a cada medicamento que desean administrar, para asegurarse de que la información contenida en este libro es correcta y de que no se han producido modificaciones en la dosis recomendada o en las contraindicaciones para la administración. Esta recomendación resulta de particular importancia en la relación con fármacos nuevos o de uso poco frecuente. Los lectores también deben consultar a su propio laboratorio para conocer los valores normales. 3a Edición Fisiología HUMANA 桴瑰㨯⽢潯歳浥摩捯献潲 J. A. F. Tresguerres • • • • • C. Ariznavarreta • V. Cachofeiro D. Cardinali • E. Escrich Escriche P. Gil-Loyzaga • V. Lahera Juliá F. Mora Teruel • M. Romano Pardo J. Tamargo Menéndez MÉXICO • BOGOTÁ • BUENOS AIRES • CARACAS • GUATEMALA • LISBOA MADRID • NUEVA YORK • SAN JUAN • SANTIAGO AUCKLAND • LONDRES • MILÁN • MONTREAL • NUEVA DELHI SAN FRANCISCO • SINGAPUR • ST. LOUIS • SIDNEY • TORONTO Coordinadora editorial: Marisa Álvarez Editora sponsor: Rosario Femenía Editora de desarrollo: Cristina Sánchez Supervisora de producción: Olga A. Sánchez Navarrete FISIOLOGÍA HUMANA No está permitida la reproducción total o parcial de este libro, su tratamiento informático, la transmisión de ninguna otra forma o por cualquier medio, ya sea electrónico, mecánico, por fotocopia, por registro u otros métodos, sin el permiso previo y por escrito de los titulares del copyright. DERECHOS RESERVADOS © 2005, respecto de la tercera edición, por J.A.F. TRESGUERRES DERECHOS RESERVADOS © 2005, respecto de la tercera edición, por McGRAW-HILL INTERAMERICANA DE ESPAÑA, S.A.U. Edificio Valrealty Basauri, 17, 1.a planta 28023 Aravaca (Madrid) Primera edición: 1992 Segunda edición: 1999 Primera reimpresión: 2000 Segunda reimpresión: 2003 Tercera edición: 2005 ISBN: 84-486-0647-7 Impreso en México 1234567890 Printed in Mexico 09876432105 DIRECTOR JESÚS A. F. TRESGUERRES Dpto. de Fisiología Facultad de Medicina Universidad Complutense de Madrid MADRID DIRECTORES ASOCIADOS CARMEN ARIZNAVARRETA RUIZ Dpto. de Fisiología Facultad de Medicina Universidad Complutense de Madrid MADRID VICTORIA CACHOFEIRO RAMOS Dpto. de Fisiología Facultad de Medicina Universidad Complutense de Madrid MADRID DANIEL P. CARDINALI Dpto. de Fisiología Facultad de Medicina Universidad de Buenos Aires ARGENTINA EDUARD ESCRICH ESCRICHE Unidad de Fisiología Médica Dpto. de Biología Celular, Fisiología e Inmunología Facultad Medicina Universidad Autónoma de Barcelona BARCELONA PABLO GIL-LOYZAGA Dpto. de Oftalmología y Otorrinolaringología Facultad de Medicina Universidad Complutense de Madrid MADRID VICENTE LAHERA JULIÁ Dpto. de Fisiología Facultad de Medicina Universidad Complutense de Madrid MADRID FRANCISCO MORA TERUEL Dpto. de Fisiología Facultad de Medicina Universidad Complutense de Madrid MADRID MARTA ROMANO PARDO Dpto. de Fisiología, Biofísica y Neurociencias Centro de Investigaciones y Estudios Avanzados del Instituto Politécnico Nacional MÉXICO JUAN TAMARGO MENÉNDEZ Dpto. de Farmacología Facultad de Medicina Universidad Complutense de Madrid MADRID v vi COLABORADORES COLABORADORES P. ABREU Escuela Universitaria de Enfermería Facultad de Medicina Universidad de La Laguna TENERIFE R. ALONSO SOLÍS Dpto. de Fisiología Facultad de Medicina Universidad de La Laguna TENERIFE. J. BERNAL Instituto Cajal Consejo Superior de Investigaciones Científicas MADRID E. BLÁZQUEZ FERNÁNDEZ Dpto. de Bioquímica Facultad de Medicina Universidad Complutense de Madrid MADRID A. ÁLVAREZ SÁNCHEZ Servicio de Aparato Digestivo Hospital Clínico Universitario San Carlos Universidad Complutense de Madrid MADRID H. BOURGES RODRÍGUEZ Subdirector División de Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán MÉXICO V. ARCE Dpto. de Fisiología Facultad de Medicina Universidad de Santiago de Compostela SANTIAGO DE COMPOSTELA F. J. CALDERÓN MONTERO Instituto Nacional de Educación Física Universidad Politécnica de Madrid MADRID A. ARANDA Instituto de Investigaciones Biomédicas Consejo Superior de Investigaciones Científicas Universidad Autónoma de Madrid MADRID A. ARTIGAS Dpto. de Fisiología Aplicada Instituto Universitario Parc Taulí Universidad Autónoma de Barcelona BARCELONA N. M. ATUCHA Dpto. de Fisiología Facultad de Medicina Universidad de Murcia MURCIA C. CAPUTO Centro de Biofísica y Bioquímica Instituto Venezolano de Investigaciones Científicas CARACAS, VENEZUELA C. CARAMELO Dpto. de Medicina Facultad de Medicina Universidad Autónoma de Madrid Laboratorio de Nefrología Fundación Jiménez Díaz MADRID J. A. CARBONELL DI MOLA Servicio de Nefrología Fundación Jiménez Díaz MADRID J. A. BARBERÁ MIR Servicio de Neumología Hospital Clínico y Provincial Facultad de Medicina Universidad de Barcelona BARCELONA R. CARRÓN DE LA CALLE Dpto. de Farmacognosia y Farmacodinamia Facultad de Farmacia Universidad de Salamanca SALAMANCA C. BELMONTE MARTÍNEZ Dpto. de Fisiología Facultad de Medicina Universidad Miguel Hernández ELCHE, ALICANTE C. CASTILLO ROBLES Dpto. de Fisiología Facultad de Medicina Universidad Complutense de Madrid MADRID COLABORADORES C. CERVERÓ Dpto. de Fisiología Facultad de Medicina Universidad de Alcalá de Henares MADRID J. DEVESA MÚGICA Dpto. de Fisiología Facultad de Medicina Universidad de Santiago de Compostela SANTIAGO DE COMPOSTELA J. A. COSTOYA Dpto. de Fisiología Facultad de Medicina Universidad de Santiago de Compostela SANTIAGO DE COMPOSTELA M. DÍAZ RUBIO Servicio de Patología Digestiva Dpto. de Medicina Hospital Clínico Universitario San Carlos Universidad Complutense de Madrid MADRID M. DE LA FUENTE Dpto. de Fisiología Animal II Facultad de Ciencias Biológicas Universidad Complutense de Madrid MADRID N. DE LAS HERAS Dpto. de Fisiología Facultad de Medicina Universidad Complutense de Madrid MADRID A. DEL ARCO Dpto. de Fisiología Facultad de Medicina Universidad Complutense de Madrid MADRID J. M. DELGADO GARCÍA División de Neurociencias Departamento de Fisiología y Biología animal Facultad de Biología Universidad Pablo de Olavide SEVILLA J. L. DELGADO LAMAS Hospital de Especialidades Centro Médico Nacional de Occidente Instituto Mexicano del Seguro Social (IMSS) MÉXICO E. DELPÓN MOSQUERA Instituto de Farmacología y Toxicología Facultad de Medicina y CSIC Universidad Complutense de Madrid MADRID J. DESOLA-ALA CRIS Dpto. de Medicina Unidad de Terapéutica Hiperbárica Hospital de la Cruz Roja BARCELONA vii M. DVORKIN Dpto. de Fisiología Facultad de Medicina Universidad de Buenos Aires ARGENTINA A. ESCALONILLA Centro de Patología de la Mama Fundación Tejerina MADRID F. ESCOBAR DEL REY Unidad de Endocrinología Experimental Instituto de Investigaciones Biomédicas, CSIC Universidad Autónoma de Madrid MADRID M. ESCUDERO GONZÁLEZ Profesor Titular de Fisiología Facultad de Biología Universidad de Sevilla SEVILLA I. FERNÁNDEZ-TRESGUERRES HERNÁNDEZ-GIL Facultad de Odontología Universidad Juan Carlos 1.º de Madrid MADRID J. FERRER SANCHO Servicio de Neumología Hospital Universitario Vall d’Hebron BARCELONA E. GARCÍA Centro de Investigaciones Biomédicas Facultad de Medicina Universidad de Colima MÉXICO J. GARCÍA ESTAÑ Dpto. de Fisiología Facultad de Medicina Universidad de Murcia MURCIA viii COLABORADORES O. S. GERSHANIK Dpto. de Neurología Facultad de Medicina Universidad de Buenos Aires ARGENTINA X. LÓPEZ KARPOVITCH Dpto. de Hematología y Oncología Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán MÉXICO F. GONZÁLEZ Dpto. de Fisiología Facultad de Medicina Universidad de Santiago de Compostela SANTIAGO DE COMPOSTELA J. M. LÓPEZ NOVOA Dpto. de Fisiología y Farmacología Facultad de Medicina Universidad de Salamanca SALAMANCA N. GONZÁLEZ MANGADO Laboratorio de Fisiopatología Respiratoria Fundación Jiménez Díaz MADRID J. E. MARCO-FRANCO Servicio de Nefrología Hospital Universitario Son Dureta PALMA DE MALLORCA J. HERNÁNDEZ Fundación Renal Álvarez de Toledo MADRID J. MARTÍN PÉREZ Instituto de Investigaciones Biomédicas Consejo Superior de Investigaciones Científicas Universidad Autónoma de Madrid MADRID R. IZAGUIRRE ÁVILA Dpto. de Hematología Instituto Nacional de Cardiología Ignacio Chávez MÉXICO E. H. JAFFE Centro de Biofísica y Bioquímica Instituto Venezolano de Investigaciones Científicas CARACAS, VENEZUELA J. C. LEGIDO ARCE Escuela de Medicina Deportiva Facultad de Medicina Universidad Complutense de Madrid MADRID R. W. LIGHT Vanderbilt University Saint Thomas Hospital Nashville, Tennessee U.S.A. M. T. LLINÁS Profesora Titular Facultad de Medicina Universidad de Murcia MURCIA A. LÓPEZ-CALDERÓN BARREDA Dpto. de Fisiología Facultad de Medicina Universidad Complutense de Madrid MADRID M. LÓPEZ GALLARDO Dpto. de Fisiología Universidad Europea de Madrid MADRID J. M. MARTÍNEZ OROZCO Dpto. de Fisiología Universidad Europea de Madrid MADRID J. A. MARTÍNEZ-VERANO Dpto. de Medicina Hospital Clínico Universitario San Carlos Universidad Complutense de Madrid MADRID M. MAS Dpto. de Fisiología Facultad de Medicina Universidad de La Laguna TENERIFE L. A. MEILLÓN GARCÍA Servicio de Hematología Hospital de Especialidades Centro Médico Nacional Siglo XXI Instituto Mexicano del Seguro Social (IMSS) MÉXICO G. MONREALE DE ESCOBAR Unidad de Endocrinología Experimental Instituto de Investigaciones Biomédicas, CSIC Universidad Autónoma de Madrid MADRID O. A. MORA-NOVARO Dpto. de Fisiología Facultad de Medicina Universidad Complutense de Madrid MADRID COLABORADORES F. MORELL i BROTAD Servicio de Neumología Hospital Universitario Vall d’Hebron Universidad Autónoma de Barcelona BARCELONA L. PALACIOS RAUFAST Dpto. de Bioquímica y Fisiología Facultad de Medicina Universidad de Barcelona BARCELONA A. MORERA Dpto. de Medicina Interna, Dermatología y Psiquiatría Facultad de Medicina Universidad de La Laguna TENERIFE M. PEDEMONTE Dpto. de Fisiología Facultad de Medicina Universidad de la República. Montevideo URUGUAY J. MUÑIZ MURGUÍA Centro Universitario de Investigaciones Biomédicas Universidad de Colima MÉXICO A. L. PERAZA CAMPOS Facultad de Ciencias Químicas Universidad de Colima MÉXICO J. MUÑOZ i GALL Servicio de Neumología Hospital Universitario Vall d’Hebron Universidad Autónoma de Barcelona BARCELONA M. T. MUÑOZ YAGÜE Dpto. de Medicina Servicio de Aparato Digestivo Hospital Universitario 12 de Octubre Universidad Complutense de Madrid MADRID M. G. MURER Consejo Nacional de Investigaciones Científicas y Técnicas Dpto. de Fisiología Facultad de Medicina Universidad de Buenos Aires ARGENTINA D. NAVAJAS NAVARRO Dpto. de Fisiología Facultad de Medicina Universidad de Barcelona BARCELONA B. OREJAS GONZÁLEZ Servicio de Medicina Interna Hospital Clínico Universitario San Carlos Universidad Complutense de Madrid MADRID M. CLARA ORTIZ Dpto. de Fisiología Facultad de Medicina Universidad de Murcia MURCIA F. PÉREZ BARRIOCANAL Dpto. de Fisiología y Farmacología Facultad de Farmacia Universidad de Salananca SALAMANCA J. PÉREZ DE LA SERNA Y BUENO Servicio de Aparato Digestivo Hospital Clínico Universitario San Carlos MADRID F. PÉREZ-VIZCAÍNO Instituto de Farmacología y Toxicología Facultad de Medicina Universidad Complutense de Madrid MADRID J. PIEDRAS ROSS Dpto. de Hematología Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán MÉXICO L. PINILLA JURADO Dpto. de Fisiología Facultad de Medicina Universidad de Córdoba CÓRDOBA S. PRIETO RODRÍGUEZ Dpto. de Medicina Servicio de Medicina Interna Hospital Universitario 12 de Octubre Universidad Complutense de Madrid MADRID ix x COLABORADORES R. PUJOL INSERM Hospital St. Charles Dpto. de Oftalmología Facultad de Medicina Universidad de Montpellier FRANCIA J. F. RABADÁN Centro de Patología de la Mama Fundación Tejerina MADRID A. RUIZ DE LEÓN SAN JUAN Servicio de Aparato Digestivo Hospital Clínico Universitario San Carlos Universidad Complutense de Madrid MADRID J. F. SALAZAR APARICIO Dpto. de Fisiología Facultad de Medicina Universidad de Murcia MURCIA E. REY DÍAZ RUBIO Servicio de Aparato Digestivo Hospital Clínico Universitario San Carlos Universidad Complutense de Madrid MADRID V. SALAZAR NUSSIO Dpto. de Fisiología Facultad de Medicina Universidad Complutense de Madrid MADRID J. ROCA TORRENT Servicio de Neumología Hospital Clínico y Provincial de Barcelona Facultad de Medicina Universidad de Barcelona BARCELONA R. J. SALÍN-PASCUAL Dpto. de Fisiología Facultad de Medicina Universidad Nacional Autónoma de México MÉXICO F. J. RODRÍGUEZ LEGA Médico Residente Hospital Nuestra Sra. de Sonsoles ÁVILA F. J. RODRÍGUEZ RODRÍGUEZ Patología General Dpto. de Medicina Hospital Gregorio Marañón Facultad de Medicina Universidad Complutense de Madrid MADRID G. SAMPOL Servicio de Neumología Unidad del Sueño Hospital Universitario Vall d’ Hebrón Universidad Autónoma de Barcelona BARCELONA J. E. SÁNCHEZ CRIADO Dpto. de Fisiología Facultad de Medicina Universidad de Córdoba CÓRDOBA R. RODRÍGUEZ ROISÍN Servicio de Neumología Hospital Clínico y Provincial de Barcelona Facultad de Medicina Universidad de Barcelona P. SANTISTEBAN Instituto de Investigaciones Biomédicas Consejo Superior de Investigaciones Científicas Universidad Autónoma de Madrid MADRID E. T. ROLLS Dpto. Experimental Psychology South Parks Road Universidad de Oxford OXFORD, INGLATERRA G. SEGOVIA Dpto. de Fisiología Facultad de Medicina Universidad Complutense de Madrid MADRID A. RUIZ DE AGUIAR Servicio de Medicina Interna Hospital Clínico Universitario San Carlos Universidad Complutense de Madrid MADRID C. SEVILLA MANTILLA Servicio de Aparato Digestivo Hospital Clínico Universitario San Carlos Universidad Complutense de Madrid MADRID COLABORADORES M. SOLANAS GARCÍA Unidad Fisiología Médica Dpto. de Biología Celular, Fisiología e Inmunología Facultad de Medicina Universidad Autónoma de Barcelona BARCELONA. J. A. SOLÍS HERRUZO Departamento de Medicina, Servicio de Aparato Digestivo, Hospital Universitario 12 de Octubre, Universidad Complutense de Madrid. MADRID P. TALAMÁS ROHANA Dpto. de Patología Experimental Centro de Investigación y Estudios Avanzados del IPN MÉXICO A. TEJEDOR Servicio de Nefrología Hospital Gregorio Marañón Facultad de Medicina Universidad Complutense de Madrid MADRID A. TEJERINA Centro de Patología de la Mama Fundación Tejerina MADRID A. TEJERINA BERNAL Centro de Patología de la Mama Fundación Tejerina MADRID E. VARA Dpto. de Bioquímica Facultad de Medicina Universidad Complutense de Madrid MADRID D. VATICÓN HERREROS Dpto. de Fisiología Facultad de Medicina Universidad Complutense de Madrid MADRID R. A. VELLUTI Dpto. de Fisiología Facultad de Medicina Universidad de la República de Montevideo URUGUAY M. A. VILLANÚA Dpto de Fisiología Facultad de Medicina Universidad Complutense de Madrid MADRID J. VIÑA Dpto. de Fisiología Facultad de Medicina Universidad de Valencia VALENCIA P. ZARCO† Dpto. de Medicina Hospital Clínico Universitario San Carlos Universidad Complutense de Madrid MADRID xi Contenido FISIOLOGÍA GENERAL Y CELULAR CAPÍTULO 1 Concepto y contenido de la Fisiología. José M. Delgado García CAPÍTULO 2 Fisiología del músculo. Jesús Muñiz-Murguía y Ana Lilia Peraza-Campos 13 Los componentes del sistema nervioso. Daniel P. Cardinali 35 CAPÍTULO 3 2 NEUROFISIOLOGÍA I CAPÍTULO 4 Transmisión sináptica. Carlo Caputo y Erica H. Jaffe 46 CAPÍTULO 5 Sistema sensorial (Sensibilidad somática y visceral). Carlos Belmonte y Fernando Cerveró 72 CAPÍTULO CAPÍTULO 6 7 Sistema motor I. Médula espinal. Tono muscular. Control de la postura y del equilibrio. Generación del movimiento. Mario Dvorkin y Daniel P. Cardinali 104 Sistema motor II. Cerebelo y ganglios de la base. M. Gustavo Murer y Oscar S. Gershanik 121 CAPÍTULO 8 Sistema nervioso autónomo. Esperanza García Martínez 140 CAPÍTULO 9 Fisiología de la vigilia y el sueño. Ricardo A. Velluti y Marisa Pedemonte 149 CAPÍTULO 10 Sistema límbico. José María Delgado García 166 CAPÍTULO 11 Funciones cognitivas. Rafael J. Salín-Pascual 184 NEUROFISIOLOGÍA II CAPÍTULO 12 El sistema visual. Francisco González 200 CAPÍTULO 13 Fisiología del receptor y la vía auditiva. Pablo Gil-Loyzaga y Remy Pujol 217 Sistema vestibular. Miguel Escudero González y José María Delgado García 229 Fisiología del olfato. Orlando A. Mora Novaro y José E. Sánchez Criado 241 Fisiología del receptor y la vía gustativa. Pablo Gil-Loyzaga 254 CAPÍTULO CAPÍTULO CAPÍTULO 14 15 16 xiii xiv CONTENIDO FISIOLOGÍA DE LA SANGRE CAPÍTULO 17 Propiedades de la sangre. Raúl Izaguirre Ávila 264 CAPÍTULO 18 Fisiología del eritrocito. Josefa Piedras Ross 281 CAPÍTULO 19 Hematopoyesis. Xavier López Karpovitch 295 CAPÍTULO 20 Fisiología de los granulocitos. José Luis Delgado Lamas 303 CAPÍTULO 21 Bases celulares y moleculares del sistema inmunitario. Patricia Talamás Rohana 309 Bases funcionales de la respuesta inmunitaria. Mónica de la Fuente del Rey 331 Fisiología de la hemostasia. Luis Antonio Meillón García 347 CAPÍTULO CAPÍTULO 22 23 FISIOLOGÍA RENAL CAPÍTULO CAPÍTULO CAPÍTULO CAPÍTULO CAPÍTULO CAPÍTULO CAPÍTULO CAPÍTULO 24 25 26 27 28 29 30 31 Composición y compartimientos líquidos del organismo. Francisco Javier Rodríguez Rodríguez y Francisco Javier Rodríguez Lega 364 Aspectos anatomofuncionales del riñón. Victoria Cachofeiro, Vicente Lahera y Jesús A. F. Tresguerres 374 Hermodinámica renal y filtración glomerular. Ma. Clara Ortiz, Noemí M. Atucha, Joaquín García-Estañ 380 Manejo tubular del filtrado glomerular. Alberto Tejedor y Victoria Cachofeiro 389 Regulación del volumen y la osmolaridad de los líquidos corporales. Mecanismos de concentración y dilución de la orina. Carlos Caramelo, Jesús Hernández, José A. Carbonell Di Mola 402 Regulación humoral de la función renal. F. Javier Salazar, Victoria Cachofeiro, Vicente Lahera y María T. Llinás 414 Regulación renal del equilibrio ácido-base. José Miguel López Novoa y Fernando Pérez Barriocanal 423 Fisiología de la micción. Julio E. Marco-Franco 432 FISIOLOGÍA DEL SISTEMA CARDIOVASCULAR CAPÍTULO 32 Generalidades del aparato cardiovascular. La célula cardíaca. Juan Tamargo y Eva Delpón 438 CAPÍTULO 33 Propiedades eléctricas del corazón. Eva Delpón y Juan Tamargo 449 CAPÍTULO 34 Bases electrofisiológicas del electrocardiograma. Pedro Zarco 463 CAPÍTULO 35 Mecánica cardíaca. Eva Delpón y Juan Tamargo 477 CONTENIDO CAPÍTULO CAPÍTULO CAPÍTULO 36 37 38 xv La función de bomba del corazón: el ciclo cardíaco. Juan Tamargo y Eva Delpón 485 Aspectos generales del sistema vascular. Francisco Pérez-Vizcaíno y Juan Tamargo 507 Fisiología del endotelio. Vicente Lahera, Natalia de las Heras, Victoria Cachofeiro 520 CAPÍTULO 39 Fisiología del sistema venoso. Juan Tamargo y Rosalía Carrón 528 CAPÍTULO 40 Circulación capilar. Juan Tamargo y Eva Delpón 535 CAPÍTULO 41 Regulación del flujo sanguíneo en los tejidos. Vicente Lahera, Victoria Cachofeiro 545 Regulación de la presión arterial. Vicente Lahera y Victoria Cachofeiro 554 CAPÍTULO 42 CAPÍTULO 43 Circulación coronaria. Juan Tamargo y Eva Delpón 563 CAPÍTULO 44 Circulaciones regionales. Juan Tamargo y Francisco Pérez-Vizcaíno 573 FISIOLOGÍA DEL SISTEMA RESPIRATORIO CAPÍTULO 45 Estructura y función del aparato respiratorio. Joan Albert Barberá 586 CAPÍTULO 46 Mecánica de la respiración. Daniel Navajas y Josep Roca 593 CAPÍTULO 47 Fisiología de la pleura. Richard W. Light y Jaume Ferrer Sancho 605 CAPÍTULO 48 La circulación pulmonar. Antonio Artigas 609 CAPÍTULO 49 Intercambio pulmonar de gases. Roberto Rodríguez Roisin y Nicolás González Mangado 618 Transporte sanguíneo e intercambio periférico de gases respiratorios. Josep Roca 634 CAPÍTULO 50 CAPÍTULO 51 Equilibrio ácido-base. Luis Palacios Raufast 643 CAPÍTULO 52 Regulación de la ventilación pulmonar. Gabriel Sampol 652 Fisiología de la respiración en ambientes especiales. Eduard Escrich Escriche, Montserrat Solas García y Jordi Desola-Ala 663 Fisiología aplicada de la respiración. Ferran Morell i Brotad y Xavier Muñoz i Gall 673 CAPÍTULO 53 CAPÍTULO 54 FISIOLOGÍA DEL SISTEMA DIGESTIVO CAPÍTULO 55 Introducción al aparato digestivo. Cavidad bucal. Isabel Fernández-Tresguerres Hernández-Gil 682 xvi CAPÍTULO CAPÍTULO CONTENIDO 56 57 El esófago. Ángel Álvarez Sánchez, Enrique Rey Díaz-Rubio y Manuel Díaz Rubio 688 El estómago. Antonio Ruiz de León San Juan, Concepción Sevilla Mantilla y Julio A. Pérez de la Serna y Bueno 694 CAPÍTULO 58 Páncreas exocrino. Baltasar Orejas y Ángel Ruiz de Aguiar 703 CAPÍTULO 59 Fisiología de la bilis y de la vía biliar. José A. Solís y María Teresa Muñoz 715 Motilidad del intestino delgado. Antonio Ruiz de León, Concepción Sevilla, Julio Pérez de la Serna y Manuel Díaz Rubio 727 CAPÍTULO 60 CAPÍTULO 61 Secreción y absorción intestinales. Carmen Ariznavarreta 731 CAPÍTULO 62 Intestino grueso. Enrique Rey Díaz-Rubio, Ángel Álvarez Sánchez y Manuel Díaz-Rubio 745 Fisiología hepática. Juan A. Martínez-Verano, Meritxell López Gallardo y Juan Miguel Martínez 750 Nutrición. Héctor Bourges Rodríguez 760 CAPÍTULO CAPÍTULO 63 64 FISIOLOGÍA DEL SISTEMA ENDOCRINO CAPÍTULO 65 Introducción al sistema endocrino: concepto de hormona. Jesús A. F. Tresguerres 794 CAPÍTULO 66 Mecanismos de acción hormonal. Pilar Santisteban y Ana Aranda 803 CAPÍTULO 67 Integración neuroendocrina. José Antonio Costoya y Víctor Arce 824 CAPÍTULO 68 Neurohipófisis. Ma. Angeles Villanúa Bernués 839 CAPÍTULO 69 Hormona de crecimiento. Víctor Arce, Jesús A. F. Tresguerres y Jesús Devesa 847 CAPÍTULO 70 Fisiología de la prolactina. Jorge Martín Pérez 871 CAPÍTULO 71 La glándula pineal. Rafael Alonso, Pedro Abreu y Armando Morera 880 CAPÍTULO 72 La glándula tiroides. Francisco Escobar del Rey, Gabriela Morreale de Escobar y Juan Bernal 890 CAPÍTULO 73 Glándulas suprarrenales. Asunción López-Calderón Barreda 913 CAPÍTULO 74 Páncreas. Elena Vara Ameijeiras 932 CAPÍTULO 75 Hormonas gastrointestinales. Enrique Blázquez 948 CAPÍTULO 76 Control del metabolismo del calcio, fósforo y magnesio. Santiago Prieto 964 CAPÍTULO 77 Fisiología del hueso. Santiago Prieto 981 CAPÍTULO 78 Determinación y diferenciación sexual. Pubertad. Leonor Pinilla 995 CONTENIDO CAPÍTULO 79 xvii Fisiología del eje hipotálamo-hipófiso-ovárico. Jesús A. F. Tresguerres y Carmen Castillo 1007 CAPÍTULO 80 Fisiología del testículo. Jesús A. F. Tresguerres y Verónica Salazar 1024 CAPÍTULO 81 Fisiología del testículo. Dolores Vaticón Herreros 1039 CAPÍTULO 82 Fisiología de la mama. Armando Tejerina, Alfonso Escaloñilla, Antonio Tejerina Bernal y José Francisco Rabadán 1057 INTEGRACIÓN Y ADAPTACIÓN DEL ORGANISMO CAPÍTULO CAPÍTULO 83 84 Control y regulación de la temperatura corporal. Francisco Mora Teruel* 1066 Fisiología del ejercicio. Julio César Legido Arce y Francisco Javier Calderón Montero 1078 CAPÍTULO 85 Estrés. Asunción López-Calderón Barreda 1097 CAPÍTULO 86 Hambre, sed y saciedad. Edmund T. Rolls y Francisco Mora Teruel 1107 CAPÍTULO 87 Ritmos biológicos. Daniel P. Cardinali 1119 CAPÍTULO 88 Fisiología de la respuesta sexual. Manuel Mas 1134 CAPÍTULO 89 Biología del envejecimiento. Jose Viña 1147 CAPÍTULO 90 Envejecimiento cerebral. Francisco Mora Teruel, Gregorio Segovia y Alberto del Arco 1154 * Este capítulo fue originalmente escrito de forma conjunta con el profesor C.V. Grisolfi, que por desgracia falleció en junio del año 2000. Prólogo a la tercera edición Ve su tercera edición el tratado de FISIOLOGÍA HUMANA del Profesor Tresguerres, experto director de una amplia obra que ha acometido con la colaboración de un importante grupo de directores asociados, científicos y clínicos. La Medicina actual se fundamenta en amplias bases anatómicas, biofísicas y bioquímicas, en la fisiología y fisiopatología clínicas, además de en la clínica humana. El saber médico exige la aplicación permanente de los incesantes avances de sus ciencias esenciales, de las cuales la fisiología humana constituye un conjunto prioritario imprescindible. Los tratados de esta disciplina, incluso los grandes Handbuch de Fisiología normal y patológica, han sido en gran medida responsables de la difusión de los conocimientos fisiológicos, y ejemplo de ello son los libros editados en los siglos XIX y XX. Las bases fisicoquímicas, la biología molecular, la genética, la química, en su brillante progresión, propician los cimientos de la Fisiología moderna; y los avances en la fisiología celular y tisular, de la regulación intracelular y del medio interno, fundamentan su actualización. Desde los trabajos y tesis de Claude Bernard, Ludwig, Pavlov y Sherrington, entre otros, de diversas escuelas de Fisiología europeas (también españolas) y americanas, se fueron concretando conceptos sobre funcionamiento celular, intercambios celulares y modificaciones del medio ambiente a nivel de órganos y sistemas. El desarrollo de la fisiología y la fisiopatología ha transcurrido en paralelo a la obtención de hallazgos funcionales, celulares y tisulares. El organismo, como unidad orgánica funcional, cumple sus cometidos unitarios. Las funciones se encaminan a un fin, la integridad y conservación de la vida, y este fin dispone de variados mecanismos de autorregulación. Funciones vitales del organismo vivo se agrupan y suman para cada trabajo en sus múltiples facetas: capacidad de reacción; respuestas de órganos y sistemas vinculadas al individuo, al ser vivo animal y humano que siente, padece y sufre; nivel consciente en el hombre y, a su vez, suma resultante funcional de cada una de sus parcelas, función unitaria superior y el nivel más elevado de la fisiología que más y mejor debemos y se pretende conocer. Pero el organismo no es sólo adición de partes, sino peculiar integración entre ellas, subordinadas e interrelacionadas para conseguir mantener las funciones vitales, la vida y la salud. La actividad celular y tisular, de órganos y sistemas, constituye la función y el conocimiento esencial de la Fisiología, que debe llegar al entendimiento de sus mecanismos últimos aprovechando variados métodos analíticos. De ahí que un tratado de fisiología humana conste de capítulos generales —Fisiología general y celular—, y de otros especiales, como aquellos sobre fisiología del sistema nervioso —neurofisiología I y II—, de la sangre, del riñón, del sistema cardiovascular, de los aparatos respiratorio y digestivo, sobre metabolismo y sistema endocrino. Se ha concedido peculiar importancia y gran interés, por original, a la sección que glosa la integración y adaptación del organismo, parte fundamental de la fisiología, que incluye capítulos dedicados al estudio de la temperatura corporal, el ejercicio, el hambre y la saciedad, así como las funciones vitales y reproductivas, el envejecimiento y los diversos ritmos biológicos. El tratado de Fisiología Humana del Prof. Tresguerres mantiene una directriz fundamental que permite, con la profundidad necesaria, la conexión entre fisiología y fisiopatología, en ausencia de espacios vacíos sino, al contrario, con una lógica transicional. Su lectura, desde la perspectiva de la patología clínica, permite enjuiciar que se trata de un libro completo, al contener todo lo que debe ser conocido para fundamentar correctamente los fenómenos patológicos. La labor directriz de la obra de FISIOLOGÍA HUMANA del Profesor Tresguerres es encomiable, desde el momento mismo de su división en apartados y capítulos en los que se insiste, en todo momento, en lo fundamental, destacándolo sobre lo accesorio. Cada capítulo tiene la extensión debida, y en ellos se destaca la relación entre unos y otros, labor por cierto no sencilla, al ser un tratado de multiautoría. La extensión y diversidad de sus capítulos así como la experiencia de sus autores son el mejor fundamento para el conocimiento de la patología y de la clínica, que permitirán modelar el conocimiento de las bases médicas para que, en la actualidad y en el futuro inmediato, se consiga la máxima capacitación del médico para desenvolverse en cualquier campo de la patología. La segunda mitad del siglo XX y los comienzos del XXI han multiplicado los hallazgos fisiológicos trascendentes, rigurosamente enlazados con la patología, de forma tal que la actual formación del médico obliga a tratados como el llamado “Tresguerres”, hoy fundamental e indispensable para el ulterior conocimiento de la Patología. AMADOR SCHÜLLER PÉREZ Presidente de la Real Academia Nacional de Medicina Marzo de 2005 xix Prefacio a la tercera edición En 1992 se editó la primera edición de este libro, en un momento en el que consideramos que el nivel científico de la Fisiología había alcanzado, en los países hispanohablantes, el nivel suficiente como para dejar de depender de la bibliografía anglosajona de la que nos habíamos nutrido durante varias décadas. Reclamábamos entonces la necesidad de ser autosuficientes y de abandonar la colonización científica de que éramos objeto, pues no existía ningún texto en español de estas características. Todos los buenos textos de Fisiología existentes en español habían dejado de cumplir su misión hacía ya muchos lustros. Expresábamos con aquel motivo dos deseos importantes: Primero, que el libro pudiera ser útil a las nuevas generaciones de médicos, veterinarios, farmacéuticos y biólogos de habla hispana y segundo, que esperábamos recibir críticas constructivas de alumnos y profesores que, junto al paso del tiempo, nos permitieran ir mejorando aquella primera edición del libro en sucesivas ediciones. Necesitábamos todo ello para poder ir adecuando poco a poco la obra a los fines para los que había sido escrita. A lo largo del tiempo transcurrido desde entonces, hemos ido consiguiéndolo. La primera edición se fue introduciendo gradualmente en las aulas de universidades no sólo españolas y portuguesas, sino también de países como México, Venezuela, Colombia y, más lentamente, Argentina y Chile. La segunda edición contaba ya con la contribución de editores asociados de Argentina y México y de colaboradores de estos y otros países de Iberoamérica, con lo que consiguió pene- trar todavía más en este continente. Estamos muy orgullosos y somos plenamente conscientes de que a ello han contribuido en gran manera todos los colaboradores de esa parte del océano. En esta tercera edición y continuando con el proceso de mejora gradual del que hablábamos al principio, se han reestructurado totalmente con respecto a la segunda los sistemas cardiovascular, excretor, respiratorio y digestivo, que tienen nuevos editores asociados. Se han puesto al día sangre, nutrición, y los sistemas nervioso y endocrino y, en general, se ha continuado con la labor de simplificación y eliminación de todo aquello no estrictamente indispensable sin perder ninguna información pertinente. Se han vuelto a dibujar todas las ilustraciones, renovándose totalmente más del 40% de las mismas e intentando su mejora desde el punto de vista didáctico. Por todo ello esperamos que esta tercera edición, que hemos tratado de adaptar lo más posible a su misión docente en el área de las ciencias biomédicas, siga siendo del interés de los profesores y alumnos de las universidades de España, Portugal e Iberoamérica, y aprovechamos la oportunidad para solicitar a los lectores, tanto docentes como alumnos, que continúen aportando sus críticas constructivas para poder seguir mejorando la obra todavía más en el futuro. J. A. F. TRESGUERRES 2005 xxi Prólogo a la primera edición Para cualquier español atento a la vida de su país, la aparición de este Tratado de Fisiología debe ser motivo de reflexión; y a condición de no quedarse en el hecho de sentirla, también de complacencia. Debe serlo, porque el libro está escrito por españoles, es una obra ampliamente colectiva y se mueve con suficiencia indudable en el nivel a que ha llegado el saber fisiológico. Está, diría Ortega, a la altura de su tiempo. Desde comienzos del siglo XVII –entre 1605 y 1613 fueron publicadas las Opera omnia de Luis Mercado– hasta los años iniciales de nuestro siglo –en 1904 acabó de imprimirse Textura del sistema nervioso del hombre y los vertebrados, de Cajal; en 1916 comenzó la publicación del Tratado de Medicina Interna, de Hernando y Marañón; en 1917 apareció la primera edición de la Patología General de Nóvoa Santos–, ninguna de las disciplinas que integran las llamadas ciencias médicas, desde la anatomía a la patología y la terapéutica, fue tratada al día por médicos españoles, y no pudo, en consecuencia, ofrecer una expresión solvente de lo que el saber relativo a ellas era en el mundo culto. Aquilatando el juicio, ni siquiera las Opera de Mercado cumplían exactamente tal exigencia, porque la doctrina tan bien expuesta en ellas –«el Santo Tomás de la Medicina», llamó Sprengel a su autor– no pasaba de ser el galenismo renovado con que en torno a 1600 se iniciaba en Europa la medicina moderna. He subrayado el carácter ampliamente colectivo de este libro. Su director ha sabido cumplir la regla que desde la segunda mitad del siglo XIX rige la edición de los grandes tratados de Medicina, y en el nuestro va siendo norma incluso para los tratados de volumen medio: la colaboración de varios autores en la ejecución de la empresa. En lo tocante a la Fisiología, esa regla hubo de imponerse, ya en los años veinte, para la confección del monumental Handbuch der normalen und pathologischen Physiologie que dirigieron Bethe y Embden, y tres décadas más tarde para la edición del Handbook of Physiology que patrocinó la American Physiological Association; y con el constante y en ocasiones fabuloso progreso de la investigación fisiológica, necesariamente había de extenderse a la publicación de cualquier texto de fisiología destinado a ser algo más que un epítome o vademécum. Tal ha sido el caso del que ahora se publica. Razón por la cual, y a esto principalmente se refería mi elogio, queda bien patente la elevada calidad científica de nuestros fisiólogos y el considerable número de quienes entre ellos la poseen. Como acontece en otras disciplinas científicas –la bioquímica y la biología molecular, la física, la psicología, varias ramas de la filología–, vamos avanzando en España hacia la meta que varias veces he propuesto: producir la ciencia correspondiente a un país europeo y occidental de cuarenta millones de habitantes. A comienzos del siglo XX, el saber fisiológico era ante todo el conjunto de los tocantes a los distintos órganos y aparatos. Es cierto que varios de los conceptos relativos a la unidad de ese conjunto –cenestesia, medio interno, secreción interna, sistema nervioso vegetativo, esferas cerebrales de asociación– habían sido formulados a lo largo del siglo XIX; pero, como tan oportuna y autorizadamente mostró Pi y Suñer en La unidad funcional (1917) y en Los mecanismos de correlación fisiológica, adaptación interna y unificación de funciones (1920), el fisiólogo de nuestro siglo no podía conformarse con estudiar cada uno de los factores –electrólitos, hormonas, enzimas, impulsos nerviosos– que intervienen en la correlación de órganos y aparatos del organismo; debía esforzarse también por demostrar científicamente cómo la cabal intelección de las distintas funciones particulares exigía tener en cuenta su condición de partes integrales de un todo unitario: una estructura viviente cuya actividad tiene propiedades no reducibles a la suma o la combinación de tales funciones. Lo que en Letamendi no pasó de ser el resultado de una especulación de gabinete –la sentencia en que acuñó la peculiaridad del organismo viviente: multiplex quia vivus, vivus quia unus–, se hizo programa científico en la mente y en la obra, por desgracia inacabada, del gran fisiólogo barcelonés. Ese programa tenía como meta suprema la elaboración de una fisiología humana que además de ser «comparada» (conocimiento de la actividad fisiológica del hombre comparándola metódicamente con la de los animales superiores, y en definitiva con la de todos los restantes animales), fuese también «diferencial» (conocimiento científico y no meramente especulativo de lo que en sí misma es la actividad fisiológica del hombre en cuanto tal hombre); por tanto, el estudio fisiológico de los dos aspectos de esa actividad en que de modo más notorio se manifiesta la especificidad de nuestro organismo, el psiquismo y la conducta. Con ingenio y alguna verdad, mas también con no poca injusticia, juzgó Letamendi la fisiología humana en su tiempo diciendo de ella: «fáltale hombre, sóbrale rana». Con alguna verdad, porque la mayor parte de los fisiólogos de entonces apenas tenían en cuenta, como tales fisiólogos, el psiquismo y la conducta del hombre; aunque no faltaran los que, como Luciani en su magnífico Tratado, procuraban no olvidar las funciones superiores del animal humano. Con no poca injusticia, sin embargo, porque el ingenioso crítico cerraba sus ojos ante lo mucho que la fisiología experimental del siglo XIX –Cl. Bernard, Ludwig, Goltz, Pavlov; anteriores a 1900 fueron los primeros trabajos de éste– habían hecho para que la rana, el conejo, el gato y el perro suministrasen conocimientos científicos de algún modo extrapolables al organismo del hombre. Podía decirse, eso sí, que la fisiología de la rana, el conexxiii xxiv jo, el gato y el perro no es y no puede ser condición suficiente para la edificación de una fisiología específicamente humana, pero ni siquiera entonces podía desconocerse que era y sigue siendo condición necesaria para el buen éxito de tal empresa. Con posterioridad al programa y a la obra de Pi y Suñer, la investigación neurofisiológica, endocrinológica y etológica ha dado importantísimos pasos hacia la recta ejecución de ese empeño, sin duda el más central de cuantos de por vida ilusionaron la mente de nuestro Cajal. Que la vida individual y la vida colectiva del hombre es un continuo movimiento hacia el futuro, una y otra vez nos lo han dicho los filósofos y los historiadores. Pero lo que pasa en el organismo humano –conciencia de lo que él está siendo, impulso hacia delante, prefiguración de lo que él puede ser– cuando ejecuta ese ineludible movimiento, sólo la neurofisiología y la endocrinología más recientes han empezado a decirlo. El conocimiento científico del papel que el lóbulo frontal del cerebro desempeña en la decisión y en la actuación hacia el futuro muestra con elocuencia cómo el saber fisiológico se ha ido haciendo específicamente humano, así comparativa como diferencialmente, en el curso del último medio siglo. No sólo mecanismos de retroalimentación (feedback) actúan en la dinámica del organismo animal; también, como certeramente ha subrayado el neurofisiólogo Pribram, mecanismos de anteroali- mentación (feedforward), recursos para la activa previsión de lo venidero; y del modo más resuelto, hacia el conocimiento de lo que unos y otros son en la vida del hombre, en tanto que vida animal y humana, se dirige buena parte de la compleja fisiología actual, no sólo la del sistema nervioso central; porque todo el organismo actúa, cada sistema y cada aparato a su modo, en la actividad del hombre en su presente y hacia el futuro. Lo mismo podría decirse, si quiere añadirse otro ejemplo, de los fenómenos de adaptación. Vivir es adaptarse sabiamente al presente –de la «sabiduría del cuerpo» habló Cannon– y penetrar innovadoramente en el futuro, y de ello va dando razón científica la fisiología de nuestro siglo. Más explícitamente en los capítulos en que se ha hecho patente la exigencia de humanizar científicamente la fisiología humana, menos en aquellos en que el paso del enfoque comparativo al enfoque diferencial avanza con mayor lentitud, así lo muestra esta excelente obra colectiva de nuestros fisiólogos. Con satisfacción muy viva saludo su aparicion, auguro para ella un rotundo éxito y deseo que, convertida ya en «el Tresguerres», siga enseñando en coediciones sucesivas lo que fisiológicamente es esta maravillosa y terrible realidad que llamamos «cuerpo humano». PEDRO LAÍN ENTRALGO Marzo de 1992 Prefacio a la primera edición Hace ya algunos años que un grupo de profesores procedentes de varias universidades españolas nos planteamos la necesidad de escribir un tratado de Fisiología, por y para hispanohablantes. El nivel científico y docente de la Fisiología ha alcanzado ya en nuestro país un grado suficiente de madurez como para abordar esta tarea, que consideramos necesaria por varios motivos. Primero, porque no era conveniente seguir dependiendo exclusivamente de las traducciones que se venían realizando de los textos anglosajones, algunos excelentes por cierto, porque éstos, o no se adaptaban totalmente a nuestras enseñanzas, o no explicaban algunos temas de forma conveniente o, en cualquier caso, aparecían con información un tanto desfasada en función del tiempo adicional de la edición traducida. Segundo, porque debíamos pasar de una situación de colonización científica a otra de autosuficiencia, como mínimo, o incluso de competencia con los textos anglosajones. Y tercero, porque constituía un reto al que había que hacer frente, por considerar que estábamos en condiciones científicas para afrontarlo. Contando con profesores de las distintas Universidades de España que incluyen no sólo a fisiólogos sino también a farmacólogos e internistas para aquellas materias donde el nivel de investigación fisiológica y fisiopatológica de los grupos así lo hacía aconsejable, se ha elaborado un texto pensado no sólo para los estudiantes de 2.° curso de medicina sino también para los de farmacia, biológicas y veterinaria. En todos los casos, los profesores, que también son investigadores, aportan su experiencia personal en temas que han contribuido a desarrollar con su propio trabajo experimental. Se ha intentado en cada momento mantener una uniformidad descriptiva a pesar de la pluralidad de autores y adaptar las nuevas unidades del sistema S.I. Se ha seguido una metódica expositiva nueva, comenzando por la neurofisiología para continuar después con la sangre y el resto de los sistemas, haciendo en algunos casos pequeñas incursiones en la fisiopatología, cuando ésta nos sirve para comprender mejor los procesos fisiológicos. Se incluye un capítulo sobre nutrición, gran tema olvidado en otros manuales, y también dos capítulos sobre la fisiología hepática, que tampoco aparecen de forma habitual, para terminar con una serie de temas de integra- ción y adaptación del organismo que contribuyen a transmitir al alumno el concepto unitario del mismo que tan necesario es para entender los procesos fisiológicos. El estilo de escritura ha procurado ser sencillo, sin citas en el texto para facilitar su lectura y con gran número de figuras y esquemas a dos colores. Se incluyen referencias al final de cada capítulo, de revisiones actualizadas para ampliar conocimientos y sólo en algunos casos especiales se citan trabajos originales. Aunque la dirección de un tratado de tales características debería haber correspondido a alguien con más años de experiencia, la necesidad de que dicha persona tuviera además que gestionar el proceso editorial y asumir una alta dedicación al mismo hizo que recayese sobre mí. Cada uno de los grandes apartados del libro ha sido coordinado por uno o dos directores asociados elegidos precisamente por ser grandes expertos en el área y que, juntamente con el director, seleccionaron los temas y los autores que debían escribirlo supervisando después también los manuscritos y dibujos para darles la necesaria uniformidad. Vaya pues a ellos el reconocimiento por la excelente labor realizada. La presencia de estos expertos y el gran interés demostrado por la editorial McGrawHill/Interamericana, me han permitido en última instancia asumir el reto de llevar adelante este libro y sólo cabe ya esperar que tenga una buena acogida entre los alumnos de las distintas facultades para los que está pensado. Ninguna obra es capaz de cubrir de entrada todos los objetivos que sus autores se proponen. Algunos temas son quizá demasiado extensos y otros por el contrario podrían ampliarse más. Pretendemos que si hay lugar a sucesivas ediciones estos problemas se puedan ir subsanando, pues es mejor salir adelante con una obra perfectible, que esperar buscando una perfección que sería dificilísimo de conseguir de entrada. Las críticas de profesores y alumnos nos ayudarán (o al menos así lo esperamos) en el futuro para conseguir que este libro pueda ser útil para entender la fisiología a las nuevas generaciones de médicos, biólogos, veterinarios y farmacéuticos de habla hispana. Si conseguimos esto, habremos cumplido con creces nuestro objetivo. J. A. F. TRESGUERRES 1992 xxv Dedicado a la memoria de mi madre PA RT E FISIOLOGÍA I GENERAL Y CELULAR CAPÍTULO 1 Concepto y contenido de la Fisiología. CAPÍTULO 2 Fisiología del músculo. CAPÍTULO 3 Los componentes del sistema nervioso. Capítulo 1 Concepto y contenido de la Fisiología José M. Delgado García        INTRODUCCIÓN CONCEPTO DE FISIOLOGÍA CARACTERÍSTICAS BÁSICAS DE LOS SERES VIVOS EQUILIBRIO BIOLÓGICO REGULACIÓN E INTEGRACIÓN A PROPÓSITO DE ESTE LIBRO BIBLIOGRAFÍA “Si uno le pide a un químico que trate de averiguar qué es una dinamo, lo primero que hará será disolverla en ácido clorhídrico. Un bioquímico molecular, probablemente, descompondría la dinamo en piezas, describiendo cuidadosamente las vueltas del alambre. Si uno tímidamente le sugiriera que la fuerza que mueve la máquina es, tal vez, un fluido invisible, la electricidad, desplazándose a través de ella, el bioquímico molecular nos rechazaría, calificándonos de vitalistas” A. Szent-Györgyi, Bioelectronics, 1968 2 CONCEPTO Y CONTENIDO DE LA FISIOLOGÍA INTRODUCCIÓN La especie humana es espectadora maravillada y única, tal vez, de todo lo que existe. En ausencia de los mecanismos cerebrales que hacen posible el estado consciente, el cosmos sería un teatro inmenso y cambiante, pero sin espectadores. Con la ayuda de muy diversas ciencias (Astronomía, Matemáticas, Física, Geología) podemos reconstruir a grandes rasgos los cambios ocurridos en el Universo durante miles de millones de años, hasta llegar al momento actual. Todo cambia y, en esto, los seres vivos no somos una excepción. Desde sus inicios hasta el presente, la vida ha ido desenvolviéndose en un espacio de la corteza terrestre que denominamos biosfera. El tema central que integra todos los conocimientos actuales en el ámbito de la Biología es la evolución. Los organismos vivos que contemplamos hoy son el resultado de un proceso de génesis, modificación y selección ocurrido a lo largo de más de tres mil quinientos millones de años. Por su parte, el conocimiento más preciso y elaborado que hemos adquirido hasta este momento sobre los seres vivos es el de la naturaleza molecular de la herencia. Frente a esto, los grandes retos de la Biología de nuestro tiempo son los que nos plantean el desarrollo y la cognición. El desarrollo es el mecanismo mediante el cual se forma un ser vivo de una extraordinaria complejidad estructural y funcional a partir de la información contenida en el genoma de su especie. A su vez, el proceso cognitivo es el fruto de la actividad cerebral, y su estudio representa, con toda probabilidad, la última frontera a la que ha de acceder la ciencia del siglo XXI. Así pues, el estudio experimental de cómo funciona el organismo humano, sobre todo en lo que respecta a los procesos que hacen posible las funciones superiores del cerebro, es objeto de interés particular y se sitúa en los límites de las teorías del conocimiento. Dado que nuestro cerebro está construido con el mismo material que compone el Universo, parece razonable que si somos capaces de entender éste también con el tiempo entenderemos aquél. ¿Qué papel representa o cuál es el sitio de la Fisiología en el estudio de los seres vivos? Aristóteles llamó fisiólogos a los seguidores de la escuela filosófica de Mileto, porque éstos pensaban que todo lo que existe (ph_sis: naturaleza, lo que surge o brota) está insuflado por un idéntico espíritu creador y, más importante, que la Naturaleza es inteligible (lógos: tratado, razón) por el ser humano. Desde una perspectiva contemporánea, la Fisiología trata de explicar la lógica funcional del estado viviente. En palabras de B. A. Houssay, “la Fisiología es la ciencia que estudia los fenómenos propios de los seres vivos y las leyes que los rigen”. El fisiólogo se acerca a los seres vivos armado de una pregunta elemental y repetida: ¿cómo funciona? El lector tendrá noticia de cómo otras ciencias de la vida (Biofísica, Biología Molecular, Bioquímica) tratan de explicar los procesos celulares, subcelulares y macromoleculares que subyacen a los fenómenos vitales. El fisiólogo debe ofrecer una perspectiva de conjunto. Los seres vivos no sólo nos sorprenden por su complejidad, sino también por su individualidad, por su delimitación morfo- 3 funcional del entorno en el que viven. Los biólogos moleculares utilizan sus poderosas herramientas experimentales para desentrañar y reducir a partes inteligibles el complejo entramado que es un ser vivo. Si el leitmotiv de la Biología es la evolución, el de la Biología molecular es explicar cómo las interacciones entre biomoléculas producen el estado viviente. La Fisiología se ocupa de dos aspectos en particular no mencionados hasta aquí: la regulación y la integración. Se trata de entender cómo se coordinan e integran todos los procesos vitales para dar lugar a un ser vivo individualizado capaz de interaccionar con sus semejantes y con su entorno animado o inerte. En las páginas que siguen se presenta el armazón conceptual en que se apoya la Fisiología del momento y algunos aspectos históricos de interés. Se presenta también una visión integradora de los conceptos actuales sobre los seres vivos y sobre el objeto de estudio de la Fisiología, esto es, los procesos fisiológicos. Por último, se delimitan las nociones de equilibrio biológico, regulación e integración que pueden ser muy útiles al lector como marco de referencia para relacionar y unificar el variado contenido que le ofrece una obra de esta naturaleza. CONCEPTO DE FISIOLOGÍA En su significado actual, el término fisiología fue usado por vez primera por J. Fernel en 1542, en el sentido de conocimiento y estudio de la naturaleza viva; a partir de entonces el término se aplicó al estudio de las actividades vitales de individuos humanos sanos. La ciencia de la Fisiología se conformó a lo largo del siglo XIX, desde el punto de vista experimental y conceptual. En ese siglo se crearon importantes centros para el estudio científico de las funciones de los seres vivos, se publicaron elaborados compendios de los conocimientos fisiológicos de la época y se comenzaron a publicar revistas de la especialidad, muchas de las cuales han llegado hasta nuestro tiempo. ¿Qué estudia la Fisiología? El concepto actual de fisiología es en parte similar al expresado por C. Bernard hace más de cien años. En general y para la mayoría de los autores, la Fisiología es la ciencia que estudia los procesos fisicoquímicos que ocurren en los seres vivos y entre éstos y su entorno. De acuerdo con lo señalado, el peso específico de lo que es Fisiología recae sobre el término proceso. Un bioquímico también estudia los fenómenos vitales de los seres vivos desde una perspectiva química y un biofísico hace algo parecido desde una perspectiva física. Y, sin embargo, la Fisiología no es una suma o integración de Bioquímica y Biofísica. Al fisiólogo le interesa el carácter dinámico y funcional de lo que ocurre en los seres vivos. Aquí se entiende por proceso las fases sucesivas de un fenómeno. Por lo tanto, un proceso fisiológico es una sucesión de estados diferentes, y lo que cambia a lo largo de él recibe el nombre de flujo. 4 FISIOLOGÍA GENERAL Y CELULAR ¿Qué se entiende por proceso fisiológico? La Fisiología estudia los flujos de materia, cargas, energía e información que de forma continua, rítmica o transitoria ocurren en los seres vivos y en las relaciones de éstos con el mundo circundante. Cualquier ejemplo que se piense de un fenómeno fisiológico (respiración, filtración glomerular, absorción intestinal, comunicación intercelular) es un flujo en sus últimas consecuencias (flujo de oxígeno y anhídrido carbónico; flujo de sodio, potasio y agua; flujo de glúcidos, lípidos y prótidos; flujo de mensajes químicos). Los procesos fisiológicos se mantienen durante toda la vida del individuo o, al menos, durante fases específicas de ésta. Son, además, procesos que nunca llegan al equilibrio que, por ejemplo, se alcanza en un tubo de ensayo, ya que esto significaría la desaparición de su función y, en muchos casos, la muerte del individuo. El concepto de flujo conlleva dos aspectos relacionados entre sí. En primer término, la presencia de un flujo de materia, cargas o energía supone la existencia de una estructura molecular (por ejemplo, una membrana plasmática semipermeable) como elemento espacial necesario para el mantenimiento del gradiente que lo haga posible. Sin embargo, de acuerdo con el segundo principio de la Termodinámica, ni gradientes ni estructuras pueden mantenerse espontáneamente en un Universo en desorganización. Por tanto, un flujo supone también, en segundo término, la presencia de una fuente de energía metabólica (fundamentalmente el adenosín-trifosfato, ATP, que proviene en última instancia de los alimentos ingeridos) encargada de crear y mantener el gradiente necesario y la estructura a través de la que el flujo tiene lugar. Por ejemplo, para mantener un gradiente adecuado de oxígeno en los alvéolos pulmonares y facilitar su paso a la sangre a un ritmo suficiente es necesario consumir energía no sólo en los movimientos respiratorios, sino también en el mantenimiento continuado de la estructura alveolar, de la síntesis de glóbulos rojos y hemoglobina, etc. Que el balance neto de tan complejas relaciones funcionales sea rentable a los organismos es una de las consecuencias del admirable orden biológico que los caracteriza. De lo dicho se deduce que la Fisiología posee una connotación funcional, referente a la presencia de gradientes, flujos y estados estables de desequilibrio y una connotación estructural, referente a la existencia de membranas celulares, compartimientos y otras especializaciones morfológicas. Ambos significados hacen referencia tanto al organismo en sí, como a las relaciones de éste con su entorno físico (ingesta de alimentos, eliminación de desechos, etc.) y social (exploración, comportamiento agonista, etc.). Conforme avance en la lectura de este libro, el lector advertirá que es difícil imaginar un proceso fisiológico en el que no intervenga una estructura determinada, un gradiente creado a su través y una fuerza conjugada que lo mantiene en estado estable; la existencia de flujos transitorios, cíclicos o continuos, es la consecuencia de esta situación. Tal es el núcleo diferenciador de la Fisiología como ciencia experimental. Sin embargo, como se apuntó en la Introducción, en esta ciencia es fundamental una perspectiva integradora. Y ello no sólo porque su objetivo comprende también el estudio de los procesos de regulación e integración en el organismo completo. La razón principal es que los procesos fisiológicos, aunque se pormenorizan por razones experimentales o didácticas, sólo adquieren un significado biológico cuando se consideran en el organismo completo. El organismo es un todo individual, separado por su envoltura epidérmica del medio físico que le rodea y, al tiempo, en continuo contacto con él. Todo en el organismo está en renovación continua: los flujos, los gradientes, las estructuras, e incluso las biomoléculas y otros materiales inertes que forman dichas estructuras o que constituyen gradientes y flujos. Y, sin embargo, el organismo se mantiene individualizado como tal durante todo su proceso vital (Fig. 1.1). CARACTERÍSTICAS BÁSICAS DE LOS SERES VIVOS Dado que la Fisiología estudia las características funcionales de los seres vivos, parece conveniente si no definir, al menos delimitar los rasgos principales que los caracterizan. La materia existe en diversos estados de organización: partículas elementales, átomos, moléculas, agregados moleculares, biomoléculas, orgánulos celulares, células, tejidos, órganos y aparatos, organismos y sociedades. A partir de un cierto grado de complejidad, pero en un punto no definido de entre los diversos estados de agregación de la materia, se considera que ésta tiene una propiedad que caracteriza a los seres vivos. El origen de la vida En la actualidad, se acepta que la vida se originó en los océanos de hace unos 3500 millones de años. En esa sopa primordial es factible que hubiese abundancia de moléculas relativamente complejas (aminoácidos, nucleótidos, etc.) capaces de polimerizarse y formar cadenas moleculares (péptidos, polinucleótidos, etc.) precursoras de las biomoléculas observables en la actualidad. La escasa disponibilidad de oxígeno en esas etapas geológicas hacía viable la acumulación de tales sustancias. Para que las moléculas puedan interaccionar entre sí es necesaria su proximidad física (a lo que se opone la fuerza de disipación del solvente) y la presencia de catalizadores. En ese momento fue primordial la existencia de moléculas anfóteras capaces de formar cúmulos en el medio acuoso y de delimitar un espacio interno hidrofóbico y una superficie hidrofílica en contacto con el agua. Parece que la bicapa lipídica que caracteriza a la membrana plasmática celular ha tenido una participación crucial en el origen y la perpetuación de la vida tal y como la conocemos hoy. En el interior de estas vesículas las sustancias prebióticas habrían podido interactuar y concentrarse; alguna de ellas incluso CONCEPTO Y CONTENIDO DE LA FISIOLOGÍA 5 La separación de funciones y su especialización durante el transcurso de la evolución ha ido ligada a la creación de compartimientos. El paso de procariotas a eucariotas supuso un aumento del orden interno celular, con la definición y delimitación de espacios subcelulares y con una adecuada separación del núcleo celular, como elemento gestor del comportamiento celular, pero definitivamente separado del mundo exterior. Los seres multicelulares hasta el hombre repiten, de modo extremadamente complejo, el mismo esquema. Aunque un ser humano está formado por más de 1014 células, la piel delimita un medio interior, separado del entorno y regulado de modo activo para mantenerlo estable. Además, existe asimismo un mundo interior, representado fundamentalmente por el cerebro, encargado de elaborar estrategias y comportamientos con los que adecuarse al siempre cambiante entorno; no obstante, en esta situación, el elemento gestor está también aislado del medio externo, con el que se comunica a través de los receptores sensoriales y sobre el que actúa con los distintos tipos de efectores, en particular, con el músculo estriado. ¿Qué es la vida? Figura 1.1. La báscula habitable y la determinación experimental de algo que no se siente. El médico veneciano Santorio Santorio (1561-1636) fue uno de los iniciadores de la experimentación fisiológica introduciendo el uso de sofisticados instrumentos de medida como el que aquí se ilustra. Fue pionero en el estudio de los procesos metabólicos. Su contribución más importante fue la descripción de la perspiración insensible, es decir, la transpiración que ocurre constantemente a través de la piel y que, al contrario que la sudoración, no es percibida por el individuo. pudo comenzar a representar el papel de catalizador. Al tiempo, la formación de cadenas estables de ácido desoxirribonucleico (ADN) haría posible la multiplicación celular, manteniéndose así el principio fundamental de que el ser vivo siempre está delimitado físicamente con respecto a su entorno, manteniendo en su interior los códigos funcionales para sobrevivir y reproducirse, pero, al mismo tiempo, capturando de su alrededor los elementos materiales necesarios para su supervivencia. En la Tabla 1.1 se muestra un resumen de los atributos fundamentales que, según doce prestigiosos fisiólogos, bioquímicos, genetistas y filósofos de los siglos XIX, XX y XXI, caracterizan a la materia viva. Del análisis detenido de dicho cuadro se pueden extraer interesantes conclusiones. En primer lugar, a pesar de que más de cien años separan al primer autor mencionado del más reciente, la relación de características fundamentales de los seres vivos propuestas por los doce autores seleccionados es bastante reiterativa y puede resumirse en: reproducción, nutrición, organización, crecimiento, propósito específico, excitabilidad y motilidad, y, por último, adaptabilidad. Es curioso que los autores incluidos en el cuadro más alejados de las ciencias de la vida (filósofos, matemáticos y físicos) son los que señalan como específicos de los seres vivos tres aspectos que no parecen llamar la atención de sus compañeros, más próximos por su formación a la Biología. Los tres aspectos mencionados son la excitabilidad, la motilidad y la capacidad de adaptarse al medio circundante. Los fisiólogos clásicos (J. Loeb, J. B. S. Haldane) al describir las propiedades fundamentales de los seres vivos hacen hincapié en su capacidad para sintetizar materiales específicos a partir de otros materiales inespecíficos y más desorganizados. En cambio, los biólogos moleculares y genetistas destacan más los aspectos relacionados con las biomoléculas y con los mecanismos de multiplicación y herencia con modificación. En resumen, puede que de todos los intentos indicados para describir las propiedades fundamentales de los seres vivos, la síntesis más acertada sea la realizada por C. Bernard: reproducción, nutrición e idea directriz serían para él los elementos característicos y específicos de la materia viva. 6 TABLA 1.1. CARACTERÍSTICAS ESENCIALES DE LOS SERES VIVOS SEGÚN DIVERSOS AUTORES F. Engels (1878) C. Bernard (1878) Filósofo Fisiólogo de la Naturaleza J. Loeb (1916) J.B.S. Haldane (1939) H. Davson (1962) C.H. Wadington (1968) Fisiólogo Fisiólogo Biofísico Genetista Reproducción Nutrición A.C. Giese (1973) A.L. Lehninger (1975) J. Maynard Smith (1986) Biólogo molecular Biofísico Bioquímico Reproducción Información Invariancia Reproducción Autorreplitransferible reproductiva cación por herencia Síntesis de material específico Nutrición Organización Idea directriz Teleonomía Crecimiento Crecimiento Irritabilidad Excitabilidad Adaptación Motilidad Morfogénesis autónoma Transformación de la energía D.E. Koshland Jr (2002) Evolucionista Fisiólogo teórico Biólogo molecular Multiplicación y herencia con variación Reproducción Programa Renovación constante de componentes Energía Organización Partes con funciones específicas Auto-organización Propósito específico Mantenimiento Improvisación de forma y y Regenefunción. ración Regeneración Crecimiento Crecimiento y desarrollo Respuesta al medio Adaptación Compartimentación y Seclusión Adaptabilidad GENERAL Y CELULAR ManteniTransformiento de mación de una estrucla energía tura específica F.E. Yates (1993) FISIOLOGÍA Autorregulación (asimilación y desasimilación J. Monod (1971) CONCEPTO Y CONTENIDO DE LA FISIOLOGÍA Una perspectiva integradora Desde una perspectiva termodinámica, los seres vivos son sistemas abiertos en continuo intercambio de materia, energía e información con el medio que les rodea; se encuentran por tanto en un estado de desequilibrio permanente (estado estable) sometidos a un proceso continuo de renovación de todos los materiales que los forman, sin por ello perder su identidad. La constante de equilibrio del estado estable es siempre distinta de la constante pasiva del sistema del que forma parte. En estado inerte, el sistema caerá a su constante de equilibrio pasiva. La vida no es, pues, la instauración o el mantenimiento de un equilibrio, sino el continuo mantenimiento de desequilibrios. Otra característica fundamental de los seres vivos es que están más organizados que el medio que les rodea y que mantienen esa situación a lo largo de sus vidas. Para ello presentan niveles sucesivos (genético, conductual y abstracto) de adaptación al medio externo. No son, por otra parte, máquinas automáticas que respondan de modo pasivo y reflejo a los estímulos del entorno, sino más bien entidades capaces de resolver problemas de modo activo y con soluciones adaptadas e inesperadas. Los seres vivos unicelulares están muy limitados al espacio físico que les rodea, pero los animales multicelulares son grandes exploradores de su entorno, y se adaptan a muy diversos nichos biológicos. En este sentido, conviene recordar que el comportamiento de los animales y del hombre no sólo funciona para eliminar tensiones, sino que también tiende a crearlas, por motivos más o menos definidos. Estos diversos programas conductuales proceden de su mundo interior y pueden ser modificados de acuerdo con las circunstancias (adaptaciones conductual y abstracta) o mediante herencia con variación (adaptación genética). EQUILIBRIO BIOLÓGICO En el marco conceptual esbozado hasta aquí es más fácil situar el objeto de la Fisiología: el estudio de los estados estables de desequilibrio mantenidos de forma activa en y por los seres vivos. En este apartado se consideran algunos conceptos básicos que ayudarán al lector a entender las líneas maestras de la organización funcional de los animales y del hombre. Orden biológico Hay un cuádruple orden subyacente a la principal característica de los animales, que es, como ya se ha mencionado, la organización. Este orden se manifiesta desde los puntos de vista estructural, funcional, informativo y biológico. El orden estructural hace referencia a las formas, a la compartimentación, a la ordenación espacial de órganos, aparatos y sistemas. El orden funcional hace referencia a la dinámica de los fenómenos vitales, al trasiego continuo de nutrientes y metabolitos. El orden informativo 7 se refiere al flujo de códigos y mensajes. A veces se afirma que la Fisiología se ocupa del estudio de las propiedades energéticas y funcionales de los organismos, mientras la Morfología lo hace de sus formas. Sin embargo, como se apuntó con anterioridad, el orden funcional es irreal (ideal) sin una sustancia material que le sirva de soporte. Por otra parte, la significación de un mensaje, su especificidad o modalidad, depende de la ruta por la que circula, de sus lugares de procedencia y destino, pero no de las características fisicoquímicas del transmisor, mensajero o receptor. Sirva de ejemplo que el neurotransmisor acetilcolina transmite mensajes muy distintos al músculo estriado, al músculo cardíaco y a las neuronas talámicas o corticales. Por tanto, es en el orden biológico en el que ocurren los procesos que aquí se califican de fisiológicos. El orden biológico encierra una adecuación real entre estructura y función y, al tiempo, confiere significado a los mensajes de origen nervioso y endocrino, permitiendo una aproximación completa al estudio de la lógica funcional de los seres vivos. A muy largo plazo el orden funcional incide sobre el estructural, ya que las soluciones biomecánicas viables suelen ser limitadas. Por ejemplo, a lo largo de la evolución el vuelo ha sido inventado en al menos cuatro ocasiones (pterosurios, insectos, aves y murciélagos) y la solución fue siempre la incorporación de extensiones ligeras y movibles colocadas a ambos lados del cuerpo. Significado biológico Un aspecto importante de los procesos fisiológicos es su significado biológico. Todo proceso fisiológico forma parte de una función global, esto es, está integrado en un todo que es el organismo, el ser vivo en el que el proceso tiene lugar. El significado biológico de un proceso fisiológico es, por tanto, el análisis de su contribución al funcionamiento del organismo completo y su sentido dentro del mismo. El análisis del significado biológico de un proceso fisiológico ha de realizarse con gran cautela, ya que se corre el riesgo de incurrir en interpretaciones finalistas. Una actitud teleológica en la explicación de los fenómenos vitales es siempre desaconsejable, sobre todo si se pretenden dilucidar las funciones fisiológicas como si todas poseyesen un sentido preciso y estuviesen orientadas al mejor rendimiento del organismo. La pregunta ¿para qué sirve...? suele ser perniciosa en Fisiología. En primer lugar, puede tener sentido si se aplica, por ejemplo, a un órgano (¿para qué sirve el hígado?), pero carece de él si se aplica a un organismo (¿para qué sirve un elefante?). En cualquier caso, esta cauta actitud al enjuiciar el significado de un proceso fisiológico no supone la inexistencia de un proyecto vital presente en los seres vivos (idea directriz, teleonomía, propósito específico; véase Cuadro 1.1), pero sí un aviso de prudencia. En lo posible, se debe evitar recurrir a las explicaciones finalistas (el sueño existe para recuperarse de la vigilia) y antropomorfas (los elefantes existen para que los niños disfruten en el parque 8 FISIOLOGÍA GENERAL Y CELULAR zoológico), sobre todo, si la función que se estudia se puede analizar y explicar en términos más moderados. Otro aspecto importante relacionado con los seres vivos se puede plantear de este modo: ¿Hay algo particular y específico en la materia viva que la diferencia de la materia inerte (inanimada)? Es una pregunta cuya respuesta no sería unánime entre los fisiólogos contemporáneos, ya que los vitalistas piensan que la materia viva es portadora de propiedades no presentes en la materia inanimada. El vitalismo fue ya duramente refutado por los filósofos materialistas del siglo XVIII, y vuelto a contestar por positivistas y marxistas en los siglos XIX y XX. Quizá hoy está en su punto más bajo de aceptación, pero de un modo u otro siempre impregna el pensamiento biológico o se infiltra en él. Un avance importante de las ciencias biológicas de este siglo ha sido la posibilidad de explicar ciertas funciones con apariencias de propósito o finalismo usando para ello métodos y concepciones propios de la Física y la Química. Por su parte, teóricos de las ciencias biológicas como L. von Bertalanffy no han dudado en explicar las diferentes propiedades de la materia animada y de la inerte a partir de conceptos extraídos de la termodinámica de procesos irreversibles aplicada a los sistemas abiertos. Así por ejemplo, la tendencia a alcanzar un peso determinado en una rata adulta, con cierta independencia de las vicisitudes ambientales, es una propiedad —que este autor denomina equifinalidad— del estado estable que caracteriza a los seres vivos (Fig. 1.2). Aunque recurrir al vitalismo parece hoy innecesario, sigue rondando la cuestión de que los sistemas complejos manifiestan propiedades no deducibles del análisis reduccionista de sus partes. Así, cada nivel de integración de los organismos (biomoléculas, células, tejidos, órganos, aparatos y sistemas, organismo, sociedades) presenta características que le son propias. Por ejemplo, al igual que no se puede deducir el Código Penal de los conocimientos neuropsicológicos de que disponemos, tampoco es aceptable pensar que la conducta maternal se puede reducir a fenómenos descriptibles en los niveles celular y molecular. La clásica afirmación de que el todo es más que las partes, no encierra, pues, ningún misterio inasequible al método experimental; indica más bien que los sistemas complejos compuestos de elementos múltiples y con enormes posibilidades de interacción muestran posibilidades de funcionamiento no fácilmente deducibles del estudio de sus componentes. Por tanto, cada nivel de integración puede presentar principios funcionales difícilmente predecibles desde los niveles inferiores. Esta interpretación es particularmente válida para el estudio y entendimiento de lo que se ha dado en llamar funciones cerebrales superiores, como el aprendizaje, el pensamiento o las emociones. Descripción frente a explicación En este apartado se insiste de nuevo en la importancia de situar los conocimientos fisiológicos en los niveles de PESO CORPORAL (gramos) Reduccionismo, vitalismo y emergentismo a 500 b c 400 1 2 300 10 30 50 70 TIEMPO (días) Figura 1.2. Ilustración del concepto de equifinalidad. La gráfica representa la evolución del peso medio de un grupo de ratas. A partir de la flecha 1, un tercio de los animales se sobrealimentó (a), otro se mantuvo en la dieta normal (b) y otro se mantuvo con una dieta más baja de lo normal. A partir del momento indicado por la flecha 2, se permitió a los tres grupos de animales alimentarse según sus deseos. Nótese que a partir de entonces, los animales sobrealimentados perdieron peso y los infraalimentados lo ganaron hasta alcanzar en ambos casos los valores medios del grupo control. (Modificado de KEESEY RE y cols.: The role of hypothalamus in determining the body weight set point. En: Hunger: Basic mechanisms and clinical implications. Novin D, Wyrwicka W, Bray GA (eds.). Nueva York, Raven Press, 1976:243-255). integración en los que se describen o explican. Los diversos procesos fisiológicos se pueden describir, es decir, señalar lo que son o en qué consisten. Por ejemplo, es posible describir las acciones de la hormona adrenalina en los distintos tejidos o las características eléctricas del potencial de acción. En el primer caso, la descripción es a nivel tisular, en el segundo a nivel celular. Pero ya se ha señalado que lo que importa desde el punto de vista fisiológico es explicar cómo funciona: cómo actúa la adrenalina sobre las células que forman esos tejidos, o cómo diversos tipos de canales iónicos localizados en la membrana plasmática producen el potencial de acción. Nótese que la explicación ocurre según lo dicho en un nivel inferior a aquel en que se realiza la descripción. Para la adrenalina, la descripción es a nivel tisular y la explicación a nivel celular. Para el potencial de acción, la descripción es a nivel celular y la explicación a nivel molecular. Por tanto, existen distintos niveles de explicación. Sin embargo, es muy importante darse cuenta que explicar un mecanismo a nivel celular puede ser muy similar a describirlo a nivel molecular; es decir, lo que es explicación a un nivel es descripción en el nivel subyacente. Para cualquier estadio del conocimiento fisiológico, siempre conviene buscar la explicación correspondiente en el nivel inferior al fenómeno que se describe. Cuanto más profundo sea el conocimiento, más básico será el nivel en el que se puede CONCEPTO Y CONTENIDO DE LA FISIOLOGÍA explicar el mecanismo de un proceso fisiológico determinado. No obstante, como norma general, en la interpretación de cómo funciona un sistema biológico no se pueden saltar impunemente los distintos niveles de integración. Conceptos de medio intracelular, medio interno y medio externo Como se ha sugerido anteriormente, el antecesor común a los procariotas y eucariotas tuvo que disponer de una envoltura o membrana plasmática que delimitase su interior del mar inmenso donde se encontraba. Esto permitiría las interacciones bioquímicas entre elementos almacenados selectivamente en el interior celular, tras su captación del medio extracelular. Ciertos materiales captados del medio externo podrían ser utilizados en la obtención de materiales y energía para los procesos metabólicos. En esta situación, el genoma responsable de la supervivencia de la célula y de su multiplicación queda físicamente separado del medio acuoso en el que las células se encuentran. Hemos de suponer que el medio externo marino permitiría la supervivencia celular, por lo que las células podían interaccionar con su entorno sin estar sometidas a grandes variaciones en la disponibilidad de nutrientes o en otras variables ambientales (pH, temperatura, presión osmótica). Pero hace unos 300-400 millones de años se inició la colonización de la tierra firme por plantas, insectos y anfibios. El medio aéreo terrestre obligó a estas especies al diseño de un medio interno (referido a temperatura, pH, presión osmótica, gases sanguíneos, concentración de determinados iones y disponibilidad continuada de nutrientes) similar en su estabilidad al medio marino de aquella era geológica. Fue C. Bernard a mediados del siglo pasado quien llamó la atención sobre la constancia del medio interno que baña todas las células, frente a la variabilidad de las condiciones observables en el medio externo. El sentido biológico de este medio interno es, pues, ofrecer a todas las células del organismo un medio estable del que toman las sustancias que necesitan y al que arrojan sus productos de desecho, sin que por ello se consuman o acumulen las sustancias, sino que todas se mantienen en las concentraciones necesarias para hacer posible los gradientes y flujos que las células necesitan. Esta capacidad se mantiene incluso frente a grandes variaciones en el medio externo, esto es, en el entorno físico del individuo. No fue sino hasta 1926 cuando un fisiólogo (A. B. Macallum) observó que el medio interno de los animales terrestres presenta una composición iónica similar a la del agua marina. Así, para sobrevivir en la superficie terrestre los seres vivos se vieron en la necesidad de proveerse de una envoltura similar a aquella en la que había surgido la vida. No debe sorprender en demasía al lector esta decisión, porque ahora que se inicia la era de los viajes espaciales, el hombre ha de viajar al espacio envuelto en un medio externo protector que en todo simula la biosfera a la que sus antepasados accedieron hace varios centenares de millones de años. 9 Conceptos de homeostasis y homeocinesis El concepto de medio interno fue decisivo en el desarrollo de la Fisiología del siglo pasado, ya que ofreció una estructura de referencia en la que insertar sucesivos descubrimientos relativos sobre todo a los procesos metabólicos (anabolismo y catabolismo), a la respiración tisular y a las diversas funciones de los sistemas excretores. Asimismo, el medio interno se reveló como un sistema en el que es posible el envío de mensajes químicos de carácter regulador que pueden acceder con prontitud y simultaneidad a todas las células que componen un organismo. La estabilidad del medio interno requiere la presencia de complejos mecanismos fisiológicos que se encargan de mantener las distintas concentraciones o valores dentro de unos límites adecuados para la supervivencia. En los años 30 del siglo pasado, W. B. Cannon propuso el término de homeostasis (de hómoios: parecido y stásis: detención) para indicar la uniformidad y estabilidad del medio interno frente a un entorno siempre cambiante. Sin embargo, para el concepto de proceso fisiológico presentado aquí, el término homeostasis tiene una significación estática referida preferentemente a concentraciones o valores estables, olvidando el carácter eminentemente dinámico de los procesos fisiológicos. Así por ejemplo, se puede considerar que el valor regulado es una determinada concentración de glucosa en sangre (algo menos de 1 g/L), cuando sería más interesante considerar el flujo continuo a que está sometida la molécula de glucosa, desde los procesos alimentarios y digestivos, pasando por los mecanismos de almacenamiento y liberación hasta llegar al gradiente mínimo necesario para que esté disponible en las condiciones adecuadas para los distintos tejidos. Este carácter dinámico de lo que se regula realmente (flujos, gradientes) está implícito en el concepto de homeocinesis. REGULACIÓN E INTEGRACIÓN Los procesos fisiológicos están regulados por otros procesos, y todos ellos se integran en la unidad que forma cada organismo. Éste, a su vez, interacciona con su entorno, con su medio externo, obteniendo de él los materiales y la energía que necesita para mantener su propia organización interna. Existe pues un continuo contacto y relación entre los fenómenos vitales que se simultanean o suceden en el organismo, y un permanente intercambio entre el organismo y su entorno. De lo dicho se desprende que es un tanto artificial tratar de entender los procesos fisiológicos separados de la totalidad del organismo y, al tiempo, a éste del medio en el que se desenvuelve. Si se hace así es con el fin de explicarlos con mayor sencillez o para estudiarlos con mayor facilidad y mejor control experimental; pero luego (y en ambos casos) hay que reintegrarlos y buscar su significado biológico en la totalidad del ser vivo. Ocurre que, en particular en nuestros días, las técnicas experimentales y el propio diseño de la investigación biológica tienden a usar una aproxima- 10 FISIOLOGÍA GENERAL Y CELULAR ción de arriba→abajo, esto es, buscando casi siempre la explicación molecular de un fenómeno observado a cualquier nivel de integración superior al de las biomoléculas. El trabajo del fisiólogo es, en cierta forma, parecido al de Sísifo, condenado por Zeus a empujar una piedra enorme hasta lo alto de una montaña, la cual rodaba ladera abajo sin remisión, nada más alcanzar la cima. Como ya se ha señalado, el reduccionismo no es la imagen invertida de la integración de conceptos, en particular por la presencia de propiedades emergentes, impredecibles, que sólo se ponen de manifiesto en el funcionamiento del sistema al completo. Regulación intracelular La célula es la unidad morfofuncional básica de los seres multicelulares y, como se indicó con anterioridad, presenta características básicas que se amplifican en los animales superiores. No obstante, téngase en cuenta que un protista (por ejemplo, un paramecio), a pesar de ser unicelular, es capaz de presentar una compleja conducta de interacción con su medio físico, sus semejantes y sus predadores y presas. En concreto, las células ya presentan mecanismos internos de regulación de sus procesos metabólicos que tan vitales serán para los seres multicelulares. Ejemplo de lo que decimos es la presencia de enzimas alostéricos (es decir, con dos estados) susceptibles de ser regulados por la concentración de producto sintetizado por la cadena metabólica de la que el propio enzima es parte inicial. Este sistema regulador de la síntesis de determinados productos intracelulares es una versión simplificada, pero no por ello menos útil, de los sistemas de regulación por retroalimentación negativa que se explican más abajo. Otro ejemplo de regulación intracelular es el descrito en 1959 por F. Jacob y J. Monod en la bacteria Escherichia coli. Estos autores identificaron la presencia de proteínas represoras de la síntesis de determinados enzimas en ausencia de los substratos que justifiquen su actividad. En este caso, se hace una previsión de las necesidades de síntesis de cadenas de enzimas, manteniendo abierta la posibilidad de sus síntesis en función de las disponibilidades de substrato en el entorno de la bacteria. Por otra parte, la célula dispone de transportadores de membrana que regulan la entrada de solutos con o sin carga en su interior, así como de mecanismos para su almacenamiento o utilización. Naturalmente, todos estos procesos activos de creación de gradientes y diferencias se realizan con el consumo de energía metabólica, generalmente en forma de ATP. Regulación del medio interno Así pues, los animales repiten, amplificados y con mayor complejidad, sistemas de regulación y control ya presentes en los seres unicelulares y en las propias células que los integran. Los mecanismos homeostáticos (u homeocinéticos) mantienen la constancia del medio interno por la acción coordinada de muy diversos mecanismos. La mayoría de estos procesos fisiológicos reguladores siguen el diseño de los sistemas de retroalimentación negativa. Cuando el valor de una variable se sitúa por encima o debajo del valor deseado (el cual depende a su vez de otras necesidades y pulsiones) se pone en marcha un mecanismo regulador que, por ejemplo, inhibe su síntesis o la potencia. El lector hallará ejemplos palpables de estos sistemas de regulación en el Capítulo 74, en el que se explica la regulación endocrina de los niveles sanguíneos de glucosa. También encontrará ejemplos detallados de los sistemas de regulación por retroalimentación en los Capítulos 83 y 86, al hablar de la regulación corporal de la temperatura y la ingesta de alimentos y agua. En determinados procesos, como la fase inicial del potencial de acción (Capítulo 4) o los estadios iniciales de la ovulación (Capítulo 88) se ponen en marcha mecanismos de retroalimentación positiva, mediante los cuales se favorece el incremento de un proceso o función. Por ejemplo, una despolarización relativamente pequeña de la membrana plasmática de una célula excitable puede producir la apertura de canales iónicos para el ión sodio, que penetra en la célula siguiendo su gradiente de concentración. La entrada de sodio al interior celular despolariza la célula más todavía, lo que produce la consiguiente apertura de nuevos canales de sodio, etc. Como se indicaba antes para E. coli, los animales disponen también de múltiples mecanismos de previsión de sucesos de probable ocurrencia. Estos mecanismos de anteroalimentación (positiva o negativa) existen desde en las cadenas metabólicas hasta en los procesos de comunicación y coordinación neuronal. Un ejemplo de mecanismo de anteroalimentación es el incremento de la frecuencia cardíaca, y de otros parámetros de la función cardiovascular, en anticipación a un ejercicio físico inminente (véanse Capítulos 42 y 43). Por otra parte, la propia actividad de complejas estructuras nerviosas como el cerebelo parece regirse por la utilización de sistemas de regulación por alimentación anterógrada (véase Capítulo 6); mediante estos mecanismos se hace una previsión de cuál va a ser el estado del sistema neuromuscular inmediatamente después de iniciado un movimiento y se ponen en marcha con antelación órdenes nerviosas correctoras. Aunque normalmente los términos regulación y control se usan como sinónimos, debería reservarse el uso del término regulación para los mecanismos homeostáticos automáticos. La regulación inconsciente del medio interno nos libera de tener que regularlos con mecanismos de atención conscientes, por lo que estos últimos se pueden destinar por completo a los procesos interactivos con el medio externo físico y social. El término control debería utilizarse para hacer referencia a actos conscientes o voluntarios destinados a intervenir en una situación que afecte de un modo u otro a los intereses del individuo. Integración de procesos y funciones Un animal no es un rompecabezas que se pueda reconstruir pieza a pieza, sino un complejo entramado de CONCEPTO Y CONTENIDO DE LA FISIOLOGÍA estructuras y funciones relacionadas en tiempo y espacio a muy diversos niveles de integración. Existen más de 200 tipos celulares diferentes, sin contar los presentes en el sistema nervioso. Estos diferentes tipos celulares cumplen funciones distintas y complementarias, siendo necesario que su contribución se coordine con las necesidades reales del conjunto, esto es, del individuo. Los sistemas nervioso y endocrino son los encargados de regular el conjunto, aunque existen otros muchos sistemas de regulación presentes en el interior de las propias células, en microambientes locales, etc. Además, procesos y funciones se activan o desactivan en función de circunstancias ambientales, condicionamientos sociales, situaciones de emergencia, etc. Principalmente en la última sección de este libro se consideran situaciones del entorno físico, individuales y sociales en las que la compleja maquinaria orgánica interviene como un todo. Rangos funcionales, aclimatación y adaptación Cada variable fisiológica permite una determinada variación en relación con su valor medio. El rango de esta variación depende de muchos factores, y no es igual para todas las variables conocidas. Por ejemplo, el pH sanguíneo acepta muy limitados cambios sobre su valor medio. Otras estructuras presentan un mayor factor de seguridad. El tubo digestivo puede ser resecado hasta casi la mitad de su longitud sin comprometer la supervivencia del individuo. Esto no quiere decir, como se advirtió más arriba, que se pueda interpretar como superfluo en un 50%; baste considerar la considerable mejora en la alimentación humana en los últimos 50 años y la situación alimentaria para nuestra especie hace por ejemplo 5000 años. Pero sí es cierto que los factores de seguridad para determinadas estructuras, funciones y estados son muy diferentes. Existen mecanismos en el organismo que pueden ser activados para aclimatarlo a situaciones ambientales muy distintas de las usuales. Ejemplo típico es el proceso de adaptación a la altitud (véase Capítulo 53). Estos mecanismos pueden ser muy dispares entre sí y ponerse de manifiesto a corto, medio o largo plazos. Por ejemplo, en la regulación de la temperatura corporal intervienen procesos fisiológicos celulares (modificación de la actividad mitocondrial), regionales (vasodilatación, vasoconstricción), mecanismos hormonales (mayor o menor liberación de hormona tiroidea) o el individuo completo (ponerse a la sombra o al sol). El término adaptación debería reservarse para las situaciones en las que se produce un cambio en el genoma de una especie que supone alguna ventaja para los que lo heredan. Tal vez tenga también valor adaptativo la presencia de estructuras y o funciones carentes de sentido biológico. Esta indefinición morfofuncional las hace susceptibles de una utilidad en potencia, si se presenta el caso. 11 A PROPÓSITO DE ESTE LIBRO Por sus orígenes anatómicos y médicos, es tradicional que los manuales de Fisiología Humana se organicen siguiendo los distintos órganos, aparatos o sistemas. En este sentido, este manual no es una excepción. Sin embargo, se encarece al lector que trate siempre de hacer una integración mental de lo que lee, rescatando lo que es funcional de su soporte estructural. Así, las secciones sucesivas dedicadas, por ejemplo, al sistema nervioso, sistema circulatorio y sistema digestivo deben también entenderse en términos de procesamiento de información, transporte, nutrición y metabolismo. Como es lógico, la enorme información disponible acerca de la Fisiología Humana obliga a seguir una sistematización en su presentación, lo que supone un cierto carácter disgregador. No obstante, con la lectura progresiva se irá alcanzando una perspectiva de conjunto. Los datos, descripciones e interacciones localizadas representan primeros planos o breves escenas que sólo toman un sentido completo una vez terminada la lectura completa del libro. Aunque este libro se centra en el estudio de la Fisiología Humana, es evidente que muchos de los datos y mecanismos que en él se describen proceden de estudios experimentales realizados en especies próximas a la nuestra. En realidad, innumerables procesos, funciones y mecanismos son básicamente similares para todas las especies animales. Y en lo referente a las diferencias, siempre se comprenderá de un modo más completo el funcionamiento de nuestro organismo entendiendo cómo funcionan otros seres vivos. Cuando los conocimientos actuales así lo permiten, se ha incluido una descripción de aspectos fisiopatológicos con una doble finalidad: iniciar al lector en el conocimiento de los procesos funcionales subyacentes a distintos procesos patológicos e ilustrarlo sobre las diferentes posibilidades de funcionamiento, anómalo o no, que se manifiestan cuando se altera la integridad funcional del organismo. En numerosas ocasiones, los síntomas característicos de un proceso patológico aparecen cuando se superan los rangos funcionales, desapareciendo al tiempo la capacidad para compensarlos. En este sentido un buen conocimiento de la fisiología de un órgano o sistema puede poner sobre la pista de lo que se avecina; sería como decir que las tendencias van por delante de los hechos. Así pues, actuando con previsión se puede evitar, a veces, la aparición de un síntoma. El libro se ha dividido en diez grandes partes. En la primera (FISIOLOGÍA GENERAL Y CELULAR) se consideran los aspectos básicos que caracterizan a las células excitables, principalmente la neurona y la fibra muscular. Entre los Capítulos 4 a 11 (segunda parte: NEUROFISIOLOGÍA I) se presenta una visión sucinta de los conocimientos básicos existentes acerca del funcionamiento del sistema nervioso, desde los mecanismos de la comunicación neuronal, hasta la organización de los sistemas motores. También se presenta un panorama actualizado de las funciones nerviosas superiores. La tercera parte (Capítulos 12 FISIOLOGÍA GENERAL Y CELULAR 12 a 16; NEUROFISIOLOGÍA II) se destina a la presentación pormenorizada de los distintos sistemas sensoriales que detectan distintas manifestaciones de la energía como fuentes imprescindibles de información para el funcionamiento coordinado del individuo en relación con los acontecimientos de su entorno. La FISIOLOGÍA DE LA SANGRE (cuarta parte) se explica entre los Capítulos 17 y 23. Por su especial interés experimental y clínico, se destinan dos Capítulos (21 y 22) al estudio del sistema inmunitario. El complejo trabajo regulador del equilibrio hidrosalino que realiza el riñón se presenta en los Capítulos 24 a 31 (quinta parte: FISIOLOGÍA RENAL). Una vez explicada la anatomía funcional renal y los mecanismos de filtración, absorción y secreción, se incluye un apartado sobre la fisiopatología de este órgano excretor. El sistema cardiovascular tiene una enorme importancia en la Fisiología y la Patología Humanas. En consecuencia, al estudio de la FISIOLOGÍA DEL SISTEMA CARDIOVASCULAR (sexta parte) se dedica un total de 13 Capítulos (del 32 al 44), comprendiendo desde las propiedades funcionales de la célula cardíaca, pasando por un detallado estudio del corazón como bomba impulsora de la sangre, hasta la explicación pormenorizada de las propiedades funcionales de los distintos tipos de vasos sanguíneos, generales y regionales. La FISIOLOGÍA DEL SISTEMA RESPIRATORIO (séptima parte) se explica entre los Capítulos 45 a 54, considerándose la mecánica respiratoria, los procesos de intercambio gaseoso, el transporte por la sangre de los gases respiratorios y la regulación nerviosa y humoral de la respiración. Por su interés aplicado, se incluye un capítulo sobre la adaptabilidad de la respiración a diversas condiciones especiales. La FISIOLOGÍA DEL SISTEMA DIGESTIVO y la NUTRICIÓN (octava parte) se estudian en los Capítulos 55 a 64. Se presentan paso a paso los distintos estadios de la función digestiva y de los procesos de ingestión, absorción y excreción, así como una visión detallada de los aspectos más importantes desde un punto de vista médico de la nutrición en el hombre. La novena parte (Capítulos 65 a 82) se ocupa de la FISIOLOGÍA DEL SISTEMA ENDOCRINO. El sistema endocrino es el otro gran regulador de las funciones corporales y su conocimiento tiene un doble interés fisiológico y clínico. Los tres primeros capítulos se destinan a explicar una visión pormenorizada de los mecanismos y características de la acción hormonal. Seguidamente se introducen una a una todas las glándulas de secreción interna, con pertinentes comentarios de carácter fisiopatológico o acerca de las técnicas de exploración de la función endocrina. Por último, los mecanismos de INTEGRACIÓN Y ADAPTACIÓN DEL ORGANISMO se exponen en la décima parte (Capítulos 83 a 90). Esta sección se centra en la exposición de diversas funciones que requieren la interven- ción de muy variados sistemas reguladores de los organismos, como la regulación de la temperatura corporal y de la ingestión de alimentos y agua, la fisiología de la respuesta corporal o el papel de los ritmos biológicos en el funcionamiento global de los seres vivos. Recuerde el lector que el fisiólogo es un corredor de fondo. Se requiere tiempo, dedicación y paciencia para tener una visión de conjunto sobre cómo funciona el cuerpo humano. La Fisiología obliga también a un razonamiento sistemático; las respuestas de corte finalista y antropocéntrico suelen despistar. La explicación o entendimiento correcto de un mecanismo no suele ser inmediata y simplista, sino que necesita estudio y elaboración; eso sí, una vez comprendido el proceso fisiológico, la explicación correcta tendrá indudablemente cabida en el espacio de lo razonable. A fin de cuentas, el conocimiento, que es fruto de nuestros procesos mentales, describe la realidad, no se la inventa. BIBLIOGRAFÍA Alberts B et al. Molecular biology of the cell. Nueva York, Garland Publishing, 1994. Bernard C. Introducción al estudio de la Medicina Experimental. Buenos Aires, El Ateneo, 1959. Bertalanffy L von. General system theory. Nueva York, G Braziller, 1973. Boyd Car, Noble D. The logic of life. The challenge of Integrative Physiology. Oxford, Oxford University Press, 1993. Bullock TH. In search of principles in integrative biology. Amer Zoologist, 1965; 5:745-755. Cannon WB. The wisdom of the body. Nueva York, WW Northon and Company, 1963. Darwin CH. The origin of species. Londres, Penguin Classics, 1985. Jacob F. La lógica de lo viviente. Barcelona, Editorial Laila, 1973. Fulton JF, Wilson LG. Selected readings in the history of Physiology. Springfield, Ill, CC Thomas Publisher, 1966. Koshland DE Jr. The seven pillars of life. Science 2002; 295:2215-2216. Maynard Smith J. Los problemas de la Biología. Madrid, Editorial Cátedra,1987. Monod J. El azar y la necesidad. Barcelona, Barral Editores, 1972. Rostand J. Introducción a la historia de la Biología. Barcelona, Editorial Planeta-De Agostini, 1985. Rothschuh KE. History of Physiology. Nueva York, RE Krieger Publishing Company, 1973. Schrödinger E. ¿Qué es la vida? Barcelona, Ediciones Orbis, 1986. Soodak H, Iberall A. Homeokinetics: A physical science for complex systems. Science 1978; 201:579-582. Szent-Györgyi A. The living state. Nueva York, Academic Press, 1972. Wilson JA. Principles of Animal Physiology. Nueva York, MacMillan Publishing Company, 1979. Capítulo 2 Fisiología del músculo Jesús Muñiz-Murguía y Ana Lilia Peraza-Campos     INTRODUCCIÓN MÚSCULO ESQUELÉTICO MÚSCULO LISO BIBLIOGRAFÍA 13 14 FISIOLOGÍA GENERAL Y CELULAR INTRODUCCIÓN Las funciones de movimiento de los seres vivos son ejecutadas por órganos llamados músculos. Existen dos tipos generales: el músculo estriado y el músculo liso. A su vez el primero se clasifica en esquelético y cardiaco (véanse Capítulos 6, 7 y 32). Los músculos esqueléticos son órganos que pueden equipararse a motores flexibles y elásticos que se insertan en palancas rígidas, los huesos, de manera que al contraerse producen el giro de estas palancas a través de las articulaciones, las cuales funcionan como puntos de apoyo. El conjunto de los tres elementos: músculos, huesos y articulaciones, constituye el aparato locomotor, que está bajo control de los sistemas nervioso y endocrino. Los músculos esqueléticos, con base en la velocidad de acortamiento y la resistencia a la fatiga de las fibras que los forman, se clasifican en: 1) músculos rápidos y 2) músculos lentos. Los primeros están formados por un alto porcentaje de fibras de sacudida rápida, y los segundos mayoritariamente por fibras de sacudida lenta. Existe un tercer tipo de fibra, llamada tónica, que no posee el mecanismo generador del potencial de acción, tiene gran resistencia a la fatiga y capacidad para desarrollar tensión finamente graduada. Estas fibras están presentes en algunos músculos de mamífero, por ejemplo en los extraoculares. MÚSCULO ESQUELÉTICO Estructura Arquitectura muscular La arquitectura del músculo esquelético se define como el arreglo (disposición) de las fibras musculares con respecto al eje de generación de la fuerza. La arquitectura muscular incluye: la masa muscular, la longitud de las fibras y el ángulo de plumación o ángulo de inserción promedio de las fibras superficiales respecto al eje longitudinal del tendón. La longitud muscular corresponde a la distancia que hay desde el origen de las fibras más proximales hasta la inserción de las fibras más distales. La longitud de las fibras musculares nunca es la misma que la del músculo completo. Estas mediciones se realizan en músculos fijados en su longitud óptima (L0). El ángulo de plumación determina en los músculos dos tipos genéricos de arquitectura: fusiforme y plumada. En los músculos fusiformes, las fibras se extienden paralelamente al eje de transmisión de la fuerza (por ejemplo el bíceps braquial). Los músculos plumados tienen sus fibras insertadas oblicuamente en el tendón. El ángulo entre las fibras y el eje de transmisión de la fuerza puede ser hasta de 30°. En el músculo sóleo, por ejemplo, el ángulo de plumación es de aproximadamente 25°, mientras que en el vasto medial es de 5°. El ángulo de plumación corresponde al componente de la fuerza generada por las fibras musculares que es transmitida de manera eficaz. La plumación por sí misma resulta en una pérdida de fuerza muscular, pero permite el empaquetamiento de las fibras musculares en los músculos, de ahí la importancia en la medición del área de corte transversal funcional (ACTF). El ACTF permite comparar la capacidad para el desarrollo de tensión de distintos músculos y representa la suma de las áreas de corte transversal de las fibras musculares contenidas en un músculo. Se puede calcular usando la ecuación propuesta por Gans y verificada experimentalmente por Roland Roy y Reggie Edgerton: ACTF  Masa Muscular 3 cos    longitud Fibra donde: Masa Muscular es el peso del músculo en gramos (g), ␳ corresponde a la densidad muscular (1.056 g/cm3 para los músculos de mamífero), ␪ es el ángulo de plumación y longitud Fibra se mide en centímetros (cm) y puede ser sustituida por la longitud del fascículo. De esta manera el ACTF queda expresada en cm2. Consecuencias funcionales de la arquitectura muscular En los músculos fusiformes la velocidad de acortamiento es mayor que en los plumados debido a que poseen fibras musculares largas. En cambio, los músculos plumados son capaces de producir mayor fuerza en comparación con los músculos fusiformes al poseer mayor número de fibras musculares en paralelo, pero tienen menor rango de movimientos que los músculos fusiformes (Fig. 2.1). Por ejemplo, los músculos cuádriceps tienen ángulos de plumación de 4.6°, ACTF de aproximadamente 21.7 cm2 y longitud de las fibras de 68 mm. Esto contrasta con los valores promedio del músculo bíceps femoral, el cual tiene fibras relativamente largas (111 mm), ángulo de plumación de 2.0° y ACTF de 1.7 cm2. En términos de generación de fuerza, los músculos cuádriceps tienen aproximadamente 50% más capacidad que el bíceps femoral, el cual está diseñado para una rápida velocidad de acortamiento. Esto sugiere que el bíceps femoral puede ser susceptible de rasgarse si existe un desequilibrio súbito entre la fuerza ejercida por el cuádriceps y por el bíceps femoral, como ocurre cuando se corre velozmente hacia delante. Los vientres musculares están divididos en compartimientos por una o más bandas fibrosas transversales; por ejemplo: el sartorio tiene cuatro, el semitendinoso tiene tres y el bíceps femoral y el grácil tienen dos. Cada compartimiento tiene su propia inervación y, a menudo, fibras nerviosas individuales inervan a las fibras musculares de compartimientos adyacentes. La inervación compartimentada permite una distribución eficiente de la excitación, que facilita la sincronía de la activación muscular. Es probable que los compartimientos permitan una mejor dis- FISIOLOGÍA LF LF LF LM LM LM LM Velocidad 15 DEL MÚSCULO Fuerza LF Velocidad Fuerza Fibras cortas, # mayor ACTF Fibras largas, # menor ACTF Fuerza muscular, # N 200 150 100 50 0 0 A 50 100 150 Longitud muscular, # mm 200 0 B 50 100 150 200 Velocidad muscular, # mm s-1 Longitud de la fibra Longitud muscular Longitud muscular Área de corte transversal Figura 2.1. Propiedades de la arquitectura muscular en el miembro inferior. En el panel superior se muestran músculos con diferente arquitectura y sus atributos en cuanto a fuerza y velocidad. Los músculos con fibras cortas desarrollan más fuerza en comparación con los músculos de fibras largas pues poseen mayor área de corte transversal funcional (ACTF). En cambio, estos últimos desarrollan mayores velocidades de contracción debido a sus largas fibras musculares. En la parte inferior se muestran dos músculos hipotéticos de la misma longitud y misma cantidad de tejido muscular. Las curvas fuerza-longitud (A) muestran que el músculo fusiforme tiene un rango de trabajo mayor y una menor generación de fuerza máxima comparada con el plumado. Esto es debido a que un cambio dado en la longitud muscular (LM) se distribuye entre más sarcómeros en los músculos fusiformes. La mayor generación de fuerza de los músculos plumados se debe a su mayor ACTF. La curva fuerza-velocidad (B) muestra que el músculo fusiforme desarrolla alta velocidad contráctil pero menor generación de fuerza máxima. (Modificado a partir de: McArdle, et al., 1996.) 16 FISIOLOGÍA GENERAL Y CELULAR tribución entre las fibras musculares de factores neurotróficos producidos por las motoneuronas. Estructura microscópica del músculo esquelético Las técnicas de microscopía electrónica, cristalografía de rayos X, tinción histoquímica y difracción con láser de helio-neón han revelado que existe un acople mecánico y funcional desde el nivel molecular hasta el músculo completo. Membrana celular La membrana celular de las fibras musculares se caracteriza por sus frecuentes pliegues. En la zona de inervación denominada placa motora terminal, estos pliegues son permanentes en comparación con el resto de la superficie de la fibra. También existen numerosas pequeñas invaginaciones de membrana, las caveolae, que están conectadas con la superficie de la membrana por cuellos estrechos; su función es incierta, aunque se cree que pueden actuar como reserva de membrana durante el estiramiento de la fibra. Sarcolema El citoplasma de la fibra muscular o sarcoplasma contiene enzimas, lípidos y partículas de glucógeno, y aloja a los núcleos (aproximadamente 250 por milímetro de longitud de la fibra), las mitocondrias, las miofibrillas, los sistemas tubulares y otros orgánulos especializados. Las miofibrillas son las estructuras más abundantes dentro de la fibra muscular, y son responsables de la contracción y la relajación. Se orientan paralelamente a lo largo de la fibra y están compuestas por tres tipos de filamentos proteicos: los delgados (principalmente formados por actina), los gruesos (principalmente formados por miosina) y los conectores (de titina). La distribución de estos filamentos da lugar a las estriaciones alternantes claras y oscuras observadas a través del microscopio de luz en cortes longitudinales de músculo estriado (Fig. 2.2). Cada miofibrilla mide de 1 a 2 m de diámetro. Entre las miofibrillas se localizan las mitocondrias y los sistemas tubulares: retículo sarcoplásmico y túbulos transversos (túbulos T). Las bandas claras son las bandas I (Isotrópicas) y las bandas oscuras, por su elevado índice de refracción, son las bandas A (Anisotrópicas). La banda I es la región de la fibra donde sólo los filamentos delgados y parte de los filamentos conectores están presentes; la banda A corresponde a la posición de los filamentos gruesos y las otras partes de los filamentos conectores y delgados (Fig. 2.2). Una línea densa corre por toda la mitad de las bandas I; ésta es la línea Z o disco Z (Zwischen = entre). En la parte central de la banda A se localiza la banda H (Hellerscheibe = clara), una región de baja densidad óptica resultado de la ausencia de filamentos de actina. En la mitad de la zona H existe una región oscura, llamada región M (Mittellinie = línea media), que marca el centro del sarcómero. La región M está formada por estructuras proteicas filamentosas que conectan a los filamentos de miosina, mantienen su arreglo y dan un espaciamiento regular entre ellos. Existen otras líneas transversales menos visibles llamadas N (Nebenscheibe: adyacente, y scheibe: sección), las cuales podrían estar relacionadas con la proteína troponina. La porción de una miofibrilla comprendida entre dos líneas Z sucesivas es denominada sarcómero (Fig. 2.2), que en una fibra relajada tiene una longitud de 2.2-2.5 m. El sarcómero es la unidad funcional de la fibra muscular, en él los filamentos delgados de actina y los gruesos de miosina se interdigitan. Un filamento grueso de miosina (150 Å de diámetro y 1.5 m de largo) está rodeado por seis filamentos delgados, cada uno de 50 Å de diámetro y 1 m de longitud (Fig. 2.2). Así, en una fibra muscular de 50 m de diámetro existen alrededor de 8000 miofibrillas con 16.2  109 filamentos gruesos y 64.8  109 filamentos delgados. Los sarcómeros están envueltos por una red de filamentos extrasarcoméricos con uniones en los discos Z que se ligan con el citoesqueleto y forman una superestructura llamada costámero que mantiene las estructuras intracelulares en su lugar (Fig. 2.3). El costámero refuerza el plasmalema por su cara interna para impedir su ruptura durante la contracción y la relajación. Los microfilamentos de actina, espectrina y distrofina son especialmente importantes en este papel. La desmina, la vimentina y la sinemina forman filamentos intermedios que rodean a los discos Z, y también los unen con los discos adyacentes manteniéndolos alineados en el eje transversal; esto produce el arreglo ordenado de todas las miofibrillas dentro de cada fibra muscular. Por medio de proteínas de unión del plasmalema, los discos Z están finalmente conectados a la membrana basal y al endomisio para que la alineación se propague a las fibras vecinas y se establezca un acople mecánico entre las todas las fibras de cada fascículo muscular. Sistemas tubulares: retículo sarcoplásmico (RS) y túbulos transversos (túbulos T) La Figura 1.4 representa los sistemas tubulares de la fibra muscular. Inmersa en el sarcoplasma existe una extensa red de túbulos interconectados conocida como RS que circunda a las miofibrillas y corre a lo largo de la fibra muscular. En el RS se distinguen dos regiones: los túbulos longitudinales y las vesículas o cisternas terminales. La función del RS es almacenar y liberar Ca++. La contracción muscular se produce cuando se libera el calcio desde las cisternas terminales hacia el citosol. Los túbulos T forman la red que se localiza perpendicularmente al eje longitudinal de la fibra muscular y rodea a las miofibrillas con intervalos regulares. En las fibras musculares de mamífero, entre ellas las del ser humano, por cada sarcómero existen dos zonas de túbulos FISIOLOGÍA 17 DEL MÚSCULO Figura 2.2. Organización de los componentes musculares. Las estriaciones del músculo esquelético se deben a las bandas A y a las bandas I. Las bandas I están divididas en dos mitades iguales por la línea Z y cada banda A tiene una zona clara, la zona H. El centro de cada zona H es la región oscura M. La unidad contráctil básica de la fibra muscular esquelética es el sarcómero, que contiene un conjunto altamente ordenado de miofilamentos (gruesos, delgados y conectores) y está limitada por dos líneas Z. Las invaginaciones tubulares, (túbulos T) de la membrana de la fibra muscular penetran profundamente dentro del sarcoplasma y rodean a las miofibrillas a nivel de la unión de la banda A con la banda I, esos túbulos se asocian con las cisternas terminales dilatadas del retículo sarcoplásmico, formando tríadas. En el recuadro aparece un sarcómero que muestra el arreglo de los miofilamentos gruesos y delgados. En la parte inferior (izquierda) se observa el detalle de la composición de los filamentos, a la derecha se presenta en un corte transversal la distribución de los miofilamentos en diferentes niveles sarcoméricos. (Modificado a partir de: Gartner y Hiatt, 1994.) Médula espinal Una fibra muscular Motoneurona Túbulo transverso (T) Fascículo Sarcolema Retículo sarcoplásmico Mitocondria Miofibrilla Banda A Línea Z Banda H Banda I Una miofibrilla SARCÓMERO Disco Z Banda A Región M MIOFILAMENTOS Nebulina Troponina Banda H Actina Tropomiosina Miosina Titina 18 FISIOLOGÍA GENERAL Y CELULAR Plasmalema Miofibrillas Líneas Z Filamentos intermedios (desmina, vimetina, sinemina) Disco Z Filamentos del citoesqueleto (actina, distrofina, espectrina) transversos, localizadas en los límites entre las bandas A y las bandas I. En fibras de músculo cardiaco y en las fibras musculares esqueléticas de rana, existe un túbulo T por cada sarcómero, situado al nivel de la línea Z. Los túbulos T rodean las miofibrillas y, por lo tanto, interrumpen el RS. En esas zonas, a ambos lados del túbulo T, el RS se dilata para formar las cisternas terminales; al conjunto de estos tres elementos se le conoce como tríada. Las cisternas vecinas están conectadas entre sí por medio de extensiones laterales. La microscopía electrónica reveló que las membranas de los túbulos T y de las cisternas son estructuras independientes. Los túbulos T están abiertos al espacio extracelular y propagan el potencial de acción desde la membrana celular superficial de la fibra hacia las regiones centrales de la célula. Su interacción con el RS provoca la liberación de Ca++ que difunde una corta distancia para “activar” los filamentos contráctiles. Cuando la excitación eléctrica cesa, los iones de Ca++ son recaptados por el RS por medio de bombas ATPasa para calcio y el músculo se relaja. Proteínas del sarcómero Las proteínas actina y miosina constituyen 85% de los miofilamentos. Se han identificado otras proteínas que tienen una función estructural o que pueden afectar a la interacción de los filamentos contráctiles. Las cantidades relativas de estas proteínas difieren dependiendo de la técnica utilizada para su aislamiento. Los valores reportados más frecuentemente son: titina, 10%; nebulina, 5%; tropo- Figura 2.3. Esquema de la fijación de las líneas Z por medio de los filamentos intermedios, los últimos se unen también a elementos del citoesqueleto por debajo del plasmalema. (Basado en: McComas, A.J., 1996.) miosina, 5%; troponina, 3%; -actinina 7%; proteína M, menos del 1%; proteína C, menos de 1%. Proteínas del filamento grueso Las moléculas de miosina son estructuras de aproximadamente 150 nm de largo y 2 nm de grueso; cada molécula posee dos cabezas globulares y una cola. Existen diversas isoformas de miosina asociadas a funciones específicas del tejido muscular. Todos los tipos de miosina que se han estudiado tienen una masa molecular relativa (Mr) de alrededor de 520 kD y están compuestos por seis subunidades: dos cadenas pesadas (cada una con Mr de 220 kD) y dos pares de cadenas ligeras, con Mr que van de 16 kD a 25 kD (Fig. 2.5). Las cadenas ligeras se clasifican en dos clases químicas: las cadenas ligeras alcalinas esenciales (LC1 y LC3) y la cadena ligera reguladora (LC2). Dependiendo del tipo de músculo del que se trate, ya sea cardiaco, esquelético, embrionario o liso, varía la proporción de las cadenas ligeras LC1 y LC3 en la miosina. Propiedades generales de las cadenas ligeras: a) fijan Ca++ con alta afinidad; b) cuando son fosforiladas (LC2) por la cinasa de la cadena ligera de miosina (MLCK, myosin light chain kinase) cambia la conformación de las cabezas de la miosina, aumenta el número de cabezas cercanas a la actina y se potencia la interacción actina-miosina cuando los niveles de Ca++ son bajos; c) regulan la actividad de la miosina ATPasa; y d) participan en la regulación del ensamblaje de la miosina para formar los filamentos gruesos. FISIOLOGÍA 19 DEL MÚSCULO Línea Z Banda I Zona H Banda A Sarcómero Hendidura Sarcolema Túbulo Mitocondria Banda I Línea Z Glucógeno Túbulo T Vesícula de retículo sarcoplásmico Lámina basal Tríada Fibras de colágeno Figura 2.4. Vista tridimensional del retículo sarcoplásmico y del sistema de túbulos transversos (túbulos T), dentro de una fibra muscular. (Basado en Peachey (1965) y McArdle, et al., 1996.) La cola de la miosina está formada por dos hélices  que se enrollan una alrededor de la otra con giro a la izquierda. Alrededor de 400 moléculas de miosina forman un filamento grueso. La agregación ocurre por afinidad electrostática e interacciones hidrofóbicas de las colas, tal y como se ha demostrado in vitro. Las miosinas se unen escalonadamente cada 14.3 nm (alrededor de 10% de su longitud). En la región central del sarcómero, las colas de las miosinas se unen a las proteínas de la línea M y quedan las cabezas del hemi-sarcómero en direcciones opuestas. El número de miosinas en un filamento es notablemente constante. Actualmente se propone que tres subfilamentos de miosina se enredan uno alrededor del otro, de manera que las cabezas apuntan hacia el exterior del filamento como puentes cruzados que se repiten cada 14.3 nm. Entre dos puentes cruzados sucesivos existe una rotación de 60°, y cada 43 nm se observan con la misma orientación (Fig. 2.5). Las cabezas de la miosina que forman los puentes cruzados miden entre 13 y 20 nm de largo, longitud suficiente para cubrir la distancia hasta el filamento delgado. En cada mitad de un filamento grueso se han podido localizar mediante inmunoquímica siete bandas de proteína C (clamp protein). La proteína C tiene forma de “V” de 20 nm de longitud y Mr de 150 kD. Se ha propuesto que tres “V” forman un anillo que rodea al filamento grueso y actúan como una pinza molecular. Esta proteína, y las proteínas H y X detectadas en la banda A, tienen funciones desconocidas, aunque es posible que actúen como reguladoras de la longitud de los filamentos. En la región M se localizan los filamentos M, de aproximadamente 5 nm de diámetro, que corren paralelos a los filamentos de miosina y parecen estar conectados con ellos. Cada filamento M se conecta con seis filamentos gruesos de miosina en un patrón hexagonal. Estudios con anticuerpos marcados han identificado la presencia en esta región de la creatina cinasa. Esta enzima reabastece las reservas de ATP utilizadas por la actividad contráctil utilizando creatina fosfato como sustrato. Filamento conector La titina es una molécula elástica, semejante a un resorte (Fig. 2.2); seis a doce moléculas de titina forman los filamentos conectores que unen los filamentos gruesos al disco Z. Los filamentos conectores miden unos 5 nm de diámetro y se extienden desde la región M hasta los discos 20 FISIOLOGÍA GENERAL Y CELULAR A NH3+ Cadenas pesadas CLE CLR 165 Å -OOC 20 Å 50 NH3+ Å 6 -OOC 950 Å LMM HMM B 60° 14.3 nm 43 nm Figura 2.5. La molécula de miosina. A) La cola en forma de varilla está formada por dos hélices  enrolladas y una porción globular (cabezas), formando las cadenas pesadas. Cada cabeza tiene asociadas dos cadenas ligeras, la cadena ligera reguladora (CLR) y la cadena ligera esencial (CLE). (Tomado de Voet y Voet, 1995.) B) Las moléculas de miosina se unen escalonadamente cada 14.3 nm. Las cabezas se distribuyen de forma helicoidal en la superficie del filamento grueso. Entre dos puentes cruzados sucesivos existe una rotación de 60° y cada 43 nm se presentan con la misma orientación. Z. Por su estructura y posición, se piensa que cada par de filamentos de titina (uno en cada hemisarcómero) funciona como estabilizador longitudinal de los filamentos de miosina, para mantenerlos en el centro del sarcómero durante la contracción y la relajación musculares. Además, se postula que estos filamentos previenen la sobreexten- sión del sarcómero. La porción de los filamentos localizada en la banda I contribuye en gran parte a la elasticidad de las fibras musculares cuando éstas son estiradas, ya sea pasivamente por fuerzas externas, o activamente por el desigual acortamiento de los sarcómeros durante la contracción. FISIOLOGÍA Proteínas del filamento delgado Los filamentos delgados del sarcómero están formados por actina, troponina y tropomiosina (Fig. 2.6). Se ha propuesto que la nebulina (Mr de 0.5 MDa) también forma parte de la estructura de los filamentos delgados e incluso que es el andamiaje para su polimerización. La principal proteína del filamento delgado es la actina (Mr 42 kD). Con el microscopio electrónico, un filamento delgado se ve como un hilo de aproximadamente 1 m de largo y 8 nm de diámetro. El filamento contiene entre 300 y 400 moléculas de actina G (Globular) monomérica y se forma por un proceso de polimerización que requiere la presencia de un nucleótido hidrolizable (ya sea ADP o ATP) por monómero. La estructura primaria del filamento se ha conservado notablemente a través de la evolución, lo que sugiere que variaciones leves podrían interferir con una o más de las funciones de esta proteína. La transformación reversible de actina G a actina F (Filamentosa, polimerizada) es regulada por una lista siempre creciente de proteínas de unión, agrupamiento, entrecruzamiento y encasquetamiento de la actina. Los filamentos delgados están anclados en la línea Z. El filamento delgado consta de dos cadenas de actina enrolladas entre sí para formar una doble hélice (Figs. 2.2 y 2.6). Una vuelta completa de doble hélice de actina ocurre cada 76 nm, el doble del espacio entre los puentes cruzados de la miosina. Los monómeros tienen forma de campana, de modo que los filamentos tienen una polaridad, lo cual crea extremos puntiagudos. La polaridad de los filamentos de actina es opuesta en los hemisarcómeros de un mismo sarcómero, característica esencial para el mecanismo del filamento deslizante (véase más adelante). En el surco existente entre las dos cadenas de la hélice de la actina F se encuentra una larga proteína en forma de varilla, la tropomiosina, un dímero (cada monómero con Mr 21 DEL MÚSCULO de 35 kD) que interactúa con siete monómeros de actina. La tropomiosina tiene una estructura de hélices enrolladas semejante a la porción de varilla de la miosina. En el extremo de cada molécula de tropomiosina hay una molécula de troponina formada por tres subunidades (Fig. 2.6): la troponina T (TnT), que une a la troponina con la tropomiosina; la troponina I (TnI), que inhibe la interacción entre la actina y la miosina; y la troponina C (TnC), que fija calcio durante la activación contráctil y elimina la inhibición de la TnI. Mecanismos de la contracción muscular La contracción consiste en el acortamiento muscular que acerca entre sí el origen y la inserción correspondientes a cada músculo. Este acortamiento es consecuencia de la disminución en la longitud sarcomérica. Se han presentado varias teorías para explicar la contracción muscular que a continuación se describen. Teoría de los filamentos deslizantes Durante la contracción o el estiramiento de las fibras musculares la anchura de la banda A permanece constante, mientras que la anchura de la banda I disminuye en la contracción y aumenta en el estiramiento. La explicación para estas observaciones es un movimiento deslizante de los filamentos delgados sobre los filamentos gruesos, según propusieron A. F. Huxley y Niedergerke (1954) y H. E. Huxley y Hanson (1954). Una vez establecida la teoría de los filamentos deslizantes se plantea la pregunta de cuál es el mecanismo que impulsa dicho deslizamiento. La clave central fue la observación de los puentes cruzados que se proyectan desde el filamento grueso hacia el filamento delgado, que dio la pauta para plantear la teoría de la acción del puente cruzado. Tn I Tn C Tn T Tropomiosina Nebulina Actina Figura 2.6. Organización del filamento delgado del sarcómero del músculo esquelético. El filamento delgado consta de dos cadenas de monómeros de actina unidos extremo con extremo, enrollados uno alrededor del otro para formar una doble hélice. En el surco entre las dos cadenas de la hélice de actina, se encuentra la tropomiosina, que interactúa con siete monómeros de actina. En el extremo de la molécula de tropomiosina hay una molécula de tres subunidades, la troponina. En este modelo, la nebulina une a la tropomiosina y al complejo de troponina que consiste a su vez de la TnT, TnI y la TnC. (Basado en: Wang, et al., 1996.) 22 FISIOLOGÍA GENERAL Y CELULAR Mecanismo de acción de los puentes cruzados La teoría de los puentes cruzados implica la unión intermitente de la actina de los filamentos delgados con los puentes cruzados de la miosina del filamento grueso. En condiciones estructurales naturales del sarcómero en reposo la interacción actina-miosina está inhibida por la interposición de la TnI y los puentes cruzados tienen ligado Mg-ATP (ATP). En estas condiciones el ATP se encuentra en estadios intermedios de hidrólisis y no hay desarrollo de tensión. La unión de Ca++ a la TnC permite la interacción de la actina con la miosina. El modelo propuesto por Rayment y cols. (1993) para explicar la acción del puente cruzado considera como primera etapa la formación del complejo de rigor, formado por la fuerte unión de la actina con la miosina en ausencia de ATP (Fig. 2.7A). Luego, una molécula de ATP entra parcialmente en el bolsillo del segmento 50 kD de la cabeza de miosina. Esta entrada incompleta es insuficiente para abrir la estrecha hendidura entre los dominios superior e inferior del segmento 50 kD, pero es suficiente para debilitar su unión con la actina (Fig. 2.7B). El resto de la molécula de ATP es encerrada en el bolsillo, y esto causa que se despegue el segmento 50 kD de la actina y se aleje 5 nm del filamento delgado (Fig. 2.7C). El ATP es entonces hidrolizado, pero los productos ADP y Pi permanecen dentro de la cabeza de miosina para formar un complejo intermedio. Posteriormente, el segmento 50 kD se vuelve a unir a la actina a 5 nm del sitio anterior. La nueva unión se hace inicialmente en el dominio inferior del segmento 50 kD y es débil, pero se vuelve fuerte cuando el dominio superior participa. La nueva unión permite el cierre de la hendidura entre los dominios superior e inferior, y esto provoca la expulsión del Pi del bolsillo. A su vez, la pérdida de Pi ocasiona que se abra el bolsillo y se libere el ADP. En este momento, la parte inferior de la cabeza de miosina se dobla (Fig. 2.7E); éste es el impulso motor durante el cual se produce la fuerza y el filamento de actina es movido 5 nm hacia el centro del sarcómero. Las moléculas de actina y miosina permanecen unidas hasta que otra molécula de ATP entra en el bolsillo y el ciclo de los puentes cruzados se repite. Las cadenas ligeras probablemente modifican la velocidad del movimiento en cada impulso motor. Si el calcio continúa elevado, en presencia de ATP, se repite el ciclo de hidrólisis. Así los puentes cruzados actúan cíclicamente jalando (atrayendo) a los filamentos de actina. No todos los puentes cruzados actúan de manera sincrónica. De ser así, observaríamos un músculo acortándose en etapas; por el contrario, sus acciones asincrónicas independientes dan lugar a un movimiento continuo. Durante la actividad contráctil en una fibra muscular, en un momento dado sólo cerca de 50% de los puentes cruzados están actuando sobre los filamentos de actina para formar el complejo actomiosina, y los otros puentes cruzados están en otra posición de su ciclo. Un ciclo completo de puentes cruzados dura aproximadamente 50 ms; en este tiempo, la cabeza de miosina se une al filamento de actina por sólo 2 ms y, por lo tanto, el Actina +ATP A ATP (B) Puente cruzado Sitio activo para el cierre de la hendidura (A) Hidrólisis (C) A Liberación de ADP (D) Liberación de Pi A Inicio del impulso motor (E) Intermedio temporal Figura 2.7. Esquema hipotético del ciclo de puentes cruzados propuesto por Rayment et al. (1993); la estructura en negro es el puente cruzado. Véase descripción en el texto. impulso motor es un proceso breve. En experimentos extraordinariamente minuciosos, en los cuales se permitió interactuar a moléculas de miosina individuales con filamentos de actina, los movimientos de los filamentos delgados, medidos sin carga, promediaron 11 nm por cada ciclo. Una sola cabeza de miosina genera una fuerza de 3 a 4 pN. Los filamentos pueden deslizarse uno sobre otro a una velocidad de 15 m/s. Mecanismo de la transición de fase También se ha planteado como un posible mecanismo para explicar la contracción muscular la transición de una estructura helicoidal ordenada, en cierta región inestable de la molécula de miosina, a una estructura en espiral desordenada (random coil) que acorta el filamento grueso (Pollack, 1990). Cuando los puentes cruzados están unidos a la actina de los filamentos delgados, estos son jalados (arrastrados) en dirección de la línea M (Fig. 2.8). Mecanismo electromagnético de la contracción muscular Otra teoría para explicar el impulso motor es la de repulsión electromagnética entre los filamentos gruesos y FISIOLOGÍA DEL MÚSCULO 23 A B Ca++ Figura 2.8. Teoría de la transición de fase. Las moléculas de miosina cambian su estructura helicoidal (A) por una estructura espiral desordenada que acorta el filamento grueso (B), como los puentes cruzados están unidos a los filamentos delgados, estos son arrastrados hacia el centro del sarcómero. delgados. La repulsión se produce por la generación de centros de carga similares entre la miosina y la actina. En estado de reposo las concentraciones intracelulares de calcio son muy bajas (aproximadamente 10-8 M) y existe suficiente Mg-ATP unido a los puentes cruzados, condición que provoca que los filamentos de actina y miosina exhiban hacia el entorno carga superficial negativa, y se mantengan separados. La unión de calcio en la TnC, colocada enfrente del puente cruzado, genera un centro de carga positiva que promueve el acercamiento de la miosina a la actina acelerando la hidrólisis del Mg-ATP. La liberación de los productos de la hidrólisis genera un centro de carga positivo en la cabeza de miosina. Al coincidir temporal y espacialmente estas cargas se repelen entre sí. La repulsión entre los dos centros de carga por la negatividad de las zonas vecinas, las restricciones geométricas y los vectores de fuerza originados en los filamentos conectores, y la inercia de los discos Z dan por resultado un vector que desliza a los filamentos delgados en dirección a la región M (Fig. 2.9). Este mecanismo no descarta la posibilidad de los cambios conformacionales sugeridos en la teoría del puente cruzado, que incluso podrían asociarse a los efectos repulsivos de las cargas. En síntesis, el acortamiento se explica, de acuerdo con la primera y la tercera teorías, por el deslizamiento de los filamentos entre sí debido a la acción del puente cruzado sobre los filamentos de actina, ya sea por tracción mecánica asociada a cambio conformacional del puente o por repulsión electromagnética, manteniéndose constante el tamaño de los filamentos. En la segunda teoría el acortamiento ocurre por una disminución de la longitud, al menos de los filamentos gruesos, sin que se requiera del deslizamiento de los filamentos entre sí. En cualquiera de los modelos, además de las estructuras proteicas se requiere la presencia de Mg-ATP y Ca++ en concentraciones apropiadas. En la fibra muscular intacta e integrada en un músculo, el ATP proviene principalmente de la mitocondria, mientras que el Ca++ es liberado desde el RS por efecto de la excitación del sarcolema. Propiedades mecánicas activas del músculo esquelético completo Con base en las hipótesis de los filamentos deslizantes y de los puentes cruzados como generadores de fuerza independientes, la fuerza desarrollada en una contracción muscular depende del número de interacciones simultáneas entre los puentes cruzados y los filamentos de actina. Experimentalmente, el número de interacciones de puentes cruzados-actina se puede variar por el estiramiento de la fibra muscular y así alterar la extensión de superposición entre los filamentos gruesos y delgados. Los resultados son consistentes con la hipótesis de los filamentos deslizantes, según la cual, sobre ciertos rangos, la tensión desarrollada al aplicar estímulos apropiados para su activación es proporcional al grado de superposición y, por lo tanto, al número de puentes cruzados activos. Si se acorta el sarcómero, de manera que los filamentos delgados opuestos se superpongan a nivel de la línea M, la tensión isométrica declina, probablemente porque los filamentos interfieren con el mecanismo de los puentes cruzados (Fig. 2.10). Si la fibra muscular se estira más de 3.65 m, los filamentos delgados y gruesos se desinterdigitan y no se desarrolla tensión. El pico de tensión se obtiene con una longitud sarcomérica entre 2.0 y 2.2 m; con esta longitud existe la máxima interacción entre los puentes cruzados y la actina. Es interesante señalar que la diferencia de 0.2 m en esta parte de la curva es precisamente el ancho de la región M carente de puentes cruzados. 24 FISIOLOGÍA GENERAL Y CELULAR Inactivado Activado D Miosina F G H Ca++ ADP Pi -Mg2+ I Pi 2- ATP 4- ADP-Mg 2+ Ca++ ADP-Mg 2+ E ADP Pi -Mg2+ ATP 4- Actina ATP 4- C ATP 4- B A ADP-Mg 2+ Figura 2.9. Teoría de la repulsión electrostática. Se representa el ciclo del ATP-Mg++ y la activación por Ca++. En (A) se representa el estado hipotético de ausencia de ATP-Mg++ y Ca++ en el cual las cargas netas de superficie mantienen unido el puente cruzado (rectángulo) a la actina (círculos), estado de rigor. En presencia de concentraciones normales de ATP y bajo calcio, la carga neta de la superficie de ambos filamentos es similar y se encuentran separados (B - C). La hidrólisis incompleta del ATP, previa al incremento de Ca++ se representa en (D). La unión de Ca++ (E) favorece la proximidad del puente cruzado completándose la hidrólisis del ATP con la liberación de Pi2- y cambio de la carga del puente, la hidrólisis del ATP genera el centro positivo en los puentes cruzados del filamento grueso generando una repulsión que desliza al filamento delgado en dirección de la línea M (F-G). La entrada de una nueva molécula de ATP-Mg++ y la recaptura de Ca++ por el RS, regresa a las condiciones de separación de las proteínas (H-I). La unión del Ca++ en las proteínas del filamento delgado genera centros de carga positivos espaciados 43 nm a lo largo del eje longitudinal. Esta distancia coincide con la separación entre dos puentes cruzados con la misma orientación. Los esquemas muestran la constancia en la longitud de los filamentos y la posible participación de los filamentos conectores como resortes (Muñiz et al., 1996). En el caso de los músculos esqueléticos, dado los pequeños rangos de movimiento articular, es dudoso que ocurra un alargamiento que provoque desinterdigitación. Sin embargo, en músculos enfermos sería más probable, puesto que el reemplazo parcial de las fibras musculares por tejido fibroso, relativamente inelástico, bien podría permitir a los segmentos de fibras sobrevivientes estirarse excesivamente. Regulación de la contracción muscular Acople excitaci