(PDF) Cálculo (completo) - Vol 1 y 2 -9na Edición - Ron Larson & Bruce H. Edwards | Chema Cobain - Academia.edu
Cálculo 1 Cálculo 1 de una variable Novena edición Ron Larson The Pennsylvania State University The Behrend College Bruce H. Edwards University of Florida Revisión técnica Marlene Aguilar Abalo Instituto Tecnológico y de Estudios Superiores de Monterrey, Campus Ciudad de México José Job Flores Godoy Universidad Iberoamericana Joel Ibarra Escutia Instituto Tecnológico de Toluca Linda M. Medina Herrera Instituto Tecnológico y de Estudios Superiores de Monterrey, Campus Ciudad de México MÉXICO • BOGOTÁ • BUENOS AIRES • CARACAS • GUATEMALA • MADRID • NUEVA YORK SAN JUAN • SANTIAGO • SÃO PAULO • AUCKLAND • LONDRES • MILÁN • MONTREAL NUEVA DELHI • SAN FRANCISCO • SINGAPUR • ST. LOUIS • SIDNEY • TORONTO Director Higher Education: Miguel Ángel Toledo Castellanos Editor sponsor: Pablo E. Roig Vázquez Coordinadora editorial: Marcela I. Rocha Martínez Editora de desarrollo: Ana L. Delgado Rodríguez Supervisor de producción: Zeferino García García Traducción: Joel Ibarra Escutia, Ángel Hernández Fernández, Gabriel Nagore Cázares, Norma Angélica Moreno Chávez CÁLCULO 1 DE UNA VARIABLE Novena edición Prohibida la reproducción total o parcial de esta obra, por cualquier medio, sin autorización escrita del editor. DERECHOS RESERVADOS © 2010, respecto a la novena edición en español por McGRAW-HILL/INTERAMERICANA EDITORES, S.A. DE C.V. A Subsidiary of The McGraw-Hill Companies, Inc. Edificio Punta Santa Fe Prolongación Paseo de la Reforma Núm. 1015, Torre A Piso 17, Colonia Desarrollo Santa Fe Delegación Álvaro Obregón C.P. 01376, México, D.F. Miembro de la Cámara Nacional de la Industria Editorial Mexicana, Reg. Núm. 736 ISBN 978-607-15-0273-5 Traducido de la novena edición en inglés de Calculus Copyright © 2010 by Brooks/Cole, a Cengage Learning Company. All rights reserved. ISBN-13: 978-1-4390-3033-2 TI es una marca registrada de Texas Instruments, Inc. Mathematica es una marca registrada de Wolfram Research, Inc. Maple es una marca registrada de Waterloo Maple, Inc. 1234567890 109876543210 Impreso en China Printed in China C ontenido Unas palabras de los autores Agradecimientos Características CAPÍTULO P CAPÍTULO 1 CAPÍTULO 2 Preparación para el cálculo 1 P.1 P.2 P.3 P.4 Gráficas y modelos Modelos lineales y ritmos o velocidades de cambio Funciones y sus gráficas Ajuste de modelos a colecciones de datos Ejercicios de repaso SP Solución de problemas 2 10 19 31 37 39 Límites y sus propiedades 41 1.1 1.2 1.3 1.4 1.5 42 48 59 70 83 Una mirada previa al cálculo Cálculo de límites de manera gráfica y numérica Cálculo analítico de límites Continuidad y límites laterales o unilaterales Límites infinitos PROYE CT O DE T RABAJ O : Gráficas y límites de las funciones trigonométricas Ejercicios de repaso SP Solución de problemas 90 91 93 Derivación 95 2.1 2.2 2.3 2.4 2.5 96 107 119 130 141 148 149 158 161 La derivada y el problema de la recta tangente Reglas básicas de derivación y ritmos o velocidades de cambio Reglas del producto, del cociente y derivadas de orden superior La regla de la cadena Derivación implícita PROYE CT O DE T RABAJ O : Ilusiones ópticas 2.6 Ritmos o velocidades relacionados Ejercicios de repaso SP Solución de problemas CAPÍTULO 3 ix x xii Aplicaciones de la derivada 3.1 Extremos en un intervalo 163 164 v vi Contenido 3.2 3.3 El teorema de Rolle y el teorema del valor medio Funciones crecientes y decrecientes y el criterio de la primera derivada PROYE CT O DE T RABAJ O : Arco iris 3.4 Concavidad y el criterio de la segunda derivada 3.5 Límites al infinito 3.6 Análisis de gráficas 3.7 Problemas de optimización PROYE CT O DE T RABAJ O : Río Connecticut 3.8 Método de Newton 3.9 Diferenciales Ejercicios de repaso SP Solución de problemas CAPÍTULO 4 Integración 4.1 4.2 4.3 4.4 Antiderivadas o primitivas e integración indefinida Área Sumas de Riemann e integrales definidas El teorema fundamental del cálculo PROYE CT O DE T RABAJ O : Demostración del teorema fundamental 4.5 Integración por sustitución 4.6 Integración numérica Ejercicios de repaso SP Solución de problemas CAPÍTULO 5 Funciones logarítmica, exponencial y otras funciones trascendentes 5.1 5.2 5.3 5.4 5.5 La función logaritmo natural: derivación La función logaritmo natural: integración Funciones inversas Funciones exponenciales: derivación e integración Otras bases distintas de e y aplicaciones PROYE CT O DE T RABAJ O : Estimación gráfica de pendientes 5.6 Funciones trigonométricas inversas: derivación 5.7 Funciones trigonométricas inversas: integración 5.8 Funciones hiperbólicas PROYE CT O DE T RABAJ O : Arco de San Luis Ejercicios de repaso SP Solución de problemas CAPÍTULO 6 Ecuaciones diferenciales 6.1 6.2 Campos de pendientes y método de Euler Ecuaciones diferenciales: crecimiento y decrecimiento 172 179 189 190 198 209 218 228 229 235 242 245 247 248 259 271 282 296 297 311 318 321 323 324 334 343 352 362 372 373 382 390 400 401 403 405 406 415 Contenido 6.3 6.4 Separación de variables y la ecuación logística Ecuaciones diferenciales lineales de primer orden PROYE CT O DE T RABAJ O : Pérdida de peso Ejercicios de repaso SP Solución de problemas CAPÍTULO 7 Aplicaciones de la integral 7.1 7.2 7.3 Área de una región entre dos curvas Volumen: el método de los discos Volumen: el método de las capas PROYE CT O DE T RABAJ O : Saturno 7.4 Longitud de arco y superficies de revolución 7.5 Trabajo PROYE CT O DE T RABAJ O : Energía de la marea 7.6 Momentos, centros de masa y centroides 7.7 Presión y fuerza de un fluido Ejercicios de repaso SP Solución de problemas CAPÍTULO 8 Técnicas de integración, regla de L’Hôpital e integrales impropias 8.1 8.2 8.3 Reglas básicas de integración Integración por partes Integrales trigonométricas PROYE CT O DE T RABAJ O : Líneas de potencia 8.4 Sustituciones trigonométricas 8.5 Fracciones simples o parciales 8.6 Integración por tablas y otras técnicas de integración 8.7 Formas indeterminadas y la regla de L’Hôpital 8.8 Integrales impropias Ejercicios de repaso SP Solución de problemas CAPÍTULO 9 Series infinitas 9.1 9.2 Sucesiones Series y convergencia PROYE CT O DE T RABAJ O : La mesa que desaparece 9.3 Criterio de la integral y series p PROYE CT O DE T RABAJ O : La serie armónica 9.4 Comparación de series PROYE CT O DE T RABAJ O : El método de la solera 9.5 Series alternadas o alternantes 9.6 El criterio del cociente y el criterio de la raíz 9.7 Polinomios de Taylor y aproximación vii 423 434 442 443 445 447 448 458 469 477 478 489 497 498 509 515 517 519 520 527 536 544 545 554 563 569 580 591 593 595 596 608 618 619 625 626 632 633 641 650 viii Contenido 9.8 Series de potencias 9.9 Representación de funciones en series de potencias 9.10 Series de Taylor y de Maclaurin Ejercicios de repaso SP Solución de problemas 661 671 678 690 693 Apéndice A Demostración de algunos teoremas A-2 Apéndice B Tablas de integración Soluciones de los ejercicios impares S-1 Índice de aplicaciones I-1 Índice analítico I-5 A-20 C ontenido Unas palabras de los autores Agradecimientos Características CAPÍTULO 10 Cónicas, ecuaciones paramétricas y coordenadas polares 10.1 Cónicas y cálculo 10.2 Curvas planas y ecuaciones paramétricas PROYECTO DE TRABAJO: Cicloides 10.3 Ecuaciones paramétricas y cálculo 10.4 Coordenadas polares y gráficas polares PROYECTO DE TRABAJO: Arte anamórfico 10.5 Área y longitud de arco en coordenadas polares 10.6 Ecuaciones polares de las cónicas y leyes de Kepler Ejercicios de repaso SP Solución de problemas CAPÍTULO 11 Vectores y la geometría del espacio 11.1 11.2 11.3 11.4 11.5 Vectores en el plano Coordenadas y vectores en el espacio El producto escalar de dos vectores El producto vectorial de dos vectores en el espacio Rectas y planos en el espacio PROYECTO DE TRABAJO: Distancias en el espacio 11.6 Superficies en el espacio 11.7 Coordenadas cilíndricas y esféricas Ejercicios de repaso SP Solución de problemas CAPÍTULO 12 Funciones vectoriales 12.1 Funciones vectoriales PROYECTO DE TRABAJO: Bruja de Agnesi 12.2 Derivación e integración de funciones vectoriales 12.3 Velocidad y aceleración 12.4 Vectores tangentes y vectores normales 12.5 Longitud de arco y curvatura Ejercicios de repaso SP Solución de problemas ix x xii 695 696 711 720 721 731 740 741 750 758 761 763 764 775 783 792 800 811 812 822 829 831 833 834 841 842 850 859 869 881 883 v 0-Prelim L2.indd v 1/12/09 18:04:22 vi Contenido CAPÍTULO 13 Funciones de varias variables 13.1 13.2 13.3 Introducción a las funciones de varias variables Límites y continuidad Derivadas parciales PROYECTO DE TRABAJO: Franjas de Moiré 13.4 Diferenciales 13.5 Regla de la cadena para funciones de varias variables 13.6 Derivadas direccionales y gradientes 13.7 Planos tangentes y rectas normales PROYECTO DE TRABAJO: Flora silvestre 13.8 Extremos de funciones de dos variables 13.9 Aplicaciones de los extremos de funciones de dos variables PROYECTO DE TRABAJO: Construcción de un oleoducto 13.10 Multiplicadores de Lagrange Ejercicios de repaso SP Solución de problemas CAPÍTULO 14 962 969 970 978 981 983 14.1 14.2 14.3 14.4 984 992 1004 1012 1019 1020 1026 1027 1038 1044 1045 1052 1055 Análisis vectorial 15.1 15.2 15.3 Campos vectoriales Integrales de línea Campos vectoriales conservativos e independencia de la trayectoria 15.4 Teorema de Green PROYECTO DE TRABAJO: Funciones hiperbólicas y trigonométricas 15.5 Superficies paramétricas 15.6 Integrales de superficie PROYECTO DE TRABAJO: Hiperboloide de una hoja 15.7 Teorema de la divergencia 0-Prelim L2.indd vi 886 898 908 917 918 925 933 945 953 954 Integración múltiple Integrales iteradas y área en el plano Integrales dobles y volumen Cambio de variables: coordenadas polares Centro de masa y momentos de inercia PROYECTO DE TRABAJO: Centro de presión sobre una vela 14.5 Área de una superficie PROYECTO DE TRABAJO: Capilaridad 14.6 Integrales triples y aplicaciones 14.7 Integrales triples en coordenadas cilíndricas y esféricas PROYECTO DE TRABAJO: Esferas deformadas 14.8 Cambio de variables: jacobianos Ejercicios de repaso SP Solución de problemas CAPÍTULO 15 885 1057 1058 1069 1083 1093 1101 1102 1112 1123 1124 1/12/09 18:04:22 Contenido 15.8 Teorema de Stokes Ejercicios de repaso PROYECTO DE TRABAJO: El planímetro SP Solución de problemas 0-Prelim L2.indd vii vii 1132 1138 1140 1141 Apéndice A Demostración de teoremas seleccionados A-2 Apéndice B Tablas de integración A-4 Soluciones de los ejercicios impares Índice analítico A-9 I-57 1/12/09 18:04:22 U nas palabras de los autores ¡Bienvenido a la novena edición de Cálculo! Nos enorgullece ofrecerle una nueva versión revisada de nuestro libro de texto. Mucho ha cambiado desde que escribimos la primera edición hace más de 35 años. En cada edición los hemos escuchado a ustedes, esto es, nuestros usuarios, y hemos incorporado muchas de sus sugerencias para mejorar el libro. A lo largo de los años, nuestro objetivo ha sido siempre escribir con precisión y de manera legible conceptos fundamentales del cálculo, claramente definidos y demostrados. Al escribir para estudiantes, nos hemos esforzado en ofrecer características y materiales que desarrollen las habilidades de todos los tipos de estudiantes. En cuanto a los profesores, nos enfocamos en proporcionar un instrumento de enseñanza amplio que emplea técnicas pedagógicas probadas, y les damos libertad para que usen en forma más eficiente el tiempo en el salón de clase. También hemos agregado en esta edición una nueva característica denominada ejercicios Para discusión. Estos problemas conceptuales sintetizan los aspectos clave y proporcionan a los estudiantes mejor comprensión de cada uno de los conceptos de sección. Los ejercicios Para discusión son excelentes para esa actividad en el salón de clase o en la preparación de exámenes, y a los profesores puede resultarles valioso integrar estos problemas dentro de su repaso de la sección. Éstas y otras nuevas características se unen a nuestra pedagogía probada en el tiempo, con la meta de permitir a los estudiantes y profesores hacer el mejor uso del libro. Esperamos que disfrute la novena edición de Cálculo. Como siempre, serán bienvenidos los comentarios y sugerencias para continuar mejorando la obra. Ron Larson Bruce H. Edwards ix A gradecimientos Nos gustaría dar las gracias a muchas personas que nos ayudaron en varias etapas de este proyecto a lo largo de los últimos 35 años. Su estímulo, críticas y sugerencias han sido invaluables. Revisores de la novena edición Ray Cannon, Baylor University Sadeq Elbaneh, Buffalo State College J. Fasteen, Portland State University Audrey Gillant, Binghamton University Sudhir Goel, Valdosta State University Marcia Kemen, Wentworth Institute of Technology Ibrahima Khalil Kaba, Embry Riddle Aeronautical University Jean-Baptiste Meilhan, University of California Riverside Catherine Moushon, Elgin Community College Charles Odion, Houston Community College Greg Oman, The Ohio State University Dennis Pence, Western Michigan University Jonathan Prewett, University of Wyoming Lori Dunlop Pyle, University of Central Florida Aaron Robertson, Colgate University Matthew D. Sosa, The Pennsylvania State University William T. Trotter, Georgia Institute of Technology Dr. Draga Vidakovic, Georgia State University Jay Wiestling, Palomar College Jianping Zhu, University of Texas at Arlington Miembros del Comité de Asesores de la novena edición Jim Braselton, Georgia Southern University; Sien Deng, Northern Illinois University; Dimitar Grantcharov, University of Texas, Arlington; Dale Hughes, Johnson County Community College; Dr. Philippe B. Laval, Kennesaw State University; Kouok Law, Georgia Perimeter College, Clarkson Campus; Mara D. Neusel, Texas Tech University; Charlotte Newsom, Tidewater Community College, Virginia Beach Campus; Donald W. Orr, Miami Dade College, Kendall Campus; Jude Socrates, Pasadena City College; Betty Travis, University of Texas at San Antonio; Kuppalapalle Vajravelu, University of Central Florida Revisores de ediciones anteriores Stan Adamski, Owens Community College; Alexander Arhangelskii, Ohio University; Seth G. Armstrong, Southern Utah University; Jim Ball, Indiana State University; Marcelle Bessman, Jacksonville University; Linda A. Bolte, Eastern Washington University; James Braselton, Georgia Southern University; Harvey Braverman, Middlesex County College; Tim Chappell, Penn Valley Community College; Oiyin Pauline Chow, Harrisburg Area Community College; Julie M. Clark, Hollins University; P.S. Crooke, Vanderbilt University; x Agradecimientos xi Jim Dotzler, Nassau Community College; Murray Eisenberg, University of Massachusetts at Amherst; Donna Flint, South Dakota State University; Michael Frantz, University of La Verne; Sudhir Goel, Valdosta State University; Arek Goetz, San Francisco State University; Donna J. Gorton, Butler County Community College; John Gosselin, University of Georgia; Shahryar Heydari, Piedmont College; Guy Hogan, Norfolk State University; Ashok Kumar, Valdosta State University; Kevin J. Leith, Albuquerque Community College; Douglas B. Meade, University of South Carolina; Teri Murphy, University of Oklahoma; Darren Narayan, Rochester Institute of Technology; Susan A. Natale, The Ursuline School, NY; Terence H. Perciante, Wheaton College; James Pommersheim, Reed College; Leland E. Rogers, Pepperdine University; Paul Seeburger, Monroe Community College; Edith A. Silver, Mercer County Community College; Howard Speier, Chandler-Gilbert Community College; Desmond Stephens, Florida A&M University; Jianzhong Su, University of Texas at Arlington; Patrick Ward, Illinois Central College; Diane Zych, Erie Community College Muchas gracias a Robert Hostetler, de The Behrend College, en The Pennsylvania State University, y a David Heyd, de la misma institución, por sus importantes contribuciones a las ediciones previas de este texto. Una nota especial de agradecimiento a los profesores que respondieron nuestra encuesta y a los más de dos millones de estudiantes que han usado las ediciones anteriores de la obra. También quisiéramos agradecer al personal de Larson Texts, Inc., que apoyó en la preparación del manuscrito, realizó el diseño editorial, levantó la tipografía y leyó las pruebas de las páginas y suplementos en la edición en inglés. En el ámbito personal, estamos agradecidos con nuestras esposas, Deanna Gilbert Larson y Consuelo Edwards, por su amor, paciencia y apoyo. Además, una nota especial de gratitud para R. Scott O’Neil. Si usted tiene sugerencias para mejorar este texto, por favor siéntanse con la libertad de escribirnos. A lo largo de los años hemos recibido muchos comentarios útiles tanto de los profesores como de los estudiantes, y los valoramos sobremanera. Ron Larson Bruce H. Edwards C aracterísticas Herramientas pedagógicas PARA DISCUSIÓN Para discusión 72. ¡NUEVO! Los ejercicios para discusión que aparecen ahora en cada sección sintetizan los conceptos principales de cada una y muestran a los estudiantes cómo se relacionan los temas. A menudo constituyen problemas de varias partes que contienen aspectos conceptuales y no computacionales, y que pueden utilizarse en discusiones de clase o en la preparación de exámenes. y f B C A y 5 D E x ¿Entre qué par de puntos consecutivos es mayor la razón de cambio promedio de la función? ¿La razón de cambio promedio de ƒ entre A y B es mayor o menor que el la razón de cambio instantáneo en B? c) Trazar una recta tangente a la gráfica entre los puntos C y D cuya pendiente sea igual a la razón de cambio promedio de la función entre C y D. a) b) Desarrollo de conceptos 11. Considerar la longitud de la gráfica de f(x) (1, 5) hasta (5, 1): Utilizar la gráfica para responder a las siguientes preguntas. 5/x, desde y (1, 5) 5 (1, 5) DESARROLLO DE CONCEPTOS 4 4 3 3 2 (5, 1) 1 x 1 2 3 4 5 2 (5, 1) 1 x 1 2 3 4 5 a) Estimar la longitud de la curva mediante el cálculo de la distancia entre sus extremos, como se muestra en la primera figura. b) Estimar la longitud de la curva mediante el cálculo de las longitudes de los cuatro segmentos de recta, como se muestra en la segunda figura. c) Describir cómo se podría continuar con este proceso a fin de obtener una aproximación más exacta de la longitud de la curva. Los ejercicios de desarrollo de conceptos son preguntas diseñadas para evaluar la comprensión de los estudiantes en torno a los conceptos básicos de cada sección. Estos ejercicios animan a los estudiantes a verbalizar y escribir respuestas, lo que promueve habilidades de comunicación técnica que serán invaluables en sus futuras carreras. AYUDAS DE ESTUDIO Las ayudas de estudio distinguen errores comunes, indican casos especiales que pueden provocar confusión, y amplían a conceptos importantes. Estas ayudas proporcionan a los estudiantes información puntual, similar a los comentarios del profesor en clase. EJEMPLO 1 Levantamiento de un objeto Determinar el trabajo realizado al levantar un objeto de 50 libras a 4 pies. Solución La magnitud de la fuerza requerida F es el peso del objeto, como se muestra en la figura 7.48. Así, el trabajo realizado al levantar el objeto 4 pies es W xii FD Trabajo 50S4D Fuerza 200 libras-pies. (fuerza)(distancia). 50 libras, distancia 4 pies. AYUDA DE ESTUDIO Cuando se use la definición para encontrar la derivada de una función, la clave consiste en volver a expresar el cociente incremental (o cociente de diferencias), de manera que x no aparezca como factor del denominador. AYUDA DE ESTUDIO El ejemplo 3 también se puede resolver sin hacer uso de la regla de la cadena, si se observa que y x6 AYUDA DE ESTUDIO Tener en cuenta que se puede comprobar la respuesta de un problema de integración al derivar la C l j l 7 3x4 3x2 EJEMPLOS A lo largo del texto, se trabajan ejemplos paso a paso, que muestran los procedimientos y técnicas para resolver problemas, y dan a los estudiantes una comprensión amplia de los conceptos del cálculo. 1 Características xiii EJERCICIOS La práctica hace al maestro. Los ejercicios son con frecuencia el primer lugar que consultan los estudiantes en un libro de texto. Los autores han dedicado mucho tiempo analizándolos y revisándolos; el resultado es un completo y sólido conjunto de ejercicios de diferentes tipos y niveles de dificultad al final de cada sección para considerar todos los estilos de aprendizaje de los estudiantes. 4.3 Ejercicios En los ejercicios 1 y 2, utilizar el ejemplo 1 como modelo para evaluar el límite lím n n O f Xc C 13. xi i 1 i En los ejercicios 13 a 22, formular una integral definida que produce el área de la región. (No evaluar la integral.) f x 2. f SxD x, 0, y 0, x (Sugerencia: Sea ci 3i 2Yn 2.) f SxD x 3  x, 0, y 0, x 3 x 1 En los ejercicios 3 a 8, evaluar la integral definida mediante la definición de límite. 6 3. 3 63.2 Ciclo respiratorio El volumen V en litros de aire en los pulmo2 1 1 nes durante un ciclo respiratorio de cinco segundos se aproxima x x 2 1 0.1729t 1 2 3 4 5 0.1522t 2 0.0374t 3 donde mediante 1 2 3 4 el5 modelo V t es el tiempo en segundos. Aproximar el volumen medio de aire en losx pulmones16. durante un ciclo. f SxD x 2 15. f SxD 4 x dx 2 1 4 5. 6. x3 dx 1 4x2 dx 1 1 x 2 2x2 8. 1 dx \\ 64. Promedio de ventas Unay compañía ajusta un modelo a los datos y de ventas mensuales de un producto de temporada. El modelo es 8 4 t t 3 0 t 24 1.8 0.5 sen , SSt6D 4 6 3 4. 8 dx 2 4 una distancia de 264 pies. Encontrar la distancia en la cual el automóvil puede llegar al reposo a partir de una velocidad de 30 millas por hora, suponiendo la misma desaceleración constante. y 15. Velocidad y aceleración Se lanza una pelota hacia arriba verticalmente desde el nivel del suelo con una velocidad inicial de 96 pies por segundo. f f ¿Cuánto tardará la pelota en alcanzar su altura máxima? ¿Cuál es la altura máxima? ¿Cuándo la velocidad de la pelota es la mitad de la velocidad inicial? c) ¿A qué altura está la pelota cuando su velocidad es la mitad de la velocidad inicial? a) x x b) En los ejercicios 3 a 8, encontrar la integral indefinida. 5. 7.    4x2 x4 3 dx x 8 x3 2x 4. 6. dx 9 sen x dx 8.    16. 2 3  3x x4 dx 4x2 x2 5 cos x 1 dx 10. Encontrar la solución particular de la ecuación diferencial ƒ (x) 6(x 1) cuya gráfica pasa por el punto (2, 1) y es tangente a la recta 3x y 5 0 en ese punto. Campos de pendientes En los ejercicios 11 y 12 se da una ecuación diferencial, un punto y un campo de pendientes. a) Dibujar dos soluciones aproximadas de la ecuación diferencial en el campo de pendiente, una de las cuales pase a través del punto indicado. b) Utilizar la integración para encontrar la solución particular de la ecuación diferencial y utilizar una herramienta de graficación para representar la solución. 2x 4, S4, 2D dy dx 12. y −1 1 2 x 2 2x, S6, 2D 5 0 5 10 15 20 25 30 v1 0 2.5 7 16 29 45 65 6 60 1 32 1 33 10 20 30 40 50 60 0 5 21 40 62 78 83 Emplear una herramienta de graficación para determinar un modelo de la forma v at3 bt2 ct d para los datos. a) 64 1 31 18. 3n1 n 1 3n2 n 1 . . . 2 2 20 x 20. 2i 1 20 20 1 12 12 22. i 4i 1 ii 2 1 Calcular cada suma para x1 7 2, x2 SeaFSxD f SxD dx  f 1 a) Utilizar una herramienta de graficación para completar la tabla. x 0 1.0 1.5 1.9 2.0 2.1 2.5 3.0 4.0 5.0  1 3 f 13 . % 1 a) Utilizar esta fórmula para aproximar el error de la aproximación. cos x dx. Encontrar 1 % 1 b) sen t 2 dt. Utilizar esta fórmula para aproximar 1 1 1 x2 dx. c) Probar que la aproximación gaussiana de dos puntos es exacta para todos los polinomios de grado 3 o menor. 7. Arquímedes demostró que el área de un arco parabólico es igual a del producto de la base y la altura (ver la figura). FXxC x h FXxC % x 1 1 sen t 2 dt. Utilizar una FSxD x 2 x 2 2 herramienta de graficacón para completar la tabla y estimar lím GSxD. b) Sea GSxD x 5, x4 b a) Graficar el arco parabólico delimitado por y 9 x2 y el eje x. Utilizar una integral apropiada para encontrar el área A. b) Encontrar la base y la altura del arco y verificar la fórmula de Arquímedes. c) Demostrar la fórmula de Arquímedes para una parábola general. 2 x 1.9 1.95 1.99 2.01 2.1 GXxC 3y c) Utilizar la definición de la derivada para encontrar el valor exacto del límite lím GSxD. x SOLUCIÓN DE PROBLEMAS 1 2 1 1, x3 % La aproximación gaussiana de dos puntos para f es % x 2. 23. Escribir en notación sigma a) la suma de los primeros diez enteros impares positivos, b) la suma de los cubos de los primeros n enteros positivos y c) 6 10 14 18 · · · 42. 24. 6. 1 dt, x > 0. t a) Encontrar L(1). b) Encontrar L (x) y L (1). c) Utilizar una herramienta de graficación para aproximar el valor de x (hasta tres lugares decimales) para el cual L(x) 1. d) Demostrar que L(x1 x2) L(x1) L(x2) para todos los valores positivos de x1 y x2. 2 1 i i 1 % x 65 3nn n 1 . . . Solución de problemas Sea SxD 1 310 17. 19. 7 51 En los ejercicios 17 y 18, utilizar la notación sigma para escribir la suma. i −2 38 Reescribir las velocidades en pies por segundo. Usar las capacidades de regresión de una herramienta de graficación para encontrar los modelos cuadráticos para los datos en el apartado a). c) Aproximar la distancia recorrida por cada carro durante los 30 segundos. Explicar la diferencia en las distancias. i −1 21 1. a) b) 21. −6 0 SP En los ejercicios 19 a 22, utilizar las propiedades de las sumas y el teorema 4.2 para calcular las sumas. y x t v2 Encontrar la solución particular de la ecuación diferencial ƒ (x) 6x cuya gráfica pasa por el punto (1, 2). dy dx 0 v Modelado matemático La tabla muestra las velocidades (en millas por hora) de dos carros sobre una rampa de acceso a una carretera interestatal. El tiempo t está en segundos. 2 sec2 x dx 9. 11. t Los ejercicios de repaso ubicados al final de cada capítulo proporcionan a los estudiantes más oportunidades para practicar. Estos conjuntos de ejercicios constituyen una revisión completa de los conceptos del capítulo y son un medio excelente para que los estudiantes preparen un examen. Ejercicios de repaso En los ejercicios 1 y 2, utilizar la gráfica de f para dibujar una gráfica de ƒ. 3. 65. Modelado matemático Se prueba un vehículo experimental en una pista recta. Parte del reposo y su velocidad v (metros por segundo) se registra en la tabla cada 10 segundos durante un minuto. EJERCICIOS DE REPASO Integración 2.  a) Utilizar una herramienta de graficación para representar ƒ(t) 0.5 sen( tY6) para 0 t 24. Emplear la gráfica para explicar por qué el valor medio de ƒ(t) es cero sobre el intervalo. b) Recurrir a una herramienta de graficación para representar S(t) y la recta g(t) tY4 1.8 en la misma ventana de observación. Utilizar la gráfica y el resultado del apartado a) para explicar por qué g recibe el nombre recta de tendencia. “¿Cuándo usaré esto?”, los autores tratan de responder esta pregunta de los estudiantes con ejercicios y ejemplos que se seleccionaron con todo cuidado. Las aplicaciones se toman de diversas fuentes: eventos actuales, datos de trabajo, tendencias industriales, y se relacionan con una amplia gama de intereses. Entender dónde se usa (o puede usarse) el cálculo fomenta una comprensión más completa del material. y 2 donde S son las ventas (en miles) y t es el tiempo en meses. 2 1 3 dx 2 APLICACIONES 1. 3x 6 5 4 3 i 3n3.) (Sugerencia: Sea ci 1 4 6 y 4 1. 7. CAPÍTULO 4 f x 5 sobre la región delimitada por las gráficas de las ecuaciones. 2 318 14. 5 y 2 En los ejercicios 3 y 4, a) escribir el área bajo la gráfica de la función dada definida sobre el intervalo indicado como un límite. Después b) calcular la suma del apartado a) y c) calcular el límite tili d l lt d d l t d b) 8. Galileo Galilei (1564-1642) enunció la siguiente proposición relativa a los objetos en caída libre: El tiempo en cualquier espacio que se recorre por un cuerpo acelerado uniformemente es igual al tiempo en el cual ese mismo espacio se recorrería por el mismo cuerpo movién- Estos conjuntos de ejercicios al final de cada capítulo prueban las habilidades de los estudiantes con preguntas desafiantes que retan su pensamiento. xiv Características Cálculos clásicos con relevancia contemporánea TEOREMAS Los teoremas proporcionan el marco conceptual del cálculo; se enuncian claramente y se distinguen del resto del texto por medio de recuadros para tener una rápida referencia visual. Las demostraciones más importantes muchas veces siguen al teorema, y se proporcionan otras más en un apéndice. TEOREMA 4.9 EL TEOREMA FUNDAMENTAL DEL CÁLCULO Si una función ƒ es continua en el intervalo cerrado [a, b] y F es una antiderivada de ƒ en el intervalo [a, b], entonces % b f SxD dx FSbD FSaD. a DEFINICIONES Al igual que con los teoremas, las definiciones se enuncian claramente utilizando palabras sencillas y precisas; también se separan del texto mediante recuadros para tener una rápida referencia visual. DEFINICIÓN DE LONGITUD DE ARCO Sea la función dada por y f(x) que represente una curva suave en el intervalo [a, b]. La longitud del arco de f entre a y b es % b s 1 F f SxDG 2 dx. a Similarmente, para una curva suave dada por x c y d es % g(y), la longitud de arco de g entre d s 1 F g S yDG 2 dy. c La regla de L’Hôpital también puede aplicarse a los límites unilaterales, como se demuestra en los ejemplos 6 y 7. Forma indeterminada 00 EJEMPLO 6 Encontrar lím sen x x. x PROCEDIMIENTOS y NOTAS Los procedimientos aparecen separados del texto para brindar una referencia fácil. Estas líneas proporcionan a los estudiantes instrucciones paso a paso que les ayudarán a resolver problemas de manera rápida y eficiente. 0 Solución Porque la sustitución directa produce la forma indeterminada 00, proceder como se muestra abajo. Para empezar, asumir que el límite existe y es igual a y. ln y lím sen x x x Forma indeterminada 00. 0 ln lím sen x x x 0  Tomar un logaritmo natural de cada lado. lím ln sen x x Continuidad. lím x ln sen x  Forma indeterminada 0 · ( x x 0 0 ln sen x lím x 0 1 x cot x lím x 0 1 x2 x2 lím x 0 tan x 2x lím x 0 sec2x Forma indeterminada Regla de L’Hôpital. Forma indeterminada 0Y0. 0 Regla de L’Hôpital. Las notas proporcionan detalles adicionales acerca de los Ahora, porque ln y 0, concluir que y e 1, y se sigue que teoremas, definiciones y ejemplos. Ofrecen una profundización adicional o generalizaciones importantes que los estulím sen x 1. diantes podrían omitir involuntariamente. Al igual que las ayudas de estudio, NOTA Al aplicar la fórmula para la longitud de arco a una curva, hay que asegurarse de que la curva se recorra una sola vez en el intervalo de integración. Por ejemplo, el círculo dado por las notas resultan invaluax ⫽ cos t y y ⫽ sen t, recorre una sola vez el intervalo 0 ⱕ t ⱕ 2␲, pero recorre dos veces el interbles para los estudiantes. valo 0 ⱕ t ⱕ 4␲. I 0 x x 0 Y . ). xv Características Ampliar la experiencia del cálculo ENTRADAS DE CAPÍTULO Ecuaciones diferenciales 6 Las entradas de capítulo proporcionan motivación inicial para el material que se abordará en el capítulo. Además de los objetivos, en la entrada de cada capítulo un concepto importante se relaciona con una aplicación del mundo real. Esto motiva a los estudiantes a que descubran la relevancia del cálculo en la vida. En este capítulo se estudiará una de las más importantes aplicaciones del cálculo: las ecuaciones diferenciales. El lector aprenderá nuevos métodos para resolver diferentes tipos de ecuaciones diferenciales, como las homogéneas, lineales de primer orden y de Bernoulli. Posteriormente aplicará esas reglas para resolver ecuaciones diferenciales en problemas de aplicación. En este capítulo, se aprenderá: n Cómo generar un campo de pendientes de una ecuación diferencial y encontrar una solución particular. (6.1) n Cómo usar una función exponencial para modelos de crecimiento y decrecimiento. (6.2) n Como usar el método de separación de variables para resolver ecuaciones diferenciales. (6.3) n Cómo resolver ecuaciones diferenciales lineales de primer orden y la ecuación diferencial de Bernoulli. (6.4) EXPLORACIÓN Converso del teorema 4.4 ¿Es verdadero el converso del teorema 4.4 ? Esto es, si una función es integrable, ¿tiene que ser continua? Explicar el razonamiento y proporcionar ejemplos. Describir las relaciones entre continuidad, derivabilidad e integrabilidad. ¿Cuál es la condición más fuerte? ¿Cuál es la más débil? ¿Qué condiciones implican otras condiciones? ■ ■ EXPLORACIÓN Suponer que se pide encontrar una de las siguientes integrales. ¿Cuál elegiría? Explicar la respuesta. EXPLORACIONES Las exploraciones proporcionan a los estudiantes retos únicos para estudiar conceptos que no se han cubierto formalmente. Les permiten aprender mediante el descubrimiento e introducen temas relacionados con los que están estudiando en el momento. Al explorar temas de esta manera, se estimula a que los estudiantes piensen de manera más amplia. a) % % % % x3 x 2x3 b) 1 dx o 1 dx tanS3xD sec 2 S3xD dx Una función y f(x) es una solución de una ecuación diferencial, si la ecuación se satisface cuando y y sus derivadas se remplazan por f(x) y sus derivadas. Una manera de resolver una ecuación diferencial es mediante los campos de pendientes, los cuales muestran la forma de todas las soluciones de una ecuación diferencial. (Ver sección 6.1) o 405 tan S3xD dx NOTAS HISTÓRICAS Y BIOGRAFÍAS Las notas históricas proporcionan a los estudiantes información sobre los fundamentos del cálculo; las biografías les ayudan a sensibilizar y a enseñarles acerca de las personas que contribuyeron a la creación formal del cálculo. DESAFÍOS DEL EXAMEN PUTNAM n n1 o n  1 n 8? 134. Demostrar que si x es positivo, entonces  loge 1   1 1 . > x 1x Estos problemas fueron preparados por el Committee on the Putnam Prize Competition. © The Mathematical Association of America. Todos los derechos reservados. Las preguntas del examen Putnam aparecen en algunas secciones y se toman de los exámenes Putnam reales. Estos ejercicios extenderán los límites del entendimiento de los estudiantes en relación con el cálculo y brindarán desafíos adicionales para aquellos más interesados. The Granger Collection Preparación del examen Putnam 133. ¿Cuál es mayor donde n Dr. Dennis Kunkel/Getty Images Según el tipo de bacteria, el tiempo que le toma duplicar su peso al cultivo puede variar mucho, desde varios minutos hasta varios días. ¿Cómo usaría una ecuación diferencial para modelar la tasa de crecimiento del peso del cultivo de una bacteria? (Vea la sección 6.3, ejercicio 84.) LA SUMA DE LOS PRIMEROS CIEN ENTEROS BLAISE PASCAL (1623-1662) El maestro de Carl Friedrich Gauss (17771855) pidió a sus alumnos que sumaran todos los enteros desde 1 hasta 100. Cuando Gauss regresó con la respuesta correcta muy poco tiempo después, el maestro no pudo evitar mirarle atónito. Lo siguiente fue lo que hizo Gauss: Pascal es bien conocido por sus .. . 1 2 3 100 contribuciones a diversas áreas de las ... 99 98 1 matemáticas y de la física, así como por 100 ... 101 101 101 su influencia con Leibniz. Aunque buena 101 100 101 parte de su obra en cálculo fue intuitiva y 5 050 carente del rigor exigible en las matemáticas 2 modernas, Pascal anticipó muchos Esto se generaliza por medio del teorema resultados relevantes. 4.2, donde 100 Oi t 1 100S101D 2 5 050. PROYECTOS DE SECCIÓN Los proyectos aparecen en algunas secciones y exploran a mayor profundidad las aplicaciones relacionadas con los temas que se están estudiando. Proporcionan una forma interesante y entretenida para que los estudiantes trabajen e investiguen ideas de manera conjunta. PROYECTO DE TRABAJO Demostración del teorema fundamental Utilizar una herramienta de graficación para representar la función y1 . Sea F(x) la siguiente función sen2t en el intervalo 0 t de x. % x FSxD b) Utilizar las funciones de integración de una herramienta de graficación para representar F. c) Emplear las funciones de derivación de una herramienta de graficación para hacer la gráfica de F (x). ¿Cómo se relaciona esta gráfica con la gráfica de la parte b)? d) Verificar que la derivada de y (1Y2)t (sen 2t)Y4 es sen2t. Graficar y y escribir un pequeño párrafo acerca de cómo esta gráfica se relaciona con las de los apartados b) y c). sen 2 t dt 0 a) Completar la tabla. Explicar por qué los valores de ƒ están creciendo. x FXxC 0 Y6 Y3 Y2 2 Y3 5 Y6 xvi Características Tecnología integrada para el mundo actual % x2x Encontrar INVESTIGACIONES CON SISTEMAS ALGEBRAICOS POR COMPUTADORA Cambio de variables EJEMPLO 5 1 dx. Los ejemplos a lo largo del libro se acompañan de investigaciones que emplean un sistema algebraico por computadora (por ejemplo, Maple®) para explorar de manera adicional un ejemplo relacionado en el libro. Permiten a los estudiantes explorar el cálculo manipulando funciones, gráficas, etc., y observar los resultados. Solución Como en el ejemplo previo, considerar que u 2x 1 para obtener dx duY2. Como el integrando contiene un factor de x, se tiene que despejar x en términos de u, como se muestra. u 2x Su x 1 1DY2 Resolver para x en términos de u. Después de esto, utilizando la sustitución, se obtiene % x2x 1 dx % % u 1 2 1 Su3Y2 4 1 u5Y2 4 5Y2  1 S2x 10 u1Y2 du2 u1Y2D du u3Y2 3Y2 C 1 S2x 6 1D5Y2 1D3Y2 C. Razonamiento gráfico En los ejercicios 55 a 58, a) usar una herramienta de graficación para representar gráficamente la función, b) representar su función inversa utilizando la herramienta de graficación y c) determinar si la gráfica de la relación inversa es una función inversa. Explicar la respuesta. EJERCICIOS CON HERRAMIENTAS DE GRAFICACIÓN La comprensión con frecuencia mejora utilizando una gráfica o visualización. Los ejercicios de tecnología de graficación piden a los estudiantes recurrir a una herramienta de graficación para ayudar a encontrar una solución. 55. f SxD x3 x dy dx 0.25y, y0 4 68. dy dx 4 y0 6 y, 69. dy dx 0.02y 10 70. dy dx 0.2x 2 71. dy dx 0.4y 3 72. dy 1  e dx 2 x 8 y, y0 y0 9 x, y0 1 y , 4 y0 2 79. 81. 2 y, sen CAS En los ejercicios 79 a 82, usar un sistema algebraico por compu- a % % 1 4x x2 1 13 dx 80. 1 d sen 82. hSxD x4 x2 A lo largo del libro, los recuadros de tecnología dan a los estudiantes una visión de cómo la tecnología puede usarse para ayudar a resolver problemas y explorar los conceptos del cálculo. No sólo proporcionan discusiones acerca de dónde la tecnología tiene éxito, sino también sobre dónde puede fracasar. tadora para encontrar la integral. Usar el sistema algebraico por computadora para hacer la gráfica de dos antiderivadas. Describir la relación entre las gráficas de las dos antiderivadas. 67. 56. TECNOLOGÍA CAS Campos de pendientes En los ejercicios 67 a 72, usar un sistema algebraico por computadora para a) trazar la gráfica del campo de pendientes para la ecuación diferencial y b) trazar la gráfica de la solución que satisface la condición inicial especificada. 4 % % x x2 2 4x ex e 2 13 x 3  dx dx CAS En los ejercicios 33 a 40, usar un sistema algebraico por computado- ra para determinar la primitiva que atraviesa el punto dado. Usar el sistema para hacer la gráfica de la antiderivada resultante. 33. 35.   x 2 5x dx, 6, 0 34. 10x  25 x2  x  2 dx, 0, 1 x 2  22 36.   6x 2  1 dx, 2, 1 x 2x 13 x3 x 2 42 dx, 3, 4 EJERCICIOS CON SISTEMAS ALGEBRAICOS POR COMPUTADORA ¡NUEVO! De igual manera que los ejercicios con herramientas de graficación, algunos ejercicios pueden resolverse mejor utilizando un sistema algebraico por computadora. Estos ejercicios son nuevos en esta edición. TECNOLOGÍA La regla de Simpson puede usarse para dar una buena aproximación del valor de la integral en el ejemplo 2 (para n 10, la aproximación es 1.839). Al usar la integración numérica, sin embargo, se debe estar consciente de que la regla de Simpson no siempre da buenas aproximaciones cuando algunos de los límites de integración están cercanos a una asíntota vertical. Por ejemplo, usando el teorema fundamental del cálculo, se obtiene % 1.99 0 x 4 3 dx  6.213. x2 Aplicando la regla de Simpson (con n mación de 6.889. 10) para esta integral se produce una aproxi- P Preparación para el cálculo En este capítulo se revisan varios conceptos que lo ayudarán a prepararse para el estudio del cálculo. Estos conceptos incluyen el dibujo de gráficas y funciones así como el ajuste de modelos matemáticos a conjuntos de datos. Es importante repasar estos conceptos antes de adentrarse en el cálculo. En este capítulo, se aprenderá: n Cómo identificar las características de ■ las ecuaciones y dibujar sus gráficas. (P.1) n Cómo encontrar y graficar ecuaciones de rectas, incluidas rectas paralelas y perpendiculares, utilizando el concepto de pendiente. (P.2) n Cómo evaluar y graficar funciones y sus diferentes transformaciones. (P.3) n Cómo ajustar modelos matemáticos a conjuntos de datos encontrados en la vida real. (P.4) Jeremy Walker/Getty Images ■ En 2006, China rebasó a Estados Unidos como el mayor emisor de dióxido de carbono del mundo, el principal gas del efecto invernadero. Dadas las concentraciones de dióxido de carbono en la atmósfera durante varios años, ¿pueden los viejos modelos matemáticos predecir con exactitud las futuras concentraciones atmosféricas en comparación con modelos más recientes? (Ver la sección P.1, ejemplo 6.) Los modelos matemáticos se usan generalmente para describir conjuntos de datos y pueden representarse por diferentes tipos de funciones tales como las lineales, cuadráticas, cúbicas, racionales y trigonométricas. (Ver la sección P.4.) 1 2 CAPÍTULO P P.1 Preparación para el cálculo Gráficas y modelos ■ ■ ■ ■ ■ Trazar la gráfica de una ecuación. Encontrar las intersecciones de una gráfica con los ejes. Analizar las posibles simetrías de una gráfica con respecto a un eje y el origen. Encontrar los puntos de intersección de dos gráficas. Interpretar modelos matemáticos con datos de la vida real. Archive Photos La gráfica de una ecuación RENÉ DESCARTES (1596-1650) Descartes hizo numerosas contribuciones a la filosofía, la ciencia y las matemáticas. En su libro La Géométrie, publicado en 1637, describió la idea de representar los puntos del plano por medio de pares de números reales y las curvas en el plano mediante ecuaciones. y 8 (1, 4) 4 2 3x 7 y (2, 1) 2 2 4 6 (3, 2) 4 x 8 3x Método analítico. Ahora, elaboramos una tabla de valores dando valores de x. x 0 1 2 y 7 4 1 3 2 4 Método numérico. 5 7, en realidad sólo NOTA Aunque se mencione el dibujo de la figura P.1 como la gráfica de 3x + y representa una porción de la misma. La gráfica completa se extendería fuera de la página. (4, 5) 6 7 y A partir de la tabla, puede verse que (0, 7), (1, 4), (2, 1), (3, 2) y (4, 5) son soluciones de la ecuación inicial 3x + y 7. Al igual que muchas ecuaciones, ésta tiene una cantidad infinita de soluciones. El conjunto de todos los puntos solución constituye la gráfica de la ecuación, como ilustra la figura P.1. (0, 7) 6 En 1637, el matemático francés René Descartes revolucionó las matemáticas al unir sus dos ramas principales: álgebra y geometría. Con ayuda del plano coordenado de Descartes, los conceptos geométricos se pudieron formular de manera analítica y los algebraicos visualizarse de forma gráfica. La potencia de este método es tal que durante un siglo se consiguió desarrollar la mayor parte del cálculo. Las posibilidades de éxito en el cálculo aumentarán siguiendo el mismo método. Es decir, realizar el cálculo desde múltiples perspectivas —gráfica, analítica y numérica— incrementará la comprensión de los conceptos fundamentales. Considerar la ecuación 3x + y 7. El punto (2, 1) es un punto solución de la ecuación puesto que esta última se satisface (es verdadera) cuando se sustituye x por 2 y y por 1. Esta ecuación tiene muchas otras soluciones, como (1, 4) y (0, 7). Para encontrarlas de manera sistemática, despejar y de la ecuación inicial. Procedimiento gráfico: 3x 7 y Figura P.1 En este curso se estudiarán varias técnicas para la representación gráfica. La más simple consiste en dibujar puntos hasta que la forma esencial de la gráfica se haga evidente. EJEMPLO 1 Dibujo de una gráfica mediante el trazado de puntos y Dibujar la gráfica de y 7 6 5 4 x2 y 2 x2 2. Solución Primero construimos una tabla de valores. A continuación, marcamos los puntos dados en la tabla. 3 x 2 1 x 4 3 2 La parábola y Figura P.2 2 x2 3 2 y 2 2 1 1 0 2 1 1 2 3 2 7 4 Por último, unir los puntos con una curva suave, como se muestra en la figura P.2. Esta gráfica es una parábola. Se trata de una de las cónicas que se estudiarán en el capítulo 10. SECCIÓN P.1 Gráficas y modelos 3 Uno de los inconvenientes de la representación mediante el trazado de puntos radica en que la obtención de una idea confiable de la forma de una gráfica puede exigir que se marque un gran número de puntos. Utilizando sólo unos pocos, se corre el riesgo de obtener una visión deformada de la gráfica. Por ejemplo, suponiendo que para dibujar la gráfica de 1 30 x y 10x2 39 x4 se han marcado sólo cinco puntos: ( 3, 3), ( 1, 1), (0, 0), (1, 1) y (3, 3), como se muestra en la figura P.3a. A partir de estos cinco puntos, se podría concluir que la gráfica es una recta. Sin embargo, esto no es correcto. Trazando varios puntos más puede verse que la gráfica es más complicada, como se observa en la figura P.3b. y y x (39 y (3, 3) 3 10x 2 x 4) 3 2 2 (1, 1) 1 1 (0, 0) x 3 2 1 ( 1, 1) 1 1 2 ( 3, 3) 2 3 x 3 Si se marcan pocos puntos, puede obtenerse una gráfica incorrecta 3 2 1 a) b) c) d) e) f) y y y y y y 3x2 2x 5 3x2 2x 25 x3 3x2 20x 5 3x3 40x2 50x 45 (x 12)3 (x 2)(x 4)(x 6) 3 2 3 a) b) Figura P.3 TECNOLOGÍA La tecnología moderna ha simplificado el dibujo de gráficas. No obstante, incluso recurriendo a ella, es posible desfigurar una gráfica. Por ejemplo, las pantallas de una herramienta de graficación de la figura P.4 muestran una porción de la gráfica de x3 x3 Resolver este problema usando sólo métodos gráficos conllevaría una estrategia simple de “intuición, comprobación y revisión”. ¿Qué tipo de aspectos podría involucrar un planteamiento analítico? Por ejemplo, ¿tiene simetrías la gráfica?, ¿tiene inflexiones? Si es así, ¿dónde están? A medida que se avance por los capítulos 1, 2 y 3 de este texto, se estudiarán muchas herramientas analíticas nuevas que serán de ayuda para analizar gráficas de ecuaciones como éstas. 2 1 EXPLORACIÓN Comparación de los métodos gráfico y analítico Utilizar una herramienta de graficación para representar cada una de las siguientes ecuaciones. En cada caso, encontrar una ventana de representación que muestre las principales características de la gráfica. 1 y x3 x2 25. La pantalla de la izquierda puede inducir a pensar que la gráfica es una recta. Sin embargo, la de la derecha muestra que no es así. Entonces, cuando se dibuja una gráfica ya sea a mano o mediante una herramienta de graficación, debe tenerse en cuenta que las diferentes ventanas de representación pueden dar lugar a imágenes muy distintas de la gráfica. Al elegir una ventana, la clave está en mostrar una imagen de la gráfica que se adecue al contexto del problema. 5 10 5 10 5 10 35 10 Visualizaciones en la pantalla de una herramienta de graficación de y 3 x 2 x 25 Figura P.4 NOTA En este libro, el término herramienta de graficación se refiere a una calculadora graficadora o a un programa graficador como Maple, Mat