U.S. Meat Export Federation: United States wildlife and wildlife product imports from 2000–2014 and TSE PRION aka Mad Cow Type Disease

Saturday, January 18, 2020

United States wildlife and wildlife product imports from 2000–2014 and TSE PRION aka Mad Cow Type Disease


Subject: United States wildlife and wildlife product imports from 2000–2014 


Understanding the appropriate interpretation of the ‘country_imp_exp’ and ‘country_origin’ fields also illuminates how seemingly incongruous records listing the US as the ‘country_origin’ for a US import can in fact be valid data. For example, ‘control_number’ 2005537093 represents a shipment of shoe products derived from white-tailed deer (Odocoileus virginianus). The ‘country_origin’ is recorded as the US, where the wildlife was presumably originally harvested, while Italy is recorded as the ‘country_imp_exp’ since this was the proximate source of the shoe products. Hence, for wildlife products where some part of the manufacturing process takes place abroad, it is indeed expected that raw materials derived from US wildlife are shipped internationally, thereby resulting in LEMIS data that indicate the US importation of a wildlife product that was originally sourced from the US.



Do tell...TSS

The United States also imported about 23 million pounds of inedible meat by-products—which would include meat and bone meal and other animalderived meals, flours, and residues—between 1980 and 2000 from countries later found to have BSE (see fig 5.). However, the amount of meat by-products derived from cattle is uncertain because the code Customs uses to classify such shipments includes by-products from cattle or other animals. Likewise, any meat and bone meal imported under that code could be from cattle or other animals. While experts, including the Harvard researchers, see the risk of exposure posed by these shipments as extremely low, if any cattle feed contained BSE-infected meat and bone meal, it could create an opportunity to contaminate U.S. cattle. 


CODE

***> The firm does not utilize a code - only shipping documentation with commodity and weights identified.

2007

10,000,000+ LBS. of PROHIBITED BANNED MAD COW FEED I.E. BLOOD LACED MBM IN COMMERCE USA 2007

Date: March 21, 2007 at 2:27 pm PST

RECALLS AND FIELD CORRECTIONS: VETERINARY MEDICINES -- CLASS II

PRODUCT

Bulk cattle feed made with recalled Darling's 85% Blood Meal, Flash Dried, Recall # V-024-2007

CODE

Cattle feed delivered between 01/12/2007 and 01/26/2007

RECALLING FIRM/MANUFACTURER

Pfeiffer, Arno, Inc, Greenbush, WI. by conversation on February 5, 2007.

Firm initiated recall is ongoing.

REASON

Blood meal used to make cattle feed was recalled because it was cross- contaminated with prohibited bovine meat and bone meal that had been manufactured on common equipment and labeling did not bear cautionary BSE statement.

VOLUME OF PRODUCT IN COMMERCE

42,090 lbs.

DISTRIBUTION

WI ___________________________________

PRODUCT

Custom dairy premix products:

MNM ALL PURPOSE Pellet, HILLSIDE/CDL Prot- Buffer Meal, LEE, M.-CLOSE UP PX Pellet, HIGH DESERT/ GHC LACT Meal, TATARKA, M CUST PROT Meal, SUNRIDGE/CDL PROTEIN Blend, LOURENZO, K PVM DAIRY Meal, DOUBLE B DAIRY/GHC LAC Mineral, WEST PIONT/GHC CLOSEUP Mineral, WEST POINT/GHC LACT Meal, JENKS, J/COMPASS PROTEIN Meal, COPPINI - 8# SPECIAL DAIRY Mix, GULICK, L-LACT Meal (Bulk), TRIPLE J - PROTEIN/LACTATION, ROCK CREEK/GHC MILK Mineral, BETTENCOURT/GHC S.SIDE MK-MN, BETTENCOURT #1/GHC MILK MINR, V&C DAIRY/GHC LACT Meal, VEENSTRA, F/GHC LACT Meal, SMUTNY, A- BYPASS ML W/SMARTA, Recall # V-025-2007

CODE

The firm does not utilize a code - only shipping documentation with commodity and weights identified.

RECALLING FIRM/MANUFACTURER

Rangen, Inc, Buhl, ID, by letters on February 13 and 14, 2007. Firm initiated recall is complete.

REASON

Products manufactured from bulk feed containing blood meal that was cross contaminated with prohibited meat and bone meal and the labeling did not bear cautionary BSE statement.

VOLUME OF PRODUCT IN COMMERCE

9,997,976 lbs.

DISTRIBUTION

ID and NV

END OF ENFORCEMENT REPORT FOR MARCH 21, 2007

http://www.fda.gov/Safety/Recalls/EnforcementReports/2007/ucm120446.htm


Docket No: 02-088-1 RE-Agricultural Bioterrorism Protection Act of 2002; [TSS SUBMISSION ON POTENTIAL FOR BSE/TSE & FMD 'SUITCASE BOMBS'] - TSS 1/27/03 (0)

Docket Management

Docket: 02N-0276 - Bioterrorism Preparedness; Registration of Food Facilities, Section 305 Comment Number: EC-254 [TSS SUBMISSION]

Subject: Docket No: 02-088-1 RE-Agricultural Bioterrorism Protection Act of 2002; Date: Mon, 27 Jan 2003 15:54:57 -0600 

From: "Terry S. Singeltary Sr." To: [log in to unmask] Docket No: 02-088-1

Title: Agricultural Bioterrorism Protection Act of 2002; Possession, Use, and Transfer of Biological Agents and Toxins

http://frwebgate.access.gpo.gov/cgi-bin/getdoc.cgi?dbname=2002_register&docid=fr

Greetings,

i would like to kindly submit to this docket and warn of the potential for biological 'suitcase bombs' from civilian air-traffic populations from known BSE/FMD and other exotic animal disease pathogens coming into the USA.

please be warned;

Date: Thu, 21 Mar 2002 08:42:56 -0800 

Reply-To: Bovine Spongiform Encephalopathy 

Sender: Bovine Spongiform Encephalopathy 

From: "Terry S. Singeltary Sr." 

Subject: USA SEALED BORDERS AND THE ''USCS'' (unspecified species coding system) MORE POTENTIAL B.S.eee

Change in Disease Status of Greece With Regard to Foot-and-Mouth

[Federal Register: March 21, 2002 (Volume 67, Number 55)]

snip...

Under Sec. 94.11, meat and other animal products of ruminants and swine, including ship stores, airplane meals, and baggage containing these meat or animal products, may not be imported into the United States except in accordance with Sec. 94.11 and the applicable requirements of the U.S. Department of Agriculture's Food Safety and Inspection Service at 9 CFR chapter III.

snip...

From an economic standpoint, the proposed rule would have little or no impact on U.S. animal stock and commodities. There are two reasons. First, the proposed rule would not remove other disease-based restrictions on the importation of ruminants or swine (and certain meat and other products from those animals) from Greece into the United States. Because bovine spongiform encephalopathy is considered to exist in Greece, the importation of ruminants and meat, meat products, and certain other products of ruminants that have been in Greece is prohibited.

snip...

http://frwebgate.access.gpo.gov/cgi-bin/getdoc.cgi?dbname=2002_register&docid=02

========================

What are the U.S. imports of affected animals or animal products from the country?

Very few products that would be of risk for transmission of BSE were imported into the US from Greece during 2000 or 2001 (January - April). Due to the above mentioned import ban, no live ruminants, ruminant meat, meal made from ruminants, or other high risk products from ruminants were imported from Greece during this time period. In 2001 (January - April), 3000 kg of enzymes and prepared enzymes and 5 kg of medicants containing antibiotics for veterinary use were imported. The data do not provide a species of origin code for these products, therefore they may not contain any ruminant product.

Sources: World Trade Atlas

What is the level of passenger traffic arriving in the United States from the affected country?

Approximately 185,000 direct flights from Greece arrived to US airports in fiscal year 2000. Also, an unknown number of passengers from Greece arrived via indirect flights.

Under APHIS-PPQ's agriculture quarantine inspection monitoring, 584 air passengers from Greece were sampled for items of agricultural interest in fiscal year 2000. Of these passengers, 14 carried meat (non-pork) items that could potentially transmit pathogens that cause BSE; most passengers carried from one to two kilograms (kg) of meat, although one passenger in November 1999 carried 23 kg of meat in a suitcase. Florida, Massachusetts, and New York were the reported destinations of these passengers. None of the passengers with meat items reported plans to visit or work on a ranch or farm while in the US.

Source: US Department of Transportation, and APHIS-PPQ Agricultural Quarantine Inspection data base

http://www.aphis.usda.gov/vs/ceah/cei/bse_greece0701.htm

Greetings list members,

i just cannot accept this;

23 kg of meat in a suitcase (suitcase bomb...TSS)

The data do not provide a species of origin code for these products, therefore they may not contain any ruminant product.

what kind of statement is this?

how stupid do they think we are?

it could also very well mean that _all_ of it was ruminant based products !

Terry S. Singeltary Sr., Bacliff, Texas USA



Owens, Julie

From: Terry S. Singeltary Sr. [flounder9@verizon.net]

Sent: Monday, July 24, 2006 1:09 PM

To: FSIS Regulations Comments

Subject: [Docket No. FSIS-2006-0011] FSIS Harvard Risk Assessment of Bovine Spongiform Encephalopathy (BSE)

Page 1 of 98

8/3/2006

Greetings FSIS,

I would kindly like to comment on the following ;

[Federal Register: July 12, 2006 (Volume 71, Number 133)]

[Notices]

[Page 39282-39283]

From the Federal Register Online via GPO Access [wais.access.gpo.gov]

[DOCID:fr12jy06-35]

-----------------------------------------------------------------------

DEPARTMENT OF AGRICULTURE

Food Safety and Inspection Service

[Docket No. FSIS-2006-0011]

Harvard Risk Assessment of Bovine Spongiform Encephalopathy (BSE)

Update; Notice of Availability and Technical Meeting 

snip...

COMPARING APPLES TO ORANGES I.E. USA TESTING FIGURES FOR BSE TO CATTLE RATIO before June 2004 Enhanced BSE surveillance, during June 2004 Enhanced BSE cover-up, and AFTER, which was proposed this week to be around 40,000 annually from here on out, in a cattle population for USA of about 100 million every year.

THEN COMPARE TO E.U. COUNTRIES TESTING FIGURES FOR BSE TO CATTLE RATIO.

PLEASE note besides the total tests *** country, I have added total cattle population along with some additional information on some countries below. While you are analyzing the additional information, check out some of the imports to USA from documented BSE countries and please note, among other things, the infamous, non-species coding system for feed, mbm, and such.

Seems those USA BSE triple firewalls have been seeping all along.

AFTER analyzing for yourself, then ask yourself, who is fooling whom? ...TSS 

snip...see full text ;

Singeltary Submission to [Docket No. FSIS-2006-0011] Harvard Risk Assessment of Bovine Spongiform Encephalopathy (BSE) 


FSIS ET AL COMMENT BACK TO Singeltary;

Response to Public Comments on the Harvard Risk Assessment of Bovine Spongiform Encephalopathy Update, October 31, 2005 

INTRODUCTION 

The United States Department of Agriculture’s Food Safety and Inspection Service (FSIS) held a public meeting on July 25, 2006 in Washington, D.C. to present findings from the Harvard Risk Assessment of Bovine Spongiform Encephalopathy Update, October 31, 2005 (report and model located on the FSIS website: http://www.fsis.usda.gov/Science/Risk_Assessments/index.asp). 

Comments on technical aspects of the risk assessment were then submitted to FSIS. Comments were received from Food and Water Watch, Food Animal Concerns Trust (FACT), Farm Sanctuary, RCALF USA, Linda A Detwiler, and Terry S. Singeltary. 

This document provides itemized replies to the public comments received on the 2005 updated Harvard BSE risk assessment. Please bear the following points in mind: 


THE YEAR 2020

USDA OIE BSE TSE PRION FDA PART 589 BSE TSE PRION aka MAD COW FEED BAN Failure 2020 UPDATE

SATURDAY, DECEMBER 21, 2019

In vitro detection of haematogenous prions in white-tailed deer orally dosed with low concentrations of chronic wasting disease

''Our study demonstrated in vitro detection of amyloid seeding activity (prions) in buffy-coat cells harvested from deer orally dosed with low concentrations of CWD positive (+) brain (1 gr and 300 ng) or saliva (300 ng RT-QuIC equivalent).''

''Our own ongoing studies in WTD demonstrate that oral doses of 1mg and 300ng brain or 300ng saliva equivalent contain sufficient infectivity to initiate CWD infection (doses are 3–9 logs lower than our previous experimental exposures; manuscripts in preparation).''

snip...

Oral transmission and early lymphoid tropism of chronic wasting disease PrPres in mule deer fawns (Odocoileus hemionus) 

Christina J. Sigurdson1, Elizabeth S. Williams2, Michael W. Miller3, Terry R. Spraker1,4, Katherine I. O'Rourke5 and Edward A. Hoover1

Department of Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523- 1671, USA1 Department of Veterinary Sciences, University of Wyoming, 1174 Snowy Range Road, University of Wyoming, Laramie, WY 82070, USA 2 Colorado Division of Wildlife, Wildlife Research Center, 317 West Prospect Road, Fort Collins, CO 80526-2097, USA3 Colorado State University Veterinary Diagnostic Laboratory, 300 West Drake Road, Fort Collins, CO 80523-1671, USA4 Animal Disease Research Unit, Agricultural Research Service, US Department of Agriculture, 337 Bustad Hall, Washington State University, Pullman, WA 99164-7030, USA5

Author for correspondence: Edward Hoover.Fax +1 970 491 0523. e-mail ehoover@lamar.colostate.edu

Mule deer fawns (Odocoileus hemionus) were inoculated orally with a brain homogenate prepared from mule deer with naturally occurring chronic wasting disease (CWD), a prion-induced transmissible spongiform encephalopathy. Fawns were necropsied and examined for PrP res, the abnormal prion protein isoform, at 10, 42, 53, 77, 78 and 80 days post-inoculation (p.i.) using an immunohistochemistry assay modified to enhance sensitivity. PrPres was detected in alimentary-tract-associated lymphoid tissues (one or more of the following: retropharyngeal lymph node, tonsil, Peyer's patch and ileocaecal lymph node) as early as 42 days p.i. and in all fawns examined thereafter (53 to 80 days p.i.). No PrPres staining was detected in lymphoid tissue of three control fawns receiving a control brain inoculum, nor was PrPres detectable in neural tissue of any fawn. PrPres-specific staining was markedly enhanced by sequential tissue treatment with formic acid, proteinase K and hydrated autoclaving prior to immunohistochemical staining with monoclonal antibody F89/160.1.5. These results indicate that CWD PrP res can be detected in lymphoid tissues draining the alimentary tract within a few weeks after oral exposure to infectious prions and may reflect the initial pathway of CWD infection in deer. The rapid infection of deer fawns following exposure by the most plausible natural route is consistent with the efficient horizontal transmission of CWD in nature and enables accelerated studies of transmission and pathogenesis in the native species.

snip...

These results indicate that mule deer fawns develop detectable PrP res after oral exposure to an inoculum containing CWD prions. In the earliest post-exposure period, CWD PrPres was traced to the lymphoid tissues draining the oral and intestinal mucosa (i.e. the retropharyngeal lymph nodes, tonsil, ileal Peyer's patches and ileocaecal lymph nodes), which probably received the highest initial exposure to the inoculum. Hadlow et al. (1982) demonstrated scrapie agent in the tonsil, retropharyngeal and mesenteric lymph nodes, ileum and spleen in a 10-month-old naturally infected lamb by mouse bioassay. Eight of nine sheep had infectivity in the retropharyngeal lymph node. He concluded that the tissue distribution suggested primary infection via the gastrointestinal tract. The tissue distribution of PrPres in the early stages of infection in the fawns is strikingly similar to that seen in naturally infected sheep with scrapie. These findings support oral exposure as a natural route of CWD infection in deer and support oral inoculation as a reasonable exposure route for experimental studies of CWD.

snip...



V. Use in animal feed of material from deer and elk NOT considered at high risk for CWD

FDA continues to consider materials from deer and elk NOT considered at high risk for CWD to be acceptable for use in NON-RUMINANT animal feeds in accordance with current agency regulations, 21 CFR 589.2000. Deer and elk not considered at high risk include: (1) deer and elk from areas not declared by State officials to be endemic for CWD and/or to be CWD eradication zones; and (2) deer and elk that were not at some time during the 60-month period immediately before the time of slaughter in a captive herd that contained a CWD-positive animal.


***> cattle, pigs, sheep, cwd, tse, prion, oh my! 

***> In contrast, cattle are highly susceptible to white-tailed deer CWD and mule deer CWD in experimental conditions but no natural CWD infections in cattle have been reported (Sigurdson, 2008; Hamir et al., 2006). 

Sheep and cattle may be exposed to CWD via common grazing areas with affected deer but so far, appear to be poorly susceptible to mule deer CWD (Sigurdson, 2008). In contrast, cattle are highly susceptible to white-tailed deer CWD and mule deer CWD in experimental conditions but no natural CWD infections in cattle have been reported (Sigurdson, 2008; Hamir et al., 2006). It is not known how susceptible humans are to CWD but given that the prion can be present in muscle, it is likely that humans have been exposed to the agent via consumption of venison (Sigurdson, 2008). Initial experimental research suggests that human susceptibility to CWD is low and there may be a robust species barrier for CWD transmission to humans (Sigurdson, 2008), however the risk appetite for a public health threat may still find this level unacceptable. 



cwd scrapie pigs oral routes 

***> However, at 51 months of incubation or greater, 5 animals were positive by one or more diagnostic methods. Furthermore, positive bioassay results were obtained from all inoculated groups (oral and intracranial; market weight and end of study) suggesting that swine are potential hosts for the agent of scrapie. <*** 

>*** Although the current U.S. feed ban is based on keeping tissues from TSE infected cattle from contaminating animal feed, swine rations in the U.S. could contain animal derived components including materials from scrapie infected sheep and goats. These results indicating the susceptibility of pigs to sheep scrapie, coupled with the limitations of the current feed ban, indicates that a revision of the feed ban may be necessary to protect swine production and potentially human health. <*** 

***> Results: PrPSc was not detected by EIA and IHC in any RPLNs. All tonsils and MLNs were negative by IHC, though the MLN from one pig in the oral <6 5="" 6="" at="" by="" detected="" eia.="" examined="" group="" in="" intracranial="" least="" lymphoid="" month="" months="" of="" one="" pigs="" positive="" prpsc="" quic="" the="" tissues="" was="">6 months group, 5/6 pigs in the oral <6 4="" and="" group="" months="" oral="">6 months group. Overall, the MLN was positive in 14/19 (74%) of samples examined, the RPLN in 8/18 (44%), and the tonsil in 10/25 (40%). 

***> Conclusions: This study demonstrates that PrPSc accumulates in lymphoid tissues from pigs challenged intracranially or orally with the CWD agent, and can be detected as early as 4 months after challenge. CWD-infected pigs rarely develop clinical disease and if they do, they do so after a long incubation period. This raises the possibility that CWD-infected pigs could shed prions into their environment long before they develop clinical disease. Furthermore, lymphoid tissues from CWD-infected pigs could present a potential source of CWD infectivity in the animal and human food chains. 




Friday, December 14, 2012 

DEFRA U.K. What is the risk of Chronic Wasting Disease CWD being introduced into Great Britain? A Qualitative Risk Assessment October 2012 

snip..... 

In the USA, under the Food and Drug Administration's BSE Feed Regulation (21 CFR 589.2000) most material (exceptions include milk, tallow, and gelatin) from deer and elk is prohibited for use in feed for ruminant animals. With regards to feed for non-ruminant animals, under FDA law, CWD positive deer may not be used for any animal feed or feed ingredients. For elk and deer considered at high risk for CWD, the FDA recommends that these animals do not enter the animal feed system. However, this recommendation is guidance and not a requirement by law. Animals considered at high risk for CWD include: 

1) animals from areas declared to be endemic for CWD and/or to be CWD eradication zones and 

2) deer and elk that at some time during the 60-month period prior to slaughter were in a captive herd that contained a CWD-positive animal. 

Therefore, in the USA, materials from cervids other than CWD positive animals may be used in animal feed and feed ingredients for non-ruminants. 

The amount of animal PAP that is of deer and/or elk origin imported from the USA to GB can not be determined, however, as it is not specified in TRACES. 

It may constitute a small percentage of the 8412 kilos of non-fish origin processed animal proteins that were imported from US into GB in 2011. 

Overall, therefore, it is considered there is a __greater than negligible risk___ that (nonruminant) animal feed and pet food containing deer and/or elk protein is imported into GB. 

There is uncertainty associated with this estimate given the lack of data on the amount of deer and/or elk protein possibly being imported in these products. 

snip..... 

36% in 2007 (Almberg et al., 2011). In such areas, population declines of deer of up to 30 to 50% have been observed (Almberg et al., 2011). In areas of Colorado, the prevalence can be as high as 30% (EFSA, 2011). The clinical signs of CWD in affected adults are weight loss and behavioural changes that can span weeks or months (Williams, 2005). In addition, signs might include excessive salivation, behavioural alterations including a fixed stare and changes in interaction with other animals in the herd, and an altered stance (Williams, 2005). These signs are indistinguishable from cervids experimentally infected with bovine spongiform encephalopathy (BSE). Given this, if CWD was to be introduced into countries with BSE such as GB, for example, infected deer populations would need to be tested to differentiate if they were infected with CWD or BSE to minimise the risk of BSE entering the human food-chain via affected venison. snip..... The rate of transmission of CWD has been reported to be as high as 30% and can approach 100% among captive animals in endemic areas (Safar et al., 2008). 

snip..... 

In summary, in endemic areas, there is a medium probability that the soil and surrounding environment is contaminated with CWD prions and in a bioavailable form. In rural areas where CWD has not been reported and deer are present, there is a greater than negligible risk the soil is contaminated with CWD prion. snip..... In summary, given the volume of tourists, hunters and servicemen moving between GB and North America, the probability of at least one person travelling to/from a CWD affected area and, in doing so, contaminating their clothing, footwear and/or equipment prior to arriving in GB is greater than negligible... For deer hunters, specifically, the risk is likely to be greater given the increased contact with deer and their environment. However, there is significant uncertainty associated with these estimates. 

snip..... 

Therefore, it is considered that farmed and park deer may have a higher probability of exposure to CWD transferred to the environment than wild deer given the restricted habitat range and higher frequency of contact with tourists and returning GB residents. 

snip..... 


***> READ THIS VERY, VERY, CAREFULLY, AUGUST 1997 MAD COW FEED BAN WAS A SHAM, AS I HAVE STATED SINCE 1997! 3 FAILSAFES THE FDA ET AL PREACHED AS IF IT WERE THE GOSPEL, IN TERMS OF MAD COW BSE DISEASE IN USA, AND WHY IT IS/WAS/NOT A PROBLEM FOR THE USA, and those are; 

BSE TESTING (failed terribly and proven to be a sham) 

BSE SURVEILLANCE (failed terribly and proven to be a sham) 

BSE 589.2001 FEED REGULATIONS (another colossal failure, and proven to be a sham) 

these are facts folks. trump et al just admitted it with the feed ban. 

see; 

FDA Reports on VFD Compliance 

John Maday 

August 30, 2019 09:46 AM VFD-Form 007 (640x427) 

Before and after the current Veterinary Feed Directive rules took full effect in January, 2017, the FDA focused primarily on education and outreach. ( John Maday ) Before and after the current Veterinary Feed Directive (VFD) rules took full effect in January, 2017, the FDA focused primarily on education and outreach to help feed mills, veterinarians and producers understand and comply with the requirements. Since then, FDA has gradually increased the number of VFD inspections and initiated enforcement actions when necessary. On August 29, FDA released its first report on inspection and compliance activities. The report, titled “Summary Assessment of Veterinary Feed Directive Compliance Activities Conducted in Fiscal Years 2016 – 2018,” is available online.


SUNDAY, SEPTEMBER 1, 2019 

***> FDA Reports on VFD Compliance 


TUESDAY, APRIL 18, 2017 

*** EXTREME USA FDA PART 589 TSE PRION FEED LOOP HOLE STILL EXIST, AND PRICE OF POKER GOES UP *** 


It is clear that the designing scientists must also have shared Mr Bradleys surprise at the results because all the dose levels right down to 1 gram triggered infection.


it is clear that the designing scientists must have also shared Mr Bradleys surprise at the results because all the dose levels right down to 1 gram triggered infection.


P98 The agent of H-type bovine spongiform encephalopathy associated with E211K prion protein polymorphism transmits after oronasal challenge 

Greenlee JJ (1), Moore SJ (1), and West Greenlee MH (2) (1) United States Department of Agriculture, Agricultural Research Service, National Animal Disease Center, Virus and Prion Research Unit, Ames, IA, United States (2) Department of Biomedical Sciences, Iowa State University College of Veterinary Medicine, Ames, IA, United States

reading up on this study from Prion 2018 Conference, very important findings ;

***> This study demonstrates that the H-type BSE agent is transmissible by the oronasal route. 

***> These results reinforce the need for ongoing surveillance for classical and atypical BSE to minimize the risk of potentially infectious tissues entering the animal or human food chains.

PRION 2018 CONFERENCE ABSTRACT


WEDNESDAY, OCTOBER 24, 2018 

Experimental Infection of Cattle With a Novel Prion Derived From Atypical H-Type Bovine Spongiform Encephalopathy


-------- Original Message --------

Subject: DOCKET-- 03D-0186 -- FDA Issues Draft Guidance on Use of Material From Deer and Elk in Animal Feed; Availability 

Date: Fri, 16 May 2003 11:47:37 -0500 

From: "Terry S. Singeltary Sr." To: fdadockets@oc.fda.gov

Greetings FDA,

i would kindly like to comment on;

Docket 03D-0186

FDA Issues Draft Guidance on Use of Material From Deer and Elk in Animal Feed; Availability

Several factors on this apparent voluntary proposal disturbs me greatly, please allow me to point them out;

1. MY first point is the failure of the partial ruminant-to-ruminant feed ban of 8/4/97. this partial and voluntary feed ban of some ruminant materials being fed back to cattle is terribly flawed. without the _total_ and _mandatory_ ban of all ruminant materials being fed back to ruminants including cattle, sheep, goat, deer, elk and mink, chickens, fish (all farmed animals for human/animal consumption), this half ass measure will fail terribly, as in the past decades...

2. WHAT about sub-clinical TSE in deer and elk? with the recent findings of deer fawns being infected with CWD, how many could possibly be sub-clinically infected. until we have a rapid TSE test to assure us that all deer/elk are free of disease (clinical and sub-clinical), we must ban not only documented CWD infected deer/elk, but healthy ones as well. it this is not done, they system will fail...

3. WE must ban not only CNS (SRMs specified risk materials), but ALL tissues. recent new and old findings support infectivity in the rump or ass muscle. wether it be low or high, accumulation will play a crucial role in TSEs.

4. THERE are and have been for some time many TSEs in the USA. TME in mink, Scrapie in Sheep and Goats, and unidentified TSE in USA cattle. all this has been proven, but the TSE in USA cattle has been totally ignored for decades. i will document this data below in my references.

5. UNTIL we ban all ruminant by-products from being fed back to ALL ruminants, until we rapid TSE test (not only deer/elk) but cattle in sufficient numbers to find (1 million rapid TSE test in USA cattle annually for 5 years), any partial measures such as the ones proposed while ignoring sub-clinical TSEs and not rapid TSE testing cattle, not closing down feed mills that continue to violate the FDA's BSE feed regulation (21 CFR 589.2000) and not making freely available those violations, will only continue to spread these TSE mad cow agents in the USA. I am curious what we will call a phenotype in a species that is mixed with who knows how many strains of scrapie, who knows what strain or how many strains of TSE in USA cattle, and the CWD in deer and elk (no telling how many strains there), but all of this has been rendered for animal feeds in the USA for decades. it will get interesting once someone starts looking in all species, including humans here in the USA, but this has yet to happen...

6. IT is paramount that CJD be made reportable in every state (especially ''sporadic'' cjd), and that a CJD Questionnaire must be issued to every family of a victim of TSE. only checking death certificates will not be sufficient. this has been proven as well (see below HISTORY OF CJD -- CJD QUESTIONNAIRE)

7. WE must learn from our past mistakes, not continue to make the same mistakes...

REFERENCES

Six white-tailed deer fawns test positive for CWD

MADISON -- Six fawns in the area of south central Wisconsin where chronic wasting disease has been found in white-tailed deer have tested positive for the disease, according to Department of Natural Resources wildlife health officials. These are the youngest wild white-tailed deer detected with chronic wasting disease (CWD) to date.

Approximately 4,200 fawns, defined as deer under 1 year of age, were sampled from the eradication zone over the last year. The majority of fawns sampled were between the ages of 5 to 9 months, though some were as young as 1 month. Two of the six fawns with CWD detected were 5 to 6 months old. All six of the positive fawns were taken from the core area of the CWD eradication zone where the highest numbers of positive deer have been identified.

snip...


===================================================

===================================

now, just what is in that deer feed? _ANIMAL PROTEIN_

Subject: MAD DEER/ELK DISEASE AND POTENTIAL SOURCES 

Date: Sat, 25 May 2002 18:41:46 -0700 

From: "Terry S. Singeltary Sr." 

Reply-To: BSE-L 

To: BSE-L

8420-20.5% Antler Developer For Deer and Game in the wild Guaranteed Analysis Ingredients / Products Feeding Directions

snip...

_animal protein_


BODE'S GAME FEED SUPPLEMENT #400 A RATION FOR DEER NET WEIGHT 50 POUNDS 22.6 KG.

snip...

_animal protein_


Ingredients

Grain Products, Plant Protein Products, Processed Grain By-Products, Forage Products, Roughage Products 15%, Molasses Products, __Animal Protein Products__, Monocalcium Phosphate, Dicalcium Pyosphate, Salt, Calcium Carbonate, Vitamin A Acetate with D-activated Animal Sterol (source of Vitamin D3), Vitamin E Supplement, Vitamin B12 Supplement, Riboflavin Supplement, Niacin Supplement, Calcium Panothenate, Choline Chloride, Folic Acid, Menadione Soduim Bisulfite Complex, Pyridoxine Hydorchloride, Thiamine Mononitrate, d-Biotin, Manganous Oxide, Zinc Oxide, Ferrous Carbonate, Calcium Iodate, Cobalt Carbonate, Dried Sacchoromyces Berevisiae Fermentation Solubles, Cellulose gum, Artificial Flavors added.


===================================

MORE ANIMAL PROTEIN PRODUCTS FOR DEER

Bode's #1 Game Pellets A RATION FOR DEER F3153

GUARANTEED ANALYSIS Crude Protein (Min) 16% Crude Fat (Min) 2.0% Crude Fiber (Max) 19% Calcium (Ca) (Min) 1.25% Calcium (Ca) (Max) 1.75% Phosphorus (P) (Min) 1.0% Salt (Min) .30% Salt (Max) .70%

Ingredients

Grain Products, Plant Protein Products, Processed Grain By-Products, Forage Products, Roughage Products, 15% Molasses Products, __Animal Protein Products__, Monocalcium Phosphate, Dicalcium Phosphate, Salt, Calcium Carbonate, Vitamin A Acetate with D-activated Animal Sterol (source of Vitamin D3) Vitamin E Supplement, Vitamin B12 Supplement, Roboflavin Supplement, Niacin Supplement, Calcium Pantothenate, Choline Chloride, Folic Acid, Menadione Sodium Bisulfite Complex, Pyridoxine Hydrochloride, Thiamine Mononitrate, e - Biotin, Manganous Oxide, Zinc Oxide, Ferrous Carbonate, Calcium Iodate, Cobalt Carbonate, Dried Saccharyomyces Cerevisiae Fermentation Solubles, Cellulose gum, Artificial Flavors added.

FEEDING DIRECTIONS Feed as Creep Feed with Normal Diet


INGREDIENTS

Grain Products, Roughage Products (not more than 35%), Processed Grain By-Products, Plant Protein Products, Forage Products, __Animal Protein Products__, L-Lysine, Calcium Carbonate, Salt, Monocalcium/Dicalcium Phosphate, Yeast Culture, Magnesium Oxide, Cobalt Carbonate, Basic Copper Chloride, Manganese Sulfate, Manganous Oxide, Sodium Selenite, Zinc Sulfate, Zinc Oxide, Sodium Selenite, Potassium Iodide, Ethylenediamine Dihydriodide, Vitamin E Supplement, Vitamin A Supplement, Vitamin D3 Supplement, Mineral Oil, Mold Inhibitor, Calcium Lignin Sulfonate, Vitamin B12 Supplement, Menadione Sodium Bisulfite Complex, Calcium Pantothenate, Riboflavin, Niacin, Biotin, Folic Acid, Pyridoxine Hydrochloride, Mineral Oil, Chromium Tripicolinate

DIRECTIONS FOR USE

Deer Builder Pellets is designed to be fed to deer under range conditions or deer that require higher levels of protein. Feed to deer during gestation, fawning, lactation, antler growth and pre-rut, all phases which require a higher level of nutrition. Provide adequate amounts of good quality roughage and fresh water at all times.


===================================================

DEPARTMENT OF HEALTH & HUMAN SERVICES PUBLIC HEALTH SERVICE FOOD AND DRUG ADMINISTRATION

April 9, 2001 WARNING LETTER

01-PHI-12 CERTIFIED MAIL RETURN RECEIPT REQUESTED

Brian J. Raymond, Owner Sandy Lake Mills 26 Mill Street P.O. Box 117 Sandy Lake, PA 16145 PHILADELPHIA DISTRICT

Tel: 215-597-4390

Dear Mr. Raymond:

Food and Drug Administration Investigator Gregory E. Beichner conducted an inspection of your animal feed manufacturing operation, located in Sandy Lake, Pennsylvania, on March 23, 2001, and determined that your firm manufactures animal feeds including feeds containing prohibited materials. The inspection found significant deviations from the requirements set forth in Title 21, code of Federal Regulations, part 589.2000 - Animal Proteins Prohibited in Ruminant Feed. The regulation is intended to prevent the establishment and amplification of Bovine Spongiform Encephalopathy (BSE) . Such deviations cause products being manufactured at this facility to be misbranded within the meaning of Section 403(f), of the Federal Food, Drug, and Cosmetic Act (the Act).

Our investigation found failure to label your swine feed with the required cautionary statement "Do Not Feed to cattle or other Ruminants" The FDA suggests that the statement be distinguished by different type-size or color or other means of highlighting the statement so that it is easily noticed by a purchaser.

In addition, we note that you are using approximately 140 pounds of cracked corn to flush your mixer used in the manufacture of animal feeds containing prohibited material. This flushed material is fed to wild game including deer, a ruminant animal. Feed material which may potentially contain prohibited material should not be fed to ruminant animals which may become part of the food chain.

The above is not intended to be an all-inclusive list of deviations from the regulations. As a manufacturer of materials intended for animal feed use, you are responsible for assuring that your overall operation and the products you manufacture and distribute are in compliance with the law. We have enclosed a copy of FDA's Small Entity Compliance Guide to assist you with complying with the regulation... blah, blah, blah...


================================== 

Subject: MAD DEER/ELK DISEASE AND POTENTIAL SOURCES 

Date: Sat, 25 May 2002 18:41:46 -0700 

From: "Terry S. Singeltary Sr." 

Reply-To: Bovine Spongiform Encephalopathy 


now, what about those 'deer scents' of 100% urine', and the prion that is found in urine, why not just pass the prion with the urine to other deer...

Mrs. Doe Pee Doe in Estrus Model FDE1 Mrs. Doe Pee's Doe in Estrus is made from Estrus urine collected at the peak of the rut, blended with Fresh Doe Urine for an extremely effective buck enticer. Use pre-rut before the does come into heat. Use during full rut when bucks are most active. Use during post-rut when bucks are still actively looking for does. 1 oz.


ELK SCENT/SPRAY BOTTLE

Works anytime of the year *

100 % Cow Elk-in-Heat urine (2oz.) *

Economical - mix with water in spray mist bottle *

Use wind to your advantage

Product Code WP-ESB $9.95


prions in urine? 

DEER & ELK URINE, LURES & SCENT CONTROL DEPARTMENT by MRS.DOE PEE'S Main Index

The Turkey Pro Sez... "Premium, fresh, top-quality, pure 100% undiluted deer lures from Mrs. Doe Pee really work. I won't trust anything else when I'm after big bucks. Sam Collora, owner of the company, proved how well his products work when he bagged this monster buck in 1996.............snip......end........CWD


snip...


DOCKET-- 03D-0186 -- FDA Issues Draft Guidance on Use of Material From Deer and Elk in Animal Feed; Availability 

V. Use in animal feed of material from deer and elk NOT considered at high risk for CWD

FDA continues to consider materials from deer and elk NOT considered at high risk for CWD to be acceptable for use in NON-RUMINANT animal feeds in accordance with current agency regulations, 21 CFR 589.2000. Deer and elk not considered at high risk include: (1) deer and elk from areas not declared by State officials to be endemic for CWD and/or to be CWD eradication zones; and (2) deer and elk that were not at some time during the 60-month period immediately before the time of slaughter in a captive herd that contained a CWD-positive animal.

snip...see full text;

Docket No. FDA-2003-D-0432 (formerly 03D-0186) Use of Material from Deer and Elk in Animal Feed Singeltary Submission


FRIDAY, APRIL 20, 2018 

*** Scrapie Transmits To Pigs By Oral Route, what about the terribly flawed USA tse prion feed ban? 

Research Project: Pathobiology, Genetics, and Detection of Transmissible Spongiform Encephalopathies



CDC

New Outbreak of TSE Prion in NEW LIVESTOCK SPECIES

Mad Camel Disease

Volume 24, Number 6—June 2018 Research 

Prion Disease in Dromedary Camels, Algeria Abstract

Prions cause fatal and transmissible neurodegenerative diseases, including Creutzfeldt-Jakob disease in humans, scrapie in small ruminants, and bovine spongiform encephalopathy (BSE). After the BSE epidemic, and the associated human infections, began in 1996 in the United Kingdom, general concerns have been raised about animal prions. We detected a prion disease in dromedary camels (Camelus dromedarius) in Algeria. Symptoms suggesting prion disease occurred in 3.1% of dromedaries brought for slaughter to the Ouargla abattoir in 2015–2016. We confirmed diagnosis by detecting pathognomonic neurodegeneration and disease-specific prion protein (PrPSc) in brain tissues from 3 symptomatic animals. Prion detection in lymphoid tissues is suggestive of the infectious nature of the disease. PrPSc biochemical characterization showed differences with BSE and scrapie. Our identification of this prion disease in a geographically widespread livestock species requires urgent enforcement of surveillance and assessment of the potential risks to human and animal health.

SNIP...

The possibility that dromedaries acquired the disease from eating prion-contaminated waste needs to be considered.

Tracing the origin of prion diseases is challenging. In the case of CPD, the traditional extensive and nomadic herding practices of dromedaries represent a formidable factor for accelerating the spread of the disease at long distances, making the path of its diffusion difficult to determine. Finally, the major import flows of live animals to Algeria from Niger, Mali, and Mauritania (27) should be investigated to trace the possible origin of CPD from other countries. Camels are a vital animal species for millions of persons globally. The world camel population has a yearly growth rate of 2.1% (28). In 2014, the population was estimated at ≈28 million animals, but this number is probably underestimated.. Approximately 88% of camels are found in Africa, especially eastern Africa, and 12% are found in Asia. Official data reported 350,000 dromedaries in Algeria in 2014 (28).

On the basis of phenotypic traits and sociogeographic criteria, several dromedary populations have been suggested to exist in Algeria (29). However, recent genetic studies in Algeria and Egypt point to a weak differentiation of the dromedary population as a consequence of historical use as a cross-continental beast of burden along trans-Saharan caravan routes, coupled with traditional extensive/nomadic herding practices (30).

Such genetic homogeneity also might be reflected in PRNP. Studies on PRNP variability in camels are therefore warranted to explore the existence of genotypes resistant to CPD, which could represent an important tool for CPD management as it was for breeding programs for scrapie eradication in sheep. In the past 10 years, the camel farming system has changed rapidly, with increasing setup of periurban dairy farms and dairy plants and diversification of camel products and market penetration (13). This evolution requires improved health standards for infectious diseases and, in light of CPD, for prion diseases.

The emergence of another prion disease in an animal species of crucial importance for millions of persons worldwide makes it necessary to assess the risk for humans and develop evidence-based policies to control and limit the spread of the disease in animals and minimize human exposure. The implementation of a surveillance system for prion diseases would be a first step to enable disease control and minimize human and animal exposure. Finally, the diagnostic capacity of prion diseases needs to be improved in all countries in Africa where dromedaries are part of the domestic livestock. 


***> IMPORTS AND EXPORTS <***

***SEE MASSIVE AMOUNTS OF BANNED ANIMAL PROTEIN AKA MAD COW FEED IN COMMERCE USA DECADES AFTER POST BAN ***


MONDAY, FEBRUARY 25, 2019

***> MAD DOGS AND ENGLISHMEN BSE, SCRAPIE, CWD, CJD, TSE PRION A REVIEW 2019


Evidence That Transmissible Mink Encephalopathy Results from Feeding Infected Cattle

Over the next 8-10 weeks, approximately 40% of all the adult mink on the farm died from TME.

snip...

The rancher was a ''dead stock'' feeder using mostly (>95%) downer or dead dairy cattle...


THURSDAY, DECEMBER 19, 2019 

The emergence of classical BSE from atypical/Nor98 scrapie


TUESDAY, OCTOBER 29, 2019 

America BSE 589.2001 FEED REGULATIONS, BSE SURVEILLANCE, BSE TESTING, and CJD TSE Prion


WEDNESDAY, AUGUST 15, 2018 

***> The agent of H-type bovine spongiform encephalopathy associated with E211K prion protein polymorphism transmits after oronasal challenge


MONDAY, JANUARY 09, 2017 

Oral Transmission of L-Type Bovine Spongiform Encephalopathy Agent among Cattle 

CDC Volume 23, Number 2—February 2017 

*** Consumption of L-BSE–contaminated feed may pose a risk for oral transmission of the disease agent to cattle.

*** Consumption of L-BSE–contaminated feed may pose a risk for oral transmission of the disease agent to cattle.


Detection of PrPBSE and prion infectivity in the ileal Peyer’s patch of young calves as early as 2 months after oral challenge with classical bovine spongiform encephalopathy 

Ivett Ackermann1 , Anne Balkema‑Buschmann1 , Reiner Ulrich2 , Kerstin Tauscher2 , James C. Shawulu1 , Markus Keller1 , Olanrewaju I. Fatola1 , Paul Brown3 and Martin H. Groschup1* 

Abstract 

In classical bovine spongiform encephalopathy (C-BSE), an orally acquired prion disease of cattle, the ileal Peyer’s patch (IPP) represents the main entry port for the BSE agent. In earlier C-BSE pathogenesis studies, cattle at 4–6 months of age were orally challenged, while there are strong indications that the risk of infection is highest in young animals. In the present study, unweaned calves aged 4–6 weeks were orally challenged to determine the earli‑ est time point at which newly formed PrPBSE and BSE infectivity are detectable in the IPP. For this purpose, calves were culled 1 week as well as 2, 4, 6 and 8 months post-infection (mpi) and IPPs were examined for BSE infectivity using a bovine PrP transgenic mouse bioassay, and for PrPBSE by immunohistochemistry (IHC) and protein misfolding cyclic amplifcation (PMCA) assays. For the frst time, BSE prions were detected in the IPP as early as 2 mpi by transgenic mouse bioassay and PMCA and 4 mpi by IHC in the follicular dendritic cells (FDCs) of the IPP follicles. These data indi‑ cate that BSE prions propagate in the IPP of unweaned calves within 2 months of oral uptake of the agent.

In summary, our study demonstrates for the frst time PrPBSE (by PMCA) and prion infectivity (by mouse bioassay) in the ileal Peyer’s patch (IPP) of young calves as early as 2 months after infection. From 4 mpi nearly all calves showed PrPBSE positive IPP follicles (by IHC), even with PrPBSE accumulation detectable in FDCs in some animals. Finally, our results confrm the IPP as the early port of entry for the BSE agent and a site of initial propagation of PrPBSE and infectivity during the early pathogenesis of the disease. Terefore, our study supports the recommendation to remove the last four metres of the small intestine (distal ileum) at slaughter, as designated by current legal requirements for countries with a controlled BSE risk status, as an essential measure for consumer and public health protection.


PLOS ONE Journal 

IBNC Tauopathy or TSE Prion disease, it appears, no one is sure 

Terry S. Singeltary Sr., 03 Jul 2015 at 16:53 GMT

***however in 1 C-type challenged animal, Prion 2015 Poster Abstracts S67 PrPsc was not detected using rapid tests for BSE.

***Subsequent testing resulted in the detection of pathologic lesion in unusual brain location and PrPsc detection by PMCA only.

*** IBNC Tauopathy or TSE Prion disease, it appears, no one is sure ***

http://www.plosone.org/annotation/listThread.action?root=86610

*** Singeltary reply ; Molecular, Biochemical and Genetic Characteristics of BSE in Canada Singeltary reply ;

TUESDAY, DECEMBER 31, 2019 In Vitro detection of Chronic Wasting Disease (CWD) prions in semen and reproductive tissues of white tailed deer bucks (Odocoileus virginianus)

SUNDAY, AUGUST 02, 2015  TEXAS CWD, Have you been ThunderStruck, deer semen, straw bred bucks, super ovulation, and the potential TSE Prion connection, what if? 


WEDNESDAY, NOVEMBER 20, 2019 

Sheep Are Susceptible to the Bovine Adapted Transmissible Mink Encephalopathy agent by Intracranial Inoculation and Have Evidence of Infectivity in Lymphoid Tissues

***> ''indicating that sheep inoculated with the bovine TME agent harbor infectivity in their lymph nodes despite a lack of detection with conventional immunoassays.''


THURSDAY, DECEMBER 19, 2019 

The emergence of classical BSE from atypical/Nor98 scrapie


WEDNESDAY, NOVEMBER 20, 2019

Review: Update on Classical and Atypical Scrapie in Sheep and Goats 


WEDNESDAY, MAY 29, 2019 

Incomplete inactivation of atypical scrapie following recommended autoclave decontamination procedures USDA HERE'S YOUR SIGN!


WEDNESDAY, APRIL 17, 2019 

Estimating the impact on food and edible materials of changing scrapie control measures: The scrapie control model


FRIDAY, MARCH 15, 2019 

USDA APHIS SCRAPIE TSE PRION Sheep and Goat Health Update 2019


SUNDAY, JANUARY 12, 2020 2019 

USAHA-AAVLD Annual Meeting October 24-30, 2019 Transmissible Spongiform Encephalopathy TSE Prion CWD, Scrapie UPDATE


FRIDAY, JANUARY 17, 2020 

Tennessee Approximately 400 deer tested positive for Chronic Wasting Disease CWD TSE Prion


FRIDAY, MAY 24, 2019 

Assessing chronic wasting disease strain differences in free-ranging cervids across the United States

MONDAY, MAY 20, 2019 

APHIS, USDA, Announces the Finalized Chronic Wasting Disease Herd Certification Program Standards Singeltary Submissions


CDC

New Outbreak of TSE Prion in NEW LIVESTOCK SPECIES

Mad Camel Disease

Volume 24, Number 6—June 2018 Research 

Prion Disease in Dromedary Camels, Algeria Abstract

Prions cause fatal and transmissible neurodegenerative diseases, including Creutzfeldt-Jakob disease in humans, scrapie in small ruminants, and bovine spongiform encephalopathy (BSE). After the BSE epidemic, and the associated human infections, began in 1996 in the United Kingdom, general concerns have been raised about animal prions. We detected a prion disease in dromedary camels (Camelus dromedarius) in Algeria. Symptoms suggesting prion disease occurred in 3.1% of dromedaries brought for slaughter to the Ouargla abattoir in 2015–2016. We confirmed diagnosis by detecting pathognomonic neurodegeneration and disease-specific prion protein (PrPSc) in brain tissues from 3 symptomatic animals. Prion detection in lymphoid tissues is suggestive of the infectious nature of the disease. PrPSc biochemical characterization showed differences with BSE and scrapie. Our identification of this prion disease in a geographically widespread livestock species requires urgent enforcement of surveillance and assessment of the potential risks to human and animal health.

SNIP...

The possibility that dromedaries acquired the disease from eating prion-contaminated waste needs to be considered.

Tracing the origin of prion diseases is challenging. In the case of CPD, the traditional extensive and nomadic herding practices of dromedaries represent a formidable factor for accelerating the spread of the disease at long distances, making the path of its diffusion difficult to determine. Finally, the major import flows of live animals to Algeria from Niger, Mali, and Mauritania (27) should be investigated to trace the possible origin of CPD from other countries. Camels are a vital animal species for millions of persons globally. The world camel population has a yearly growth rate of 2.1% (28). In 2014, the population was estimated at ≈28 million animals, but this number is probably underestimated.. Approximately 88% of camels are found in Africa, especially eastern Africa, and 12% are found in Asia. Official data reported 350,000 dromedaries in Algeria in 2014 (28).

On the basis of phenotypic traits and sociogeographic criteria, several dromedary populations have been suggested to exist in Algeria (29). However, recent genetic studies in Algeria and Egypt point to a weak differentiation of the dromedary population as a consequence of historical use as a cross-continental beast of burden along trans-Saharan caravan routes, coupled with traditional extensive/nomadic herding practices (30).

Such genetic homogeneity also might be reflected in PRNP. Studies on PRNP variability in camels are therefore warranted to explore the existence of genotypes resistant to CPD, which could represent an important tool for CPD management as it was for breeding programs for scrapie eradication in sheep. In the past 10 years, the camel farming system has changed rapidly, with increasing setup of periurban dairy farms and dairy plants and diversification of camel products and market penetration (13). This evolution requires improved health standards for infectious diseases and, in light of CPD, for prion diseases.

The emergence of another prion disease in an animal species of crucial importance for millions of persons worldwide makes it necessary to assess the risk for humans and develop evidence-based policies to control and limit the spread of the disease in animals and minimize human exposure. The implementation of a surveillance system for prion diseases would be a first step to enable disease control and minimize human and animal exposure. Finally, the diagnostic capacity of prion diseases needs to be improved in all countries in Africa where dromedaries are part of the domestic livestock. https://wwwnc.cdc.gov/eid/article/24/6/17-2007_article ;

***> IMPORTS AND EXPORTS <***

***SEE MASSIVE AMOUNTS OF BANNED ANIMAL PROTEIN AKA MAD COW FEED IN COMMERCE USA DECADES AFTER POST BAN ***


TUESDAY, JANUARY 07, 2020 

Postmortem Quantitative Analysis of Prion Seeding Activity in the Digestive System

indicating that the safety of endoscopic examinations should be reconsidered.

sadly, i tried to tell GUT journal, and Bramble et al this way back, decades ago  03 June 2002 17:14


SATURDAY, SEPTEMBER 21, 2019

National Variability in Prion Disease–Related Safety Policies for Neurologic Procedures


FRIDAY, SEPTEMBER 06, 2019 

Disinfection of Multi-Use Ocular Equipment for Ophthalmological Procedures: A Review of Clinical Effectiveness, Cost-Effectiveness, and Guidelines


Wednesday, September 11, 2019 

Is the re-use of sterilized implant abutments safe enough? (Implant abutment safety) iatrogenic TSE Prion


SUNDAY, SEPTEMBER 08, 2019 

Wisconsin Laboratory Testing Options for Prion Diseases, Wisconsin Neurologists, Clinical Laboratory Directors, and Infection Preventionists, Please Distribute Widely

Preparing for the Storm


TUESDAY, SEPTEMBER 10, 2019 

vCJD permanent deferral policy set to be reversed next month Irish Eye Bank to collect corneas from deceased Irish donors again

counting your chickens again before they have all hatched out $$$


SATURDAY, MARCH 16, 2019 

Medical Devices Containing Materials Derived from Animal Sources (Except for In Vitro Diagnostic Devices) Guidance for Industry and Food and Drug Administration Staff Document issued on March 15, 2019 Singeltary Submission


TUESDAY, APRIL 09, 2019 

Horizon Health Network Moncton Hospital notified more than 700 patients after two cases of CJD were diagnosed both patients had undergone cataracts surgery before being diagnosed


atypical and typical BSE and Scrapie Zoonosis

ZOONOSIS OF SCRAPIE TSE PRION

O.05: Transmission of prions to primates after extended silent incubation periods: Implications for BSE and scrapie risk assessment in human populations 

Emmanuel Comoy, Jacqueline Mikol, Valerie Durand, Sophie Luccantoni, Evelyne Correia, Nathalie Lescoutra, Capucine Dehen, and Jean-Philippe Deslys Atomic Energy Commission; Fontenay-aux-Roses, France 

Prion diseases (PD) are the unique neurodegenerative proteinopathies reputed to be transmissible under field conditions since decades. The transmission of Bovine Spongiform Encephalopathy (BSE) to humans evidenced that an animal PD might be zoonotic under appropriate conditions. Contrarily, in the absence of obvious (epidemiological or experimental) elements supporting a transmission or genetic predispositions, PD, like the other proteinopathies, are reputed to occur spontaneously (atpical animal prion strains, sporadic CJD summing 80% of human prion cases). 

Non-human primate models provided the first evidences supporting the transmissibiity of human prion strains and the zoonotic potential of BSE. Among them, cynomolgus macaques brought major information for BSE risk assessment for human health (Chen, 2014), according to their phylogenetic proximity to humans and extended lifetime. We used this model to assess the zoonotic potential of other animal PD from bovine, ovine and cervid origins even after very long silent incubation periods. 

*** We recently observed the direct transmission of a natural classical scrapie isolate to macaque after a 10-year silent incubation period, 

***with features similar to some reported for human cases of sporadic CJD, albeit requiring fourfold long incubation than BSE. Scrapie, as recently evoked in humanized mice (Cassard, 2014), 

***is the third potentially zoonotic PD (with BSE and L-type BSE), 

***thus questioning the origin of human sporadic cases. 

We will present an updated panorama of our different transmission studies and discuss the implications of such extended incubation periods on risk assessment of animal PD for human health. 

=============== 

***thus questioning the origin of human sporadic cases*** 

=============== 

***our findings suggest that possible transmission risk of H-type BSE to sheep and human. Bioassay will be required to determine whether the PMCA products are infectious to these animals. 

============== 


***Transmission data also revealed that several scrapie prions propagate in HuPrP-Tg mice with efficiency comparable to that of cattle BSE. While the efficiency of transmission at primary passage was low, subsequent passages resulted in a highly virulent prion disease in both Met129 and Val129 mice. 

***Transmission of the different scrapie isolates in these mice leads to the emergence of prion strain phenotypes that showed similar characteristics to those displayed by MM1 or VV2 sCJD prion. 

***These results demonstrate that scrapie prions have a zoonotic potential and raise new questions about the possible link between animal and human prions. 

PRION 2016 TOKYO

Saturday, April 23, 2016

SCRAPIE WS-01: Prion diseases in animals and zoonotic potential 2016

Prion. 10:S15-S21. 2016 ISSN: 1933-6896 printl 1933-690X online

Taylor & Francis

Prion 2016 Animal Prion Disease Workshop Abstracts

WS-01: Prion diseases in animals and zoonotic potential

Juan Maria Torres a, Olivier Andreoletti b, J uan-Carlos Espinosa a. Vincent Beringue c. Patricia Aguilar a,

Natalia Fernandez-Borges a. and Alba Marin-Moreno a

"Centro de Investigacion en Sanidad Animal ( CISA-INIA ). Valdeolmos, Madrid. Spain; b UMR INRA -ENVT 1225 Interactions Holes Agents Pathogenes. ENVT. Toulouse. France: "UR892. Virologie lmmunologie MolécuIaires, Jouy-en-Josas. France

Dietary exposure to bovine spongiform encephalopathy (BSE) contaminated bovine tissues is considered as the origin of variant Creutzfeldt Jakob (vCJD) disease in human. To date, BSE agent is the only recognized zoonotic prion... Despite the variety of Transmissible Spongiform Encephalopathy (TSE) agents that have been circulating for centuries in farmed ruminants there is no apparent epidemiological link between exposure to ruminant products and the occurrence of other form of TSE in human like sporadic Creutzfeldt Jakob Disease (sCJD). However, the zoonotic potential of the diversity of circulating TSE agents has never been systematically assessed. The major issue in experimental assessment of TSEs zoonotic potential lies in the modeling of the ‘species barrier‘, the biological phenomenon that limits TSE agents’ propagation from a species to another. In the last decade, mice genetically engineered to express normal forms of the human prion protein has proved essential in studying human prions pathogenesis and modeling the capacity of TSEs to cross the human species barrier.

To assess the zoonotic potential of prions circulating in farmed ruminants, we study their transmission ability in transgenic mice expressing human PrPC (HuPrP-Tg). Two lines of mice expressing different forms of the human PrPC (129Met or 129Val) are used to determine the role of the Met129Val dimorphism in susceptibility/resistance to the different agents.

These transmission experiments confirm the ability of BSE prions to propagate in 129M- HuPrP-Tg mice and demonstrate that Met129 homozygotes may be susceptible to BSE in sheep or goat to a greater degree than the BSE agent in cattle and that these agents can convey molecular properties and neuropathological indistinguishable from vCJD. However homozygous 129V mice are resistant to all tested BSE derived prions independently of the originating species suggesting a higher transmission barrier for 129V-PrP variant.

Transmission data also revealed that several scrapie prions propagate in HuPrP-Tg mice with efficiency comparable to that of cattle BSE. While the efficiency of transmission at primary passage was low, subsequent passages resulted in a highly virulent prion disease in both Met129 and Val129 mice. 

Transmission of the different scrapie isolates in these mice leads to the emergence of prion strain phenotypes that showed similar characteristics to those displayed by MM1 or VV2 sCJD prion. 

These results demonstrate that scrapie prions have a zoonotic potential and raise new questions about the possible link between animal and human prions. 

***> why do we not want to do TSE transmission studies on chimpanzees $

5. A positive result from a chimpanzee challenged severly would likely create alarm in some circles even if the result could not be interpreted for man. 

***> I have a view that all these agents could be transmitted provided a large enough dose by appropriate routes was given and the animals kept long enough. 

***> Until the mechanisms of the species barrier are more clearly understood it might be best to retain that hypothesis.

snip...

R. BRADLEY


Title: Transmission of scrapie prions to primate after an extended silent incubation period) 

*** In complement to the recent demonstration that humanized mice are susceptible to scrapie, we report here the first observation of direct transmission of a natural classical scrapie isolate to a macaque after a 10-year incubation period. Neuropathologic examination revealed all of the features of a prion disease: spongiform change, neuronal loss, and accumulation of PrPres throughout the CNS. 

*** This observation strengthens the questioning of the harmlessness of scrapie to humans, at a time when protective measures for human and animal health are being dismantled and reduced as c-BSE is considered controlled and being eradicated. 

*** Our results underscore the importance of precautionary and protective measures and the necessity for long-term experimental transmission studies to assess the zoonotic potential of other animal prion strains. 


***> Moreover, sporadic disease has never been observed in breeding colonies or primate research laboratories, most notably among hundreds of animals over several decades of study at the National Institutes of Health25, and in nearly twenty older animals continuously housed in our own facility. <***

Transmission of scrapie prions to primate after an extended silent incubation period 

Emmanuel E. Comoy, Jacqueline Mikol, Sophie Luccantoni-Freire, Evelyne Correia, Nathalie Lescoutra-Etchegaray, Valérie Durand, Capucine Dehen, Olivier Andreoletti, Cristina Casalone, Juergen A. Richt, Justin J. Greenlee, Thierry Baron, Sylvie L. Benestad, Paul Brown & Jean-Philippe Deslys Scientific Reports volume 5, Article number: 11573 (2015) | Download Citation

Abstract 

Classical bovine spongiform encephalopathy (c-BSE) is the only animal prion disease reputed to be zoonotic, causing variant Creutzfeldt-Jakob disease (vCJD) in humans and having guided protective measures for animal and human health against animal prion diseases. Recently, partial transmissions to humanized mice showed that the zoonotic potential of scrapie might be similar to c-BSE. We here report the direct transmission of a natural classical scrapie isolate to cynomolgus macaque, a highly relevant model for human prion diseases, after a 10-year silent incubation period, with features similar to those reported for human cases of sporadic CJD. Scrapie is thus actually transmissible to primates with incubation periods compatible with their life expectancy, although fourfold longer than BSE. Long-term experimental transmission studies are necessary to better assess the zoonotic potential of other prion diseases with high prevalence, notably Chronic Wasting Disease of deer and elk and atypical/Nor98 scrapie.

SNIP...

Discussion We describe the transmission of spongiform encephalopathy in a non-human primate inoculated 10 years earlier with a strain of sheep c-scrapie. Because of this extended incubation period in a facility in which other prion diseases are under study, we are obliged to consider two alternative possibilities that might explain its occurrence. We first considered the possibility of a sporadic origin (like CJD in humans). Such an event is extremely improbable because the inoculated animal was 14 years old when the clinical signs appeared, i.e. about 40% through the expected natural lifetime of this species, compared to a peak age incidence of 60–65 years in human sporadic CJD, or about 80% through their expected lifetimes. Moreover, sporadic disease has never been observed in breeding colonies or primate research laboratories, most notably among hundreds of animals over several decades of study at the National Institutes of Health25, and in nearly twenty older animals continuously housed in our own facility.

The second possibility is a laboratory cross-contamination. Three facts make this possibility equally unlikely. First, handling of specimens in our laboratory is performed with fastidious attention to the avoidance of any such cross-contamination. Second, no laboratory cross-contamination has ever been documented in other primate laboratories, including the NIH, even between infected and uninfected animals housed in the same or adjacent cages with daily intimate contact (P. Brown, personal communication). Third, the cerebral lesion profile is different from all the other prion diseases we have studied in this model19, with a correlation between cerebellar lesions (massive spongiform change of Purkinje cells, intense PrPres staining and reactive gliosis26) and ataxia. The iron deposits present in the globus pallidus are a non specific finding that have been reported previously in neurodegenerative diseases and aging27. Conversely, the thalamic lesion was reminiscent of a metabolic disease due to thiamine deficiency28 but blood thiamine levels were within normal limits (data not shown). The preferential distribution of spongiform change in cortex associated with a limited distribution in the brainstem is reminiscent of the lesion profile in MM2c and VV1 sCJD patients29, but interspecies comparison of lesion profiles should be interpreted with caution. It is of note that the same classical scrapie isolate induced TSE in C57Bl/6 mice with similar incubation periods and lesional profiles as a sample derived from a MM1 sCJD patient30.

We are therefore confident that the illness in this cynomolgus macaque represents a true transmission of a sheep c-scrapie isolate directly to an old-world monkey, which taxonomically resides in the primate subdivision (parvorder of catarrhini) that includes humans. With an homology of its PrP protein with humans of 96.4%31, cynomolgus macaque constitutes a highly relevant model for assessing zoonotic risk of prion diseases. Since our initial aim was to show the absence of transmission of scrapie to macaques in the worst-case scenario, we obtained materials from a flock of naturally-infected sheep, affecting animals with different genotypes32. This c-scrapie isolate exhibited complete transmission in ARQ/ARQ sheep (332 ± 56 days) and Tg338 transgenic mice expressing ovine VRQ/VRQ prion protein (220 ± 5 days) (O. Andreoletti, personal communication). From the standpoint of zoonotic risk, it is important to note that sheep with c-scrapie (including the isolate used in our study) have demonstrable infectivity throughout their lymphoreticular system early in the incubation period of the disease (3 months-old for all the lymphoid organs, and as early as 2 months-old in gut-associated lymph nodes)33. In addition, scrapie infectivity has been identified in blood34, milk35 and skeletal muscle36 from asymptomatic but scrapie infected small ruminants which implies a potential dietary exposure for consumers.

Two earlier studies have reported the occurrence of clinical TSE in cynomolgus macaques after exposures to scrapie isolates. In the first study, the “Compton” scrapie isolate (derived from an English sheep) and serially propagated for 9 passages in goats did not transmit TSE in cynomolgus macaque, rhesus macaque or chimpanzee within 7 years following intracerebral challenge1; conversely, after 8 supplementary passages in conventional mice, this “Compton” isolate induced TSE in a cynomolgus macaque 5 years after intracerebral challenge, but rhesus macaques and chimpanzee remained asymptomatic 8.5 years post-exposure8. However, multiple successive passages that are classically used to select laboratory-adapted prion strains can significantly modify the initial properties of a scrapie isolate, thus questioning the relevance of zoonotic potential for the initial sheep-derived isolate. The same isolate had also induced disease into squirrel monkeys (new-world monkey)9. A second historical observation reported that a cynomolgus macaque developed TSE 6 years post-inoculation with brain homogenate from a scrapie-infected Suffolk ewe (derived from USA), whereas a rhesus macaque and a chimpanzee exposed to the same inoculum remained healthy 9 years post-exposure1. This inoculum also induced TSE in squirrel monkeys after 4 passages in mice. Other scrapie transmission attempts in macaque failed but had more shorter periods of observation in comparison to the current study. Further, it is possible that there are differences in the zoonotic potential of different scrapie strains.

The most striking observation in our study is the extended incubation period of scrapie in the macaque model, which has several implications. Firstly, our observations constitute experimental evidence in favor of the zoonotic potential of c-scrapie, at least for this isolate that has been extensively studied32,33,34,35,36. The cross-species zoonotic ability of this isolate should be confirmed by performing duplicate intracerebral exposures and assessing the transmissibility by the oral route (a successful transmission of prion strains through the intracerebral route may not necessarily indicate the potential for oral transmission37). However, such confirmatory experiments may require more than one decade, which is hardly compatible with current general management and support of scientific projects; thus this study should be rather considered as a case report.

Secondly, transmission of c-BSE to primates occurred within 8 years post exposure for the lowest doses able to transmit the disease (the survival period after inoculation is inversely proportional to the initial amount of infectious inoculum). The occurrence of scrapie 10 years after exposure to a high dose (25 mg) of scrapie-infected sheep brain suggests that the macaque has a higher species barrier for sheep c-scrapie than c-BSE, although it is notable that previous studies based on in vitro conversion of PrP suggested that BSE and scrapie prions would have a similar conversion potential for human PrP38.

Thirdly, prion diseases typically have longer incubation periods after oral exposure than after intracerebral inoculations: since humans can develop Kuru 47 years after oral exposure39, an incubation time of several decades after oral exposure to scrapie would therefore be expected, leading the disease to occur in older adults, i.e. the peak age for cases considered to be sporadic disease, and making a distinction between scrapie-associated and truly sporadic disease extremely difficult to appreciate.

Fourthly, epidemiologic evidence is necessary to confirm the zoonotic potential of an animal disease suggested by experimental studies. A relatively short incubation period and a peculiar epidemiological situation (e.g., all the first vCJD cases occurring in the country with the most important ongoing c-BSE epizootic) led to a high degree of suspicion that c-BSE was the cause of vCJD. Sporadic CJD are considered spontaneous diseases with an almost stable and constant worldwide prevalence (0.5–2 cases per million inhabitants per year), and previous epidemiological studies were unable to draw a link between sCJD and classical scrapie6,7,40,41, even though external causes were hypothesized to explain the occurrence of some sCJD clusters42,43,44. However, extended incubation periods exceeding several decades would impair the predictive values of epidemiological surveillance for prion diseases, already weakened by a limited prevalence of prion diseases and the multiplicity of isolates gathered under the phenotypes of “scrapie” and “sporadic CJD”.

Fifthly, considering this 10 year-long incubation period, together with both laboratory and epidemiological evidence of decade or longer intervals between infection and clinical onset of disease, no premature conclusions should be drawn from negative transmission studies in cynomolgus macaques with less than a decade of observation, as in the aforementioned historical transmission studies of scrapie to primates1,8,9. Our observations and those of others45,46 to date are unable to provide definitive evidence regarding the zoonotic potential of CWD, atypical/Nor98 scrapie or H-type BSE. The extended incubation period of the scrapie-affected macaque in the current study also underscores the limitations of rodent models expressing human PrP for assessing the zoonotic potential of some prion diseases since their lifespan remains limited to approximately two years21,47,48. This point is illustrated by the fact that the recently reported transmission of scrapie to humanized mice was not associated with clinical signs for up to 750 days and occurred in an extreme minority of mice with only a marginal increase in attack rate upon second passage13. The low attack rate in these studies is certainly linked to the limited lifespan of mice compared to the very long periods of observation necessary to demonstrate the development of scrapie. Alternatively, one could estimate that a successful second passage is the result of strain adaptation to the species barrier, thus poorly relevant of the real zoonotic potential of the original scrapie isolate of sheep origin49. The development of scrapie in this primate after an incubation period compatible with its lifespan complements the study conducted in transgenic (humanized) mice; taken together these studies suggest that some isolates of sheep scrapie can promote misfolding of the human prion protein and that scrapie can develop within the lifespan of some primate species.

In addition to previous studies on scrapie transmission to primate1,8,9 and the recently published study on transgenic humanized mice13, our results constitute new evidence for recommending that the potential risk of scrapie for human health should not be dismissed. Indeed, human PrP transgenic mice and primates are the most relevant models for investigating the human transmission barrier. To what extent such models are informative for measuring the zoonotic potential of an animal TSE under field exposure conditions is unknown. During the past decades, many protective measures have been successfully implemented to protect cattle from the spread of c-BSE, and some of these measures have been extended to sheep and goats to protect from scrapie according to the principle of precaution. Since cases of c-BSE have greatly reduced in number, those protective measures are currently being challenged and relaxed in the absence of other known zoonotic animal prion disease. We recommend that risk managers should be aware of the long term potential risk to human health of at least certain scrapie isolates, notably for lymphotropic strains like the classical scrapie strain used in the current study. Relatively high amounts of infectivity in peripheral lymphoid organs in animals infected with these strains could lead to contamination of food products produced for human consumption. Efforts should also be maintained to further assess the zoonotic potential of other animal prion strains in long-term studies, notably lymphotropic strains with high prevalence like CWD, which is spreading across North America, and atypical/Nor98 scrapie (Nor98)50 that was first detected in the past two decades and now represents approximately half of all reported cases of prion diseases in small ruminants worldwide, including territories previously considered as scrapie free... Even if the prevailing view is that sporadic CJD is due to the spontaneous formation of CJD prions, it remains possible that its apparent sporadic nature may, at least in part, result from our limited capacity to identify an environmental origin.


> However, to date, no CWD infections have been reported in people.
key word here is ‘reported’. science has shown that CWD in humans will look like sporadic CJD. SO, how can one assume that CWD has not already transmitted to humans? they can’t, and it’s as simple as that. from all recorded science to date, CWD has already transmitted to humans, and it’s being misdiagnosed as sporadic CJD. …terry
*** LOOKING FOR CWD IN HUMANS AS nvCJD or as an ATYPICAL CJD, LOOKING IN ALL THE WRONG PLACES $$$ ***
*** These results would seem to suggest that CWD does indeed have zoonotic potential, at least as judged by the compatibility of CWD prions and their human PrPC target. Furthermore, extrapolation from this simple in vitro assay suggests that if zoonotic CWD occurred, it would most likely effect those of the PRNP codon 129-MM genotype and that the PrPres type would be similar to that found in the most common subtype of sCJD (MM1).***
Chronic Wasting Disease CWD TSE Prion aka mad deer disease zoonosis
We hypothesize that:
(1) The classic CWD prion strain can infect humans at low levels in the brain and peripheral lymphoid tissues;
(2) The cervid-to-human transmission barrier is dependent on the cervid prion strain and influenced by the host (human) prion protein (PrP) primary sequence;
(3) Reliable essays can be established to detect CWD infection in humans; and
(4) CWD transmission to humans has already occurred. We will test these hypotheses in 4 Aims using transgenic (Tg) mouse models and complementary in vitro approaches.
ZOONOTIC CHRONIC WASTING DISEASE CWD TSE PRION UPDATE
Prion 2017 Conference
First evidence of intracranial and peroral transmission of Chronic Wasting Disease (CWD) into Cynomolgus macaques: a work in progress Stefanie Czub1, Walter Schulz-Schaeffer2, Christiane Stahl-Hennig3, Michael Beekes4, Hermann Schaetzl5 and Dirk Motzkus6 1 
University of Calgary Faculty of Veterinary Medicine/Canadian Food Inspection Agency; 2Universitatsklinikum des Saarlandes und Medizinische Fakultat der Universitat des Saarlandes; 3 Deutsches Primaten Zentrum/Goettingen; 4 Robert-Koch-Institut Berlin; 5 University of Calgary Faculty of Veterinary Medicine; 6 presently: Boehringer Ingelheim Veterinary Research Center; previously: Deutsches Primaten Zentrum/Goettingen 
This is a progress report of a project which started in 2009. 21 cynomolgus macaques were challenged with characterized CWD material from white-tailed deer (WTD) or elk by intracerebral (ic), oral, and skin exposure routes. Additional blood transfusion experiments are supposed to assess the CWD contamination risk of human blood product. Challenge materials originated from symptomatic cervids for ic, skin scarification and partially per oral routes (WTD brain). Challenge material for feeding of muscle derived from preclinical WTD and from preclinical macaques for blood transfusion experiments. We have confirmed that the CWD challenge material contained at least two different CWD agents (brain material) as well as CWD prions in muscle-associated nerves. 
Here we present first data on a group of animals either challenged ic with steel wires or per orally and sacrificed with incubation times ranging from 4.5 to 6.9 years at postmortem. Three animals displayed signs of mild clinical disease, including anxiety, apathy, ataxia and/or tremor. In four animals wasting was observed, two of those had confirmed diabetes. All animals have variable signs of prion neuropathology in spinal cords and brains and by supersensitive IHC, reaction was detected in spinal cord segments of all animals. Protein misfolding cyclic amplification (PMCA), real-time quaking-induced conversion (RT-QuiC) and PET-blot assays to further substantiate these findings are on the way, as well as bioassays in bank voles and transgenic mice. 
At present, a total of 10 animals are sacrificed and read-outs are ongoing. Preclinical incubation of the remaining macaques covers a range from 6.4 to 7.10 years. Based on the species barrier and an incubation time of > 5 years for BSE in macaques and about 10 years for scrapie in macaques, we expected an onset of clinical disease beyond 6 years post inoculation. 
PRION 2017 DECIPHERING NEURODEGENERATIVE DISORDERS 
PRION 2018 CONFERENCE
Oral transmission of CWD into Cynomolgus macaques: signs of atypical disease, prion conversion and infectivity in macaques and bio-assayed transgenic mice
Hermann M. Schatzl, Samia Hannaoui, Yo-Ching Cheng, Sabine Gilch (Calgary Prion Research Unit, University of Calgary, Calgary, Canada) Michael Beekes (RKI Berlin), Walter Schulz-Schaeffer (University of Homburg/Saar, Germany), Christiane Stahl-Hennig (German Primate Center) & Stefanie Czub (CFIA Lethbridge).
To date, BSE is the only example of interspecies transmission of an animal prion disease into humans. The potential zoonotic transmission of CWD is an alarming issue and was addressed by many groups using a variety of in vitro and in vivo experimental systems. Evidence from these studies indicated a substantial, if not absolute, species barrier, aligning with the absence of epidemiological evidence suggesting transmission into humans. Studies in non-human primates were not conclusive so far, with oral transmission into new-world monkeys and no transmission into old-world monkeys. Our consortium has challenged 18 Cynomolgus macaques with characterized CWD material, focusing on oral transmission with muscle tissue. Some macaques have orally received a total of 5 kg of muscle material over a period of 2 years.
After 5-7 years of incubation time some animals showed clinical symptoms indicative of prion disease, and prion neuropathology and PrPSc deposition were detected in spinal cord and brain of some euthanized animals. PrPSc in immunoblot was weakly detected in some spinal cord materials and various tissues tested positive in RT-QuIC, including lymph node and spleen homogenates. To prove prion infectivity in the macaque tissues, we have intracerebrally inoculated 2 lines of transgenic mice, expressing either elk or human PrP. At least 3 TgElk mice, receiving tissues from 2 different macaques, showed clinical signs of a progressive prion disease and brains were positive in immunoblot and RT-QuIC. Tissues (brain, spinal cord and spleen) from these and pre-clinical mice are currently tested using various read-outs and by second passage in mice. Transgenic mice expressing human PrP were so far negative for clear clinical prion disease (some mice >300 days p.i.). In parallel, the same macaque materials are inoculated into bank voles.
Taken together, there is strong evidence of transmissibility of CWD orally into macaques and from macaque tissues into transgenic mouse models, although with an incomplete attack rate.
The clinical and pathological presentation in macaques was mostly atypical, with a strong emphasis on spinal cord pathology.
Our ongoing studies will show whether the transmission of CWD into macaques and passage in transgenic mice represents a form of non-adaptive prion amplification, and whether macaque-adapted prions have the potential to infect mice expressing human PrP.
The notion that CWD can be transmitted orally into both new-world and old-world non-human primates asks for a careful reevaluation of the zoonotic risk of CWD..
***> The notion that CWD can be transmitted orally into both new-world and old-world non-human primates asks for a careful reevaluation of the zoonotic risk of CWD. <***
ZOONOTIC CHRONIC WASTING DISEASE CWD TSE PRION UPDATE

here is the latest;

PRION 2018 CONFERENCE 

Oral transmission of CWD into Cynomolgus macaques: signs of atypical disease, prion conversion and infectivity in macaques and bio-assayed transgenic mice 

Hermann M. Schatzl, Samia Hannaoui, Yo-Ching Cheng, Sabine Gilch (Calgary Prion Research Unit, University of Calgary, Calgary, Canada) Michael Beekes (RKI Berlin), Walter Schulz-Schaeffer (University of Homburg/Saar, Germany), Christiane Stahl-Hennig (German Primate Center) & Stefanie Czub (CFIA Lethbridge). 

To date, BSE is the only example of interspecies transmission of an animal prion disease into humans. The potential zoonotic transmission of CWD is an alarming issue and was addressed by many groups using a variety of in vitro and in vivo experimental systems. Evidence from these studies indicated a substantial, if not absolute, species barrier, aligning with the absence of epidemiological evidence suggesting transmission into humans. Studies in non-human primates were not conclusive so far, with oral transmission into new-world monkeys and no transmission into old-world monkeys. Our consortium has challenged 18 Cynomolgus macaques with characterized CWD material, focusing on oral transmission with muscle tissue. Some macaques have orally received a total of 5 kg of muscle material over a period of 2 years. 

After 5-7 years of incubation time some animals showed clinical symptoms indicative of prion disease, and prion neuropathology and PrPSc deposition were detected in spinal cord and brain of some euthanized animals. PrPSc in immunoblot was weakly detected in some spinal cord materials and various tissues tested positive in RT-QuIC, including lymph node and spleen homogenates. To prove prion infectivity in the macaque tissues, we have intracerebrally inoculated 2 lines of transgenic mice, expressing either elk or human PrP. At least 3 TgElk mice, receiving tissues from 2 different macaques, showed clinical signs of a progressive prion disease and brains were positive in immunoblot and RT-QuIC. Tissues (brain, spinal cord and spleen) from these and pre-clinical mice are currently tested using various read-outs and by second passage in mice. Transgenic mice expressing human PrP were so far negative for clear clinical prion disease (some mice >300 days p.i.). In parallel, the same macaque materials are inoculated into bank voles. 

Taken together, there is strong evidence of transmissibility of CWD orally into macaques and from macaque tissues into transgenic mouse models, although with an incomplete attack rate. 

The clinical and pathological presentation in macaques was mostly atypical, with a strong emphasis on spinal cord pathology. 
Our ongoing studies will show whether the transmission of CWD into macaques and passage in transgenic mice represents a form of non-adaptive prion amplification, and whether macaque-adapted prions have the potential to infect mice expressing human PrP. 

The notion that CWD can be transmitted orally into both new-world and old-world non-human primates asks for a careful reevaluation of the zoonotic risk of CWD.. 

***> The notion that CWD can be transmitted orally into both new-world and old-world non-human primates asks for a careful reevaluation of the zoonotic risk of CWD. <*** 

https://prion2018.org/

READING OVER THE PRION 2018 ABSTRACT BOOK, LOOKS LIKE THEY FOUND THAT from this study ; 

P190 Human prion disease mortality rates by occurrence of chronic wasting disease in freeranging cervids, United States 

Abrams JY (1), Maddox RA (1), Schonberger LB (1), Person MK (1), Appleby BS (2), Belay ED (1) (1) Centers for Disease Control and Prevention (CDC), National Center for Emerging and Zoonotic Infectious Diseases, Atlanta, GA, USA (2) Case Western Reserve University, National Prion Disease Pathology Surveillance Center (NPDPSC), Cleveland, OH, USA.. 

SEEMS THAT THEY FOUND Highly endemic states had a higher rate of prion disease mortality compared to non-CWD 
states

AND ANOTHER STUDY; 

P172 Peripheral Neuropathy in Patients with Prion Disease 

Wang H(1), Cohen M(1), Appleby BS(1,2) (1) University Hospitals Cleveland Medical Center, Cleveland, Ohio (2) National Prion Disease Pathology Surveillance Center, Cleveland, Ohio.. 

IN THIS STUDY, THERE WERE autopsy-proven prion cases from the National Prion Disease Pathology Surveillance Center that were diagnosed between September 2016 to March 2017, 

AND 

included 104 patients. SEEMS THEY FOUND THAT The most common sCJD subtype was MV1-2 (30%), followed by MM1-2 (20%), 

AND 

THAT The Majority of cases were male (60%), AND half of them had exposure to wild game. 

snip...

see more on Prion 2017 Macaque study from Prion 2017 Conference and other updated science on cwd tse prion zoonosis below...terry 

https://prion2018.org/wp-content/uploads/2018/05/program.pdf 

https://prion2018.org/

THURSDAY, OCTOBER 04, 2018 

Cervid to human prion transmission 5R01NS088604-04 Update 

http://grantome.com/grant/NIH/R01-NS088604-04 

http://chronic-wasting-disease.blogspot.com/2018/10/cervid-to-human-prion-transmission.html

snip...full text;

SATURDAY, FEBRUARY 09, 2019 

Experts: Yes, chronic wasting disease in deer is a public health issue — for people


FRIDAY, JULY 26, 2019 

Chronic Wasting Disease in Cervids: Implications for Prion Transmission to Humans and Other Animal Species



***> I urge every Country around the Globe to Declare an Extraordinary Emergency Due To A Foreign Animal Disease Chronic Wasting Disease CWD TSE Prion from the USA, Canada, and Mexico (they have no clue), all of North America should have this Declaration of Emergency against them, just like the one called way back when the shoe was on the other foot with the mad sheep of mad river valley, except this time, it's not a wag the dog false flag, this is for real...terry


***> OIG case # NY-3399-56 REDACTED, VT

***> ''Enclosed is OIG's notification that they have scheduled an investigation of the following individual. REDACTED is alleged to have provided possibly inaccurate test results involving diseased sheep. However, because the results were determined to be inconclusive, no actual violation was actually committed.''

FRIDAY, FEBRUARY 20, 2015 

APHIS Freedom of Information Act (FOIA) Appeal Mouse Bio-Assays 2007-00030-A Sheep Imported From Belgium and the Presence of TSE Prion Disease Kevin Shea to Singeltary 2015

Comment #6: WHAT happened to the test results and MOUSE BIO-ASSAYS of those imported sheep from Belgium that were confiscated and slaughtered from the Faillace's, what sort of TSE did these animals have?

Response: It is not clear how the test results referred to in this comment are relevant to the Harvard BSE Risk Assessment Update. Sheep were not considered in the risk assessment.

Comment #7: WHY is it that the Farm of the Mad Sheep of Mad River Valley were quarantined for 5 years, but none of these farms from Texas and Alabama with Atypical TSE in the Bovine, they have not been quarantined for 5 years, why not, with the real risk of BSE to sheep, whom is to say this was not BSE ?

Response: This comment pertains to policy. As such, it is not addressed here.

[PDF]Owens, Julie Page 1 of 98 8/3/2006 - USDA Food Safety ...

www.fsis.usda.gov/.../2006-0011-1.p... Cached

Food Safety and Inspection Service Loading... by F Greetings - ‎2006 - ‎Related articles Aug 3, 2006 -

Subject: [Docket No. FSIS-2006-0011] ... [Federal Register: July 12, 2006 (Volume 71, Number 133)]. [Notices] ..... group as compared to prior years, we found that conflicting APHIS instructions .....

WHY is it that the Farm of the Mad Sheep of Mad River Valley were quarantined for 5 years, but none of these.




10. ZOONOTIC, ZOONOSIS, CHRONIC WASTING DISEASE CWD TRANSMISSIBLE SPONGIFORM ENCEPHALOPATHY TSE PRION AKA MAD DEER ELK DISEASE IN HUMANS, has it already happened, that should be the question... 

''In particular the US data do not clearly exclude the possibility of human (sporadic or familial) TSE development due to consumption of venison. The Working Group thus recognizes a potential risk to consumers if a TSE would be present in European cervids.'' Scientific opinion on chronic wasting disease (II)

EFSA Panel on Biological Hazards (BIOHAZ) Antonia Ricci Ana Allende Declan Bolton Marianne Chemaly Robert Davies Pablo Salvador Fernández Escámez ... See all authors 

First published: 17 January 2018 https://doi.org/10.2903/j.efsa.2018.5132 ; 

also, see; 

8. Even though human TSE‐exposure risk through consumption of game from European cervids can be assumed to be minor, if at all existing, no final conclusion can be drawn due to the overall lack of scientific data. 

***> In particular the US data do not clearly exclude the possibility of human (sporadic or familial) TSE development due to consumption of venison. 

The Working Group thus recognizes a potential risk to consumers if a TSE would be present in European cervids. It might be prudent considering appropriate measures to reduce such a risk, e.g. excluding tissues such as CNS and lymphoid tissues from the human food chain, which would greatly reduce any potential risk for consumers.. However, it is stressed that currently, no data regarding a risk of TSE infections from cervid products are available. 

snip... 

The tissue distribution of infectivity in CWD‐infected cervids is now known to extend beyond CNS and lymphoid tissues. While the removal of these specific tissues from the food chain would reduce human dietary exposure to infectivity, exclusion from the food chain of the whole carcass of any infected animal would be required to eliminate human dietary exposure. 


85%+ of all human TSE prion, i.e. sporadic CJD, does NOT happen spontaneously, as some would wish you to think. never say never with the TSE Prion disease. ...terry 

***Moreover, sporadic disease has never been observed in breeding colonies or primate research laboratories, most notably among hundreds of animals over several decades of study at the National Institutes of Health25, and in nearly twenty older animals continuously housed in our own facility.*** 


Volume 2: Science 

4. The link between BSE and vCJD 

Summary 4.29 The evidence discussed above that vCJD is caused by BSE seems overwhelming. Uncertainties exist about the cause of CJD in farmers, their wives and in several abattoir workers. It seems that farmers at least might be at higher risk than others in the general population. 1 Increased ascertainment (ie, increased identification of cases as a result of greater awareness of the condition) seems unlikely, as other groups exposed to risk, such as butchers and veterinarians, do not appear to have been affected. The CJD in farmers seems to be similar to other sporadic CJD in age of onset, in respect to glycosylation patterns, and in strain-typing in experimental mice. Some farmers are heterozygous for the methionine/valine variant at codon 129, and their lymphoreticular system (LRS) does not contain the high levels of PrPSc found in vCJD. 

***>It remains a remote possibility that when older people contract CJD from BSE the resulting phenotype is like sporadic CJD and is distinct from the vCJD phenotype in younger people...end

BSE INQUIRY


SATURDAY, JUNE 23, 2018

CDC 

***> Diagnosis of Methionine/Valine Variant Creutzfeldt-Jakob Disease by Protein Misfolding Cyclic Amplification 

Volume 24, Number 7—July 2018 Dispatch 



THURSDAY, DECEMBER 12, 2019 

Heidenhain Variant Creutzfeldt Jakob Disease hvCJD, sporadic spontaneous CJD and the TSE Prion December 14, 2019

22 years, rip mom dod 12/14/97 confirmed hvcjd, just made a promise to mom, and you don't break those promises, never forget, and never let them forget, before we all do...this pearl's for you! love terry


WEDNESDAY, DECEMBER 04, 2019 

Three Cases of Creutzfeldt-Jakob Disease with Visual Disturbances as Initial Manifestation


WEDNESDAY, DECEMBER 25, 2019 

Creutzfeldt-Jakob disease: a systematic review of global incidence, prevalence, infectivity, and incubation

 We found that although CJD, particularly iatrogenic CJD, is rare, the incidence of sporadic CJD is increasing.


Saturday, November 23, 2019 

Prion disease incidence in the United States, 2003–2015


SUNDAY, DECEMBER 29, 2019 

Variant CJD 18 years of research and surveillance


***> HUMAN TRANSMISSIBLE SPONGIFORM ENCEPHALOPATHY TSE PRION DISEASE 1 IN 5,000 NOT ONE IN A MILLION!

Ryan Maddox at the CDC has been doing this for the U.S., and he reported in 2016 that about 1 in every 6,000 deaths is due to prion disease. This figure probably captures some cases that were diagnosed only postmortem or never got referred to the surveillance center, although there might still be some underdiagnosis at work here. 

Simon Mead has announced a figure of 1 in every 4,700 deaths in the U.K. Coming at it from several different angles and data sources, then, we converge on an answer that roughly 1 in every 5,000 people dies of prion disease, or in other words, the general population’s lifetime risk of prion disease is 1 in 5,000.

If you’re a researcher studying prion disease or a family affected by prion disease, people probably often ask you “oh, is that super rare?”. Next time this happens, give the best answer you can give: “it kills about 1 in 5,000 people.” Not super common, but not 1 in a million.


Terry S. Singeltary Sr.

No comments: