Nanostructured Materials: Industrial Applications | SpringerLink


Nanostructured Materials: Industrial Applications

  • Kristin Clement
  • Angela Iseli
  • Dennis Karote
  • Jessica Cremer
  • Shyamala RajagopalanEmail author


Nanoscience and nanotechnology are transforming materials science in a broad way, in a manner similar to polymer chemistry’s transformation of materials science over the preceding century. The continuous development of novel nanostructured materials and the extensive study of physicochemical phenomena at the nanoscale are creating new approaches to innovative technologies that are constantly resulting in products with a wide range of applications [1–5].


Nanostructured Material Zinc Oxide Thermo Gravimetric Analysis National Nanotechnology Initiative Methyl Phosphonic Acid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors would like to thank Ms. Krista Hill-Combs for her assistance in preparing this manuscript.


  1. 1.
    Nouailhat A (2008) An introduction to nanoscience and nanotechnology. Wiley, New YorkCrossRefGoogle Scholar
  2. 2.
    Iseli A, Kwen H, Rajagopalan S (2009) Nanomaterials for environmental remediation. In: Klabunde KJ, Richards RM (eds) Nanoscale materials in chemistry. Wiley, New YorkGoogle Scholar
  3. 3.
    Hornyak GL, Dutta J, Tibbals HF, Rao AK (2008) Introduction to nanoscience. CRC Press, Boca RatonGoogle Scholar
  4. 4.
    Wilson M, Kannangara K, Smith G, Simmons M, Raguse B (2002) Nanotechnology: basic science and emerging technologies. Chapman & Hall/CRC, Boca RatonCrossRefGoogle Scholar
  5. 5.
    Shong CW, Haur SC, Wee ATS (2010) Science at the nanoscale, an introductory textbook. Pan Stanford, SingaporeGoogle Scholar
  6. 6.
    National Nanotechnology Initiative (2011) FAQs: nanotechnology. Online at Accessed 4 Feb 2011
  7. 7.
    Feynman R (1960) There’s plenty of room at the bottom. Caltech Eng Sci 23:22–36Google Scholar
  8. 8.
    Maynard A, Michelson E (2006) First nanotechnology consumer products inventory Available to public. Woodrow Wilson International Center for Scholars. Online at Accessed 25 May 2011
  9. 9.
    Zhang W (2003) Nanoscale iron particles for environmental remediation: an overview. J Nanopart Res 2:323–332CrossRefGoogle Scholar
  10. 10.
    Tratnyek PG, Johnson RI (2006) Nanotechnologies for environmental cleanup. Nano Today 1:44–48CrossRefGoogle Scholar
  11. 11.
    Serpone N, Dondi D, Albini A (2007) Inorganic and organic UV filters: their role and efficacy in sunscreens and suncare products. Inorg Chim Acta 360:794–802CrossRefGoogle Scholar
  12. 12.
    Yuranova T, Laub D, Kiwi J (2007) Synthesis, activity, and characterization of textile showing self-cleaning activity under daylight irradiation. Catal Today 122:109–117CrossRefGoogle Scholar
  13. 13.
    RNCOS (2010) Nanotechnology market forecast to 2013. Online at Accessed 25 May 2011
  14. 14.
    Report to the President and Congress of the Third Assessment of the National Nanotechnology Initiative (2010) President’s Council of Advisors on Science and Technology, Executive Office of the President, Washington, DCGoogle Scholar
  15. 15.
    Cientifica Ltd. (2009) Nanotechnology takes a deep breath… and prepares to save the world! Global Nanotechnology Funding in 2009. Online at Accessed 14 September 2012
  16. 16.
    Organisation for Economic Co-operation and Development (2009) Inventory of National Science, Technology and Innovation Policies for Nanotechnology 2008. Working Party on Nanotechnology, 17 July 2009Google Scholar
  17. 17.
    The National Nanotechnology Initiative (2009) Research and development leading to a revolution in technology and industry, supplement to the president’s FY 2010 Budget. Online at Accessed 14 Sep 2012
  18. 18.
    National Institute for Nanotechnology (2011) online at, 14 May 2010. Accessed 5 May 2011
  19. 19.
    CNPq (2011) online at, 14 May 2010. Accessed 19 May 2011
  20. 20.
    Kay L, Shapira P (2009) Developing nanotechnology in Latin America. J Nanopart Res 11:259–278CrossRefGoogle Scholar
  21. 21.
    Nanoforum EULA report (2008) Fact finding mission nanotechnology. In: Brazil. Sixth Framework Programme for Research and Technological Development (September 2008). Online at Accessed 3 May 2011
  22. 22.
    Technology Strategy Board, Nanoscale Technologies Strategies Report (2009). Online at Accessed 4 May 2011
  23. 23.
    Technology Strategy Board (2011) online at Accessed 4 May 2011
  24. 24.
    Federal Ministry of Education and Research (2004) Nanotechnology conquers markets, German innovation initiative for nanotechnology, 2004. Online at Accessed 3 May 2011
  25. 25.
    Federal Ministry of Education and Research (9 Nov 2009) online at Accessed 14 May 2010
  26. 26.
    Vahtra P (2010) The Rusnano Corporation and internationalisation of Russia’s nanotech industry. Electronic Publication of Pan-European Institute. Online at Accessed 3 May 2011
  27. 27.
    Rusnano (2009) Transforming technology into business. Russian Corporation of Nanotechnologies Annual Report. Accessed 3 May 2011
  28. 28.
    Yamaguchi Y, Komiyama H (2001) Structuring knowledge project in nanotechnology material program launched in Japan. J Nanopart Res 3:105–110CrossRefGoogle Scholar
  29. 29.
    Xie S (2011) Funding and network for nanotechnology in China. National Center for Nanotechnology in China, Institute of Physics. Chinese Academy of Science. Accessed 3 May 2011
  30. 30.
    Italian Trade Commission (2009) Market Report on China Biotechnology and Nanotechnology Industries, Market Report. Accessed 3 May 2011
  31. 31.
    Wieczorek I (2007) Nanotechnology in Korea—actors and innovative potential, Physica, Heidelberg, ISBN 978-3-7908-1973-7Google Scholar
  32. 32.
    Department of Science and Technology (2010) Nano Mission. Accessed 12 Oct 2010.
  33. 33.
    Varadarajan N (2008) Taking baby steps into nano world, Business Today, 12. Accessed 4 May 2011
  34. 34.
    The Energy and Resource Institute (2009) The nanotechnology development in India- a status report. Accessed May 3, 2011.
  35. 35.
    Australian Academy of Science (2009) Nanotechnology in Australia: Trends, application and collaborative opportunities. Accessed 3 May 2011
  36. 36.
    Australian Office of Nanotechnology (2011) National Nanotechnology Strategy (NNS) Annual Report (2007–08). Accessed 3 May 2011
  37. 37.
    Organization for Economic Co-operation and Development (2009). An overview based on indicators and statistics. Directorate for Science, Technology and Industry. Accessed 4 May 2011
  38. 38.
    Ellison DH (2007) Handbook of chemical and biological warfare agents, vol 2. CRC Press, Boca RatonCrossRefGoogle Scholar
  39. 39.
    Li Y-X, Koper O, Atteya M, Klabunde KJ (1992) Adsorption and decomposition of organophosphorus compounds on nanoscale metal oxide particles. In situ GC-MS studies of pulsed microreactions over magnesium oxide. Chem Mater 4:323–330CrossRefGoogle Scholar
  40. 40.
    Klabunde K, Stark J, Mohs C, Park D, Decker S, Jiang Y, Lagadic I, Zhang D (1996) Nanocrystals as stoichiometric reagents with unique surface chemistry. J Phys Chem 100:12142–12153CrossRefGoogle Scholar
  41. 41.
    Stark JV, Park DG, Lagadic I, Klabunde KJ (1996) Nanoscale metal oxide particles/clusters as chemical reagents. Unique surface chemistry on magnesium oxide as shown by enhanced adsorption of acid gases (sulfur dioxide and carbon dioxide) and pressure dependence. Chem Mater 9:1904–1912CrossRefGoogle Scholar
  42. 42.
    Wagner GW, Bartram PW, Koper O, Klabunde KJ (1999) Reactions of VX, GD and HD with nanosize MgO. J Phys Chem B 103:3225–3228CrossRefGoogle Scholar
  43. 43.
    Winter M, Hamal D, Yang X, Kwen H, Jones D, Rajagopalan S, Klabunde KJ (2009) Defining reactivity of solid sorbents: what is the most appropriate metric? Chem Mater 21:2367–2374CrossRefGoogle Scholar
  44. 44.
    Trubitsyn DA, Vorontsov AV (2005) Experimental study of dimethyl methylphsphonate decomposition over anatase TiO2. J Phys Chem B 109:21884–21892CrossRefGoogle Scholar
  45. 45.
    Panayotov DA, Morris JR (2009) Thermal decomposition of a chemical warfare agent simulant (DMMP) on TiO2: adsorbate reaction with lattice oxygen as studied by infrared spectroscopy. J Phys Chem C 113:15684–15691CrossRefGoogle Scholar
  46. 46.
    Panayotov DA, Morris JR (2009) Uptake of a chemical warfare agent simulant (DMMP) on TiO2: reactive adsorption and active site poisoning. Langmuir 25:3652–3658CrossRefGoogle Scholar
  47. 47.
    Quenneville J, Taylor RS (2010) Reactive molecular dynamics studies of DMMP adsorption and reactive on amorphous silica surfaces. J Phys Chem C 114:18894–18902CrossRefGoogle Scholar
  48. 48.
    Panayotov DA, Paul DK, Yates JT Jr (2003) Photocatalytic oxidation of 2-chloroethyl ethyl sulfide on TiO2-SiO2 powders. J Phys Chem B 107:10571–10575CrossRefGoogle Scholar
  49. 49.
    Thompson TL, Panayotov DA, Yates JT Jr, Martyanov I, Klabunde KJ (2004) Photodecomposition of adsorbed 2-chloroethyl ethyl sulfide on TiO2: involvement of lattice oxygen. J Phys Chem B 108:17857–17865CrossRefGoogle Scholar
  50. 50.
    Narske RM, Klabunde KJK, Fultz S (2002) Solvent effects on the heterogeneous adsorption and reactions of (2-chloroethyl) ethyl sulfide on nanocrystalline magnesium oxide. Langmuir 18:4819–4825CrossRefGoogle Scholar
  51. 51.
    Martin ME, Narske RM, Klabunde KJ (2005) Mesoporous metal oxides formed by aggregation of nanocrystals. Behavior of aluminum oxide and mixtures with magnesium oxide in destructive adsorption of the chemical warfare surrogate 2-chloroethylethyl sulfide. Micropor Mesopor Mat 83:47–50CrossRefGoogle Scholar
  52. 52.
    Kim S, Byl O, Liu JC, Johnson JK, Yates JT Jr (2006) Spectroscopic measurement of diffusion kinetics through subnanometer and larger Al2O3 particles by a new method: the interaction of 2-chloroethylethyl sulfide with γ-Al2O3. J Phys Chem B 110:9204–9210CrossRefGoogle Scholar
  53. 53.
    Carnes CL, Kapoor PN, Klabunde KJ (2002) Synthesis, characterization, adsorption studies of nanocrystalline aluminum oxide and a bimetallic nanocrystalline aluminum oxide/magnesium oxide. Chem Mater 14:2922–2929CrossRefGoogle Scholar
  54. 54.
    Carnes CL, Klabunde KJ (2000) Synthesis, isolation, and chemical reactivity studies of nanocrystalline zinc oxide. Langmuir 16:3764–3772CrossRefGoogle Scholar
  55. 55.
    Carnes CL, Stipp J, Klabunde KJ (2002) Synthesis, characterization, and adsorption studies of nanocrystalline copper oxide and nickel oxide. Langmuir 18:1352–1359CrossRefGoogle Scholar
  56. 56.
    Wagner GW, Koper OB, Lucas E, Decker S, Klabunde KJ (2000) Reactions of VX, GD, and HD with nanosize CaO: autocatalytic dehydrohalogenation of HD. J Phys Chem B 104:5118–5123CrossRefGoogle Scholar
  57. 57.
    Wagner GW, Procell LR, O’Conner RJ, Munavalli S, Carnes CL, Kapoor PN, Klabunde KJ (2001) Reactions of VX, GB, GD, and HD with nanosize Al2O3 formation of aluminophosphonates. J Am Chem Soc 123:1636–1644CrossRefGoogle Scholar
  58. 58.
    Wagner GW, Chen Q, Wu Y (2008) Reactions of VX, GD, and HD with nanotubular Titania. J Phys Chem C 112:11901–11906CrossRefGoogle Scholar
  59. 59.
    Koper O, Lagadic I, Klabunde KJ (1997) Destructive adsorption of chlorinated hydrocarbons on ultrafine (nanoscale) particles of calcium oxide. 2. Chem Mater 9:838–848CrossRefGoogle Scholar
  60. 60.
    Koper O, Klabunde KJ (1997) Destructive adsorption of chlorinated hydrocarbons on ultrafine (nanoscale) particles of calcium oxide. 3. Chloroform, trichloroethene, and tetrachloroethene. Chem Mater 9:2481–2485CrossRefGoogle Scholar
  61. 61.
    Volodin AM, Bedilo AF, Heroux DS, Zaikovskii VI, Mishakov IV, Cheshokov VV, Klabunde KJ (2006) Nanoscale oxides as destructive sorbents for halogenated hydrocarbon. In: Blitz J, Gun'ko V (eds) Surface chemistry in biomedical and environmental science. Springer, New York, pp 403–412CrossRefGoogle Scholar
  62. 62.
    Decker SP, Klabunde JS, Khaleel A, Klabunde KJ (2002) Catalyzed destructive adsorption of environmental toxins with nanocrystalline metal oxides. Fluoro-, chloro-, bromocarbons, sulfur, and organophosphorous compounds. Environ Sci Technol 36:762–768CrossRefGoogle Scholar
  63. 63.
    Khaleel A, Lucas E, Pates S, Koper OB, Klabunde KJ (1999) Nanocrystals as adsorbents for chemical agents and air pollutants. Proc ERDEC Sci Conf Chem Bio Def Res, 323–329Google Scholar
  64. 64.
    Khaleel A, Kapoor PN, Klabunde KJ (1999) Nanocrystalline metal oxides as new adsorbents for air purification. Nanostruct Mater 11:459–468CrossRefGoogle Scholar
  65. 65.
    Singh M, Zhou N, Paul DK, Klabunde KJ (2008) IR spectral evidence of aldol condensation: acetaldehyde adsorption over TiO2 surface. J Catal 260:371–379CrossRefGoogle Scholar
  66. 66.
    Klabunde KJ, Carnes CL (2002) Unique chemical reactivities of nanocrystalline metal oxide toward hydrogen sulfide. Chem Mater 14:1806–1811CrossRefGoogle Scholar
  67. 67.
    Medine GM, Klabunde KJ, Zaikovskii V (2002) Unusual behavior of nanocrystalline strontium oxide toward hydrogen sulfide. J Nanopart Res 4:357–366CrossRefGoogle Scholar
  68. 68.
    Koper OB, Klabunde JS, Marchin GL, Stoimenov P, Bohra L (2002) Nanoscale powders and formulations with biocidal activity toward spores and vegetative cells of bacillus species, viruses and toxins. Curr Microbiol 44:49–55CrossRefGoogle Scholar
  69. 69.
    Haggstrom JA, Stoimenov PK, Klabunde KJ (2008) Synthesis and characterization of nanosized halogenated and interhalogenated metal oxide adducts. Chem Mater 20:3174–3183CrossRefGoogle Scholar
  70. 70.
    Stoimenov P, Klinger RL, Marchin GL, Klabunde KJ (2002) Metal oxide nanoparticles as bactericidal agents. Langmuir 18:6679–6686CrossRefGoogle Scholar
  71. 71.
    Stoimenov P, Klabunde KJ (2005) Nanotechnology in biological agent decontamination (Chapter 14). In: Kumar CSSR, Hormes J, Leuschner C (eds) Nanofabrication towards biomedical applications. Wiley, WeinheimGoogle Scholar
  72. 72.
    Hamal DB, Haggstrom JA, Marchin GL, Ikenberry MA, Hohn K, Klabunde KJ (2009) Multifunctional biocide/sporocide and photocatalyst based on titanium dioxide (TiO2) codoped with silver, carbon, and sulfur. Langmuir 26:2805–2810CrossRefGoogle Scholar
  73. 73.
    NanoScale Corporation (2011) Accessed 27 Jan 2011
  74. 74.
    Guild Associates (2011) Accessed 27 Jan 2011
  75. 75.
    National Science Foundation (2003) Future directions in catalysis: structure that function on the nanoscale, NSF Workshop Report, 19 June 2003Google Scholar
  76. 76.
    Semagina N, Kiwi-Minsker L (2009) Recent advances in the liquid-phase synthesis of metal nanostructures with controlled shape and size for catalysis. Cataly Rev 51:147–217CrossRefGoogle Scholar
  77. 77.
    World Technology Evaluation Center (2009) International assessment of research and development in catalysis by nanostructured materials. NSF, DOE, AFOSR, DTRAGoogle Scholar
  78. 78.
    Li Y, Somorjai G (2010) Nanoscale advances in catalysis and energy applications. Nano Lett 10:2289–2295CrossRefGoogle Scholar
  79. 79.
    Hagen J (2006) Industrial catalysis: a practical approach. Wiley, WeinheimGoogle Scholar
  80. 80.
    U.S. Department of Energy (2006) Estimated energy saving and financial impacts of nanomaterials by design on selected applications in the chemical industry, industrial technologies program. Accessed 5 May 2011
  81. 81.
    Davis B (2009) Nanocatalysis for fuel production (Chapter 11). In: Garcia-Martinez J (ed) Nanotechnology for the energy challenge. Wiley, WeinheimGoogle Scholar
  82. 82.
    Prestvik R, Moljord K, Grande K, Holmen A (2004) Compositional analysis of naphtha and reformate (Chapter 1). In: Antos GJ, Aitani AM (eds) Catalytic naphtha reforming. Marcel Dekker, Inc., New YorkGoogle Scholar
  83. 83.
    Gary J, Handwerk G (2001) Petroleum refining technology and economics. Marcel Dekker, New YorkGoogle Scholar
  84. 84.
    Zhou B, Balee R, Groenedaal R (2005) Nanoparticle and nanostructure catalysis: technologies and markets. Nanotechnology Law & Business (NLB) 2:222–229Google Scholar
  85. 85.
    Wikipedia (2011) Fluid catalytic cracking. Accessed 22 Apr 2011
  86. 86.
    Ashby M, Ferreira P, Schodek D (2009) Nanomaterials and nanotechnologies in health and the environment (Chapter 11). In: Nanomaterials, nanotechnologies and design. Elsevier, New YorkGoogle Scholar
  87. 87.
    Ahmed S, Rasul M, Martens WN, Brown R, Hashib MA (2010) Advances in heterogeneous photocatalytic degradation of phenols and dyes in wastewater: a review. Water Air Soil Poll 215:3–29CrossRefGoogle Scholar
  88. 88.
    Garcia-Ripoll A, Arques A, Vicente R, Domenech A, Amat AM (2008) Treatment of aqueous solutions containing four commercial pesticides by means of TiO2 solar photocatalysis. J Sol Energ Eng 130:041011–041016CrossRefGoogle Scholar
  89. 89.
    Garcia-Ripoll A, Amat A, Arques A, Vicente R, Lopez MF, Oller I, Maldonado MI, Gernjak W (2007) Increased biodegradability of Ultracid in aqueous solutions with solar TiO2 photocatalysis. Chemosphere 68:293–300CrossRefGoogle Scholar
  90. 90.
    Akurati K (eds) (2008) Hetrogeneous photocatalysis (Chapter 2). In: Synthesis of TiO2 based nanoparticles for photocatalytic application. Cuvillier, GottingenGoogle Scholar
  91. 91.
    Veronovski N, Rudolf A, Smole MS, Kreze T, Gersak J (2009) Self-cleaning and handle properties of TiO2-modified textiles. Fiber Polym 10:551–556CrossRefGoogle Scholar
  92. 92.
    Lee S, Yun C, Hahn M, Lee J, Yi J (2008) Synthesis and characterization of carbon-doped titania as visible-light-sensitive photocatalyst. Korean J Chem Eng 25:892–896CrossRefGoogle Scholar
  93. 93.
    Yamashita H, Harada M, Misaka J, Takeuchi M, Neppolian B, Anpo M (2003) Photocatalytic degradation of organic compounds diluted in water using visible light-responsive metal ion-implanted TiO2 catalysts: Fe ion-implanted TiO2. Catal Today 84:191–196CrossRefGoogle Scholar
  94. 94.
    Asahi R, Morikawa T, Ohwaki T, Aoki K, Taga Y (2001) Visible-light photocatalysis in nitrogen-doped titanium oxides. Science 293:269–271CrossRefGoogle Scholar
  95. 95.
    Lliev V, Tomova D, Bilyarska L (2003) Phthanlocyanine modified TiO2 or WO3- catalysts for photooxidation of sulfide and thiosulfate ions upon irradiation with visible light. J Photochem Photobiol A 159:281–287CrossRefGoogle Scholar
  96. 96.
    Chengyu W, Huamei S, Ying T (2003) Properties and morphology of CdS compounded TiO2 visible-light photocatalytic nanofilms coated on glass surface. Sep Purif Techno 32:357–362CrossRefGoogle Scholar
  97. 97.
    Shchukin D, Poznyak S, Kulak A, Pichat P (2004) TiO2-In2O3 photocatalysts: preparation, characterizations and activity for 2-chlorophenol degradation in water. J Photochem Photobiol A 162:423–430CrossRefGoogle Scholar
  98. 98.
    Sathish M, Viswanathan B, Viswanath RP, Gopinath C (2005) Synthesis, characterization, electronic structure, and photocatalytic activity of nitrogen-doped TiO2, nanocatalyst. Chem Mater 17:6349–6353CrossRefGoogle Scholar
  99. 99.
    Chen Y, Dionysiou D (2008) Sol–gel synthesis of nanostructured TiO2 films for water purification (Chapter 4). In: Innocecenzi P, Zub YL, Kesslor VG (eds) Sol-gel methods for materials processing. Springer Science + Business BV, DordrechtGoogle Scholar
  100. 100.
    Sasaki M (2001) Development of photocatalytic TiO2 coated curtain. R&D Review of Toyota CRDL 36:1–2Google Scholar
  101. 101.
    Pagliaro M (2010) Nano-age: how nanotechnology changes our future (Chapter 4). Wiley, WeinheimCrossRefGoogle Scholar
  102. 102.
    Nanotechnology Now Website (2011) Global nanocatalysts market to reach $6.0 Billion by 2015, According to new report by Global Industry Analysts, Inc. Accessed 22 Apr 2011
  103. 103.
    Green Millennium Photocatalyst (2011) Accessed 22 Apr 2011
  104. 104.
    Nanostellar Website (2011) Accessed 22 Apr 2011
  105. 105.
    Altimate EnviroCare website (2011) Accessed 22 Apr 2011
  106. 106.
    U.S. EPA (2004) Cleaning up the nation’s waste sites: markets and technology trends. EPA 542-R-04-015 (2004). Accessed 5 May 2011
  107. 107.
    CSIRO (2006) Climate change and the risk to water supply. CSIRO press release 06/191. Accessed 5 May 2011
  108. 108.
    NASA (2003) NASA ties El Nino-induced drought to air pollution from fires. NASA press release 03-128, Washington, DCGoogle Scholar
  109. 109.
    Rubinkam M (2010) Pennsylvania regulators shut down Cabot drilling (April 15, 2010). Accessed 12 Oct 2010
  110. 110.
    Wikipedia (2010) Deepwater horizon oil spill. Accessed 31 Oct 2010
  111. 111.
    Mohan D, Pittmann C Jr (2007) Arsenic removal from water/wastewater using adsorbents—a critical review. J Hazard Mater 142:1–53CrossRefGoogle Scholar
  112. 112.
    Hathway SW, Rubel JF (1987) Removing arsenic from drinking water. J Am Water Words Assoc 79:61–65Google Scholar
  113. 113.
    Pena ME, Korfiatis GP, Patel M, Lippincott L, Meng X (2005) Adsorption of As(V) and As (III) by nanocrystalline titanium dioxide. Water Res 39:2327–2337CrossRefGoogle Scholar
  114. 114.
    Gillham RW, O’Hannesin SF (1994) Enhanced degradation of halogenated aliphatics by zero-valent iron. Ground Water 32:958–967CrossRefGoogle Scholar
  115. 115.
    Wang C-B, Zhang W-X (1997) Synthesizing nanoscale iron particles for rapid and complete dechlorination of TCE and PCBs. Environ Sci Technol 31:2154–2156CrossRefGoogle Scholar
  116. 116.
    Zhang W-X, Wang C-B, Lien H-L (1998) Treatment of chlorinated organic contaminants with nanoscale bimetallic particles. Catal Today 40:387–395CrossRefGoogle Scholar
  117. 117.
    Lien H-L, Zhang W-X (2001) Nanoscale iron particles for complete reduction of chlorinated ethenes. Colloid Surface 191:97–105CrossRefGoogle Scholar
  118. 118.
    Schrick B, Blough L, Jones AD, Mallouk TE (2002) Hydrochlorination of trichloroethylene to hydrocarbons using bimetallic nickel-iron nanoparticles. Chem Mater 14:5140–5147CrossRefGoogle Scholar
  119. 119.
    Lai KCK, Lo IMC (2008) Removal of Cr(VI) by acid-washed zero-valent iron under various groundwater geochemistry conditions. Environ Sci Technol 42:1238–1244CrossRefGoogle Scholar
  120. 120.
    Kanel SR, Manning B, Charlet L, Choi H (2005) Removal of arsenic(III) from groundwater by nanoscale zero-valent iron. Environ Sci Technol 39:1291–1298CrossRefGoogle Scholar
  121. 121.
    Powell RM, Puls RM, Hightower SK, Sabatini DA (1995) Coupled iron corrosion and chromate reduction-mechanisms for subsurface remediation. Environ Sci Technol 29:1913–1922CrossRefGoogle Scholar
  122. 122.
    Blowes DW, Ptacek CJ, Jambor JL (1997) In-situ remediation of chromate contaminated groundwater using permeable reactive walls: laboratory studies. Environ Sci Technol 31:3348–3357CrossRefGoogle Scholar
  123. 123.
    Smith EH (1996) Uptake of heavy metal in batch system by a recycled iron-bearing materials. Water Res 30:2424–2434CrossRefGoogle Scholar
  124. 124.
    Lai KCK, Lo IMC (2008) Removal of chromium (IV) by acid-washed zero-valent iron under various groundwater geochemistry conditions. Environ Sci Technol 42:1238–1244CrossRefGoogle Scholar
  125. 125.
    Kanel SR, Nepal D, Manning B, Choi H (2007) Transport of surface-modified iron nanoparticle in porous media and application to arsenic(III) remediation. J Nanopart Res 9:725–735CrossRefGoogle Scholar
  126. 126.
    Zhang W-X (2003) Nanoscale iron particles for environmental remediation. J Nanopart Res 5:323–332CrossRefGoogle Scholar
  127. 127.
    Levy E (2007) Nanocrystal-containing filtration media. U. S. Patent 7,264,726 (4 Sept 2007)Google Scholar
  128. 128.
    Levy E (2007) Transition metal oxide-aluminosilicate purification media. U. S. Patent 7,288,498 (30 Oct 2007)Google Scholar
  129. 129.
    Gusseme BD, Sintubin L, Baert L, Thibo E, Hennebel T, Vermeulen G, Uyttendaele M, Verstraete W, Boon N (2010) Biogenic silver for disinfection of water contaminated with viruses. Appl Environ Microbiol 76:1082–1087CrossRefGoogle Scholar
  130. 130.
    Soil Composition (2010) Accessed 4 Feb 2010
  131. 131.
  132. 132.
    Soil Contaminants (2010) Accessed 4 Feb 2010
  133. 133.
    Minceva-Sukarova B, Jovanovski G, Makreski P, Soptrajanov B, Willis R, Grzetic IG (2003) Vibrational spectra of MIMIIIS2 synthetic materials (MI=Ti or Ag, MIII=As or Sb). J Mol Struct 651–653:181–189CrossRefGoogle Scholar
  134. 134.
    Nevado JJB, Bermejo LFG, Martin-Dolmeadios RCR (2003) Distribution of mercury in the aquatic environment at Almadén, Spain. Environ Pollut 122:261–271CrossRefGoogle Scholar
  135. 135.
    Ferrara R, Maserti BE, Anderson M, Edner H, Ragnarson P, Svanberg S, Hernandez A (1998) Atmospheric mercury concentration and fluxes in the Almaden district. Atmos Environ 32:3297–3904CrossRefGoogle Scholar
  136. 136.
    Gray JE (2003) Geologic studies of mercury by the U.S. Geological Survey, U.S. Geological Survey Circular, 1248. USGS, RestonGoogle Scholar
  137. 137.
    Jin X, Hu J, Ong S (2007) Influence of dissolved organic matter on estrone removal by NF membranes and the role of their structures. Water Res 41:3077–3088CrossRefGoogle Scholar
  138. 138.
    Varanasi P, Fullana A, Sidhu S (2007) Remediation of PCB contaminated soils using iron nanoparticles. Chemosphere 66:1031–1038CrossRefGoogle Scholar
  139. 139.
    Kanel SR, Choi H (2007) Transport characteristics of surface-modified nanoscale zero-valent iron in porous media. Water Sci Technol 55:157–162Google Scholar
  140. 140.
    Xu Y, Zhau D (2007) Reductive immobilization of chromate in soils and groundwater by stabilized zero-valent iron nanoparticles. Water Res 41:2101–2108CrossRefGoogle Scholar
  141. 141.
    Mackenzie K, Schierz A, Georgi A, Kopinke F-D (2008) Colloidal activated carbon and carbon-iron: novel materials for in-situ ground water treatment. Global Nest J 10:54–61Google Scholar
  142. 142.
    Schrick B, Hydutsky W, Blough JL, Mallouk TE (2004) Delivery vehicles for zerovalent metal nanoparticles in soil and groundwater. Chem Mater 16:2187–2193CrossRefGoogle Scholar
  143. 143.
    Nuxoll EE, Shimotori T, Arnold WA, Cussler EL (2003) Iron nanoparticles in reactive environmental barriers. AIChE Annual Meeting, MinneapolisGoogle Scholar
  144. 144.
    De Windt W, Aelterman P, Verstraete W (2005) Bioreductive deposition of palladium (0) nanoparticles on Shewanella oneidensis with catalytic activity towards reductive dechlorination of polychlorinated biphenyls. Environ Microbiol 7:314–325CrossRefGoogle Scholar
  145. 145.
    Tan X, Wang X, Chen C, Sun A (2006) Effect of soil humic and fulvic acids, pH and ionic strength on Th(IV) sorption to TiO2 nanoparticles. Appl Radiat Isotopes 65:375–381CrossRefGoogle Scholar
  146. 146.
    Wei D, Radakrisnan R, Venderspurt TH (2004) Bifunctional manganese oxide/titanium dioxide photocatalyst/thermocatalyst for improving indoor air quality. U.S. Patent Application # 2004/0258581 (23 Dec 2004). USEPA, Washington, DCGoogle Scholar
  147. 147.
    Suzuki K, Sinha A (2007) Monodisperse, bimodal mesoporous ceria catalysts and adsorbents for air purification. J Mater Chem 17:2547–2551CrossRefGoogle Scholar
  148. 148.
    Sinha AK, Suzuki K (2005) Preparation and characterization of novel mesoporous ceria-titania. J Phys Chem B 109:1708–1714CrossRefGoogle Scholar
  149. 149.
    Gauthier-Manuel B, Pichonat T (2005) Nanostructured membranes: a new class of protonic conductor for miniature fuel cells. J Nanotechnol Online. Accessed 25 May 2011
  150. 150.
    Zorne S, David A (2007) Open electric circuits optimized in supercritical fluids that coexist with non supercritical fluid thin films to synthesis nano scale products and energy production. International Patent Application # WO/2007/117274, 18 Oct 2007Google Scholar
  151. 151.
    Khaleel A, Lucas E, Pates S, Koper OB, Klubunde KJ (1999) Nanocrystals as adsorbents for chemical agents and air pollutants. Proc ERDEC Sci Conf Chem Biol Def Res:323–329Google Scholar
  152. 152.
    Decker S, Klabunde KJ (1996) Enhancing effect of Fe2O3 on the ability of nanocrystalline calcium oxide to adsorb SO2. J Am Chem Soc 118:12465–12466CrossRefGoogle Scholar
  153. 153.
    U.S. EPA Deactivation and regeneration of environmentally exposed Titanium Dioxide (TiO2) based products (2003). Testing report of the environmental protection department, HKSAR.
  154. 154.
    Akbari H, Berdahl P (2008) PIER final project report.
  155. 155.
    Sinha AK, Suzuki K, Takahara M, Azuma H, Nonaka T, Fukumoto K (2007) Mesostructured manganese oxide/gold nanoparticle composites for extensive air purification. Angew Chem Int Ed 46:2891–2894CrossRefGoogle Scholar
  156. 156.
    Nanotechnology Now website (2011) Global market for nanotechnology slated for high growth through 2013. Accessed 4 Feb 2011
  157. 157.
    Mace C (2011) Controlling groundwater VOCs: do nanoscale ZVI particles have any advantages over microscale ZVI or BNP? (May 31, 2006). Accessed 4 Feb 2011
  158. 158.
    NanoH2O (2011) Nanotechnology advances reverse osmosis membrane performance. Accessed 4 Feb 2011
  159. 159.
    PBR (2011) Dow Technology’s ABSORBIA reduces arsenic. Accessed 4 Feb 2011
  160. 160.
    Kirschling TL, Gregory KB, Minkley EG Jr, Lowry GV, Tilton RD (2010) Impact of nanoscale zero valent iron on geochemistry and microbial populations in trichloroethylene contaminated aquifer materials. Environ Sci Technol 44:3474–3480CrossRefGoogle Scholar
  161. 161.
    Tilston EL, Cullen L, Collins CD, Shaw LJ (2009) Deployment of nZVI to soil for polychlorinated biphenyl reduction: impacts on soil microbial communities: abstract for OECD Conference on the Potential environmental benefits of nanotechnology.,3343,en_2649_37015404_43278299_1_1_1_1,00.html# deployment_of_nZVI . Accessed 4 Feb 2011Google Scholar
  162. 162.
    Keane E (2009) Fate, transport, and toxicity of nanoscale zero-valent iron (nZVI) used during Superfund remediation, Fellowship Report for U.S. EPA. Accessed 4 Feb 2011
  163. 163.
    Ahmed N, El-Shihtawy R (2010) The use of new technologies in coloration of textile fibers. J Mater Sci 45:1143–1153CrossRefGoogle Scholar
  164. 164.
    Ronacone K (2004) Nanotechnology: what next-generation warriors will wear. JOM-J Min Met Mat S 56:31–33CrossRefGoogle Scholar
  165. 165.
    Chow C (2011) Nanotechnology in textile industry and advantages, 2008 Second international conference on integration and commercialization of micro and nanosystems (MICRONANO2008), 3–5 June 2008. Clear Water Bay, Kowloon, Hong Kong Sponsor: Nanotechnology Institute. Accessed 25 May 2011
  166. 166.
    Frykberg E (2007) Disaster and mass casualty management (Chapter 16). In: Britt LD, Trunkey DD, Feliciano DV (eds) Acute Care Surgery Principles and Practice. Springer Science + Business Media, New YorkGoogle Scholar
  167. 167.
    Wikipedia (2011) Chemical warfare. Accessed on 6 May 2011
  168. 168.
    Cheung SS, McLellan TM (1997) Influence of hydration status and fluid replacement on heat tolerance while wearing NBC protective clothing. Eur J Appl Physiol O 77:139–148CrossRefGoogle Scholar
  169. 169.
    Nunneley S (1989) Heat stress in protective clothing. Scand J Work Environ Health 15:52–57Google Scholar
  170. 170.
    Sundarrajan S, Ramakrishna S (2007) Fabrication of nanocomposite membranes from nanofibers and nanoparticles for protection against chemical warfare stimulants. J Mater Sci 42:8400–8407CrossRefGoogle Scholar
  171. 171.
    Rajagopalan S (2010) From nanoparticles to novel protective garments, phase II SBIR final report funded by CDC/NIOSH 2 R44OH007963-02A2, NanoScale Corporation, Manhattan, KSGoogle Scholar
  172. 172.
    U.S. RDECOM (2010) Enhanced contaminated human remains pouch based on exceptionally responsive advanced materials, U.S. Army/DTRA sponsored projectGoogle Scholar
  173. 173.
    Tredget E, Shankowsky H, Greoneveld A, Burrel R (1998) A matched-pair randomized study evaluating the efficacy and safety of Acticat silver-coated dressing for treatment of burn wounds. J Burn Care Rehabil 19:531–537CrossRefGoogle Scholar
  174. 174.
    Sibbald R, Browns A, Coutts P, Queen D (2001) Screening evaluation of an ionized nanocrystalline silver dressing in chronic wound care. Ostomy Wound Manag 47:38–43Google Scholar
  175. 175.
    ObservatoryNano (2010) Medical textile, sport/outdoor textiles. Report on nanotechnology and textile. Accessed at 6 May 2011
  176. 176.
    Warne M, Schifko A (1999) Toxicity of laundry detergent components to a freshwater cladoceran and their contribution to detergent toxicity. Ecotox Environ Safe 44:196–206CrossRefGoogle Scholar
  177. 177.
    Veronovski N, Rudolf A, Smole M, Kreze T, Gersak J (2009) Self-cleaning and handle properties of TiO2-modified textiles. Fibers Polym 10:551–556CrossRefGoogle Scholar
  178. 178.
    Bhushan B, Jung Y, Nosonovsky M (2010) Lotus effect: surfaces with roughness-induced superhydrophobicity, self-cleaning, and low adhesion. Springer Handbook of Nanotechnology Part F, 1437–1524Google Scholar
  179. 179.
    Su C (2012) A simple and cost-effective method for fabricating lotus-effect composite coatings. J Coat Technol Res 9(2):135–141CrossRefGoogle Scholar
  180. 180.
    Liu Y, Tang J, Wang R, Lu H, Li L, Kong Y, Qi K, Xin J (2007) Artificial lotus leaf structure from assembling carbon nanotubes and their application in hydrophobic textiles. J Mater Chem 17:1071–1078CrossRefGoogle Scholar
  181. 181.
    Hsieh C, Chen W, Wu F (2008) Fabrication and superhydrophobicity of fluorinated carbon with micro/nanoscaled two-tier roughness. Carbon 46:1218–1224CrossRefGoogle Scholar
  182. 182.
    Xu B, Cai Z (2008) Fabrication of a superhydrphobic ZnO nanorod array film on cotton fabric via a wet chemical route and hydrophobic modification. Appl Surf Sci 254:5899–5904CrossRefGoogle Scholar
  183. 183.
    Daoud W, Xin J (2004) Nucleation and growth of anatase crystallites on cotton fabric at low temperature. J Am Ceram Soc 87:953–955CrossRefGoogle Scholar
  184. 184.
    Li Z, Xing Y, Dai J (2008) Superhydrophobic surface prepared from glass and non-fluorinated alkyl saline on cotton substrate. Appl Surf Sci 254:2131–2135CrossRefGoogle Scholar
  185. 185.
    Nanotechnology Enabled Sensing (2009) Report of the National nanotechnology initiative workshop (2009). Accessed 6 May 2011
  186. 186.
    Choi K, Jang H (2010) One-dimensional oxide nanostructures as gas-sensing materials: review and issues. Sensors 10:4083–4099CrossRefGoogle Scholar
  187. 187.
    Sundarrajan S, Chandrasekara A, Ramakrishna S (2010) An update on nanomaterials-based textiles for protection and decontamination. J Am Ceram Soc 93:3955–3975CrossRefGoogle Scholar
  188. 188.
    Zhou J, Xu N, Wang Z (2006) Dissolving behavior and stability of ZnO wires in biofluids: a study on biodegradability of ZnO nanostructures. Adv Mater 18:2432–2435CrossRefGoogle Scholar
  189. 189.
    Lim Z, Chai Z, Kevin M, Wong A, Ho G (2010) A facile approach toward ZnO nanorods conductive textile for room temperature multifunctional sensors. Sensor Actuat B-Chem 151:121–126CrossRefGoogle Scholar
  190. 190.
    Cho G (2010) Smart clothing: technology and applications. Taylor & Francis, Boca RatonGoogle Scholar
  191. 191.
    Laxminarayana K, Jalili N (2005) Functional nanotube-based textiles: pathway to next generation fabric with enhanced sensing capabilities. Text Res J 75:670–680CrossRefGoogle Scholar
  192. 192.
    Weber J, Kumar A, Kumar A, Bhansali S (2006) Novel lactate and pH biosensor for skin and sweat analysis based on single walled carbon nanotubes. Sensor Actuat B-Chem 117:308–313CrossRefGoogle Scholar
  193. 193.
    Thilagavathi G, Raja A, Kannaian T (2008) Nanotechnology and protective clothing for defense personnel. Defense Sci J 58:451–459Google Scholar
  194. 194.
    NanoTex website (2011) Accessed on 4 May 2011
  195. 195.
    NanoHorizons (2011) Accessed on 4 May 2011
  196. 196.
    Sensatex (2010) Accessed on 16 Aug 2010
  197. 197.
    Pradeep T (2007) NANO: the essentials. understanding nanoscience and nanotechnology. Tata McGraw-Hill, New DelhiGoogle Scholar
  198. 198.
    El-Sayed MA (2004) Small is different: shape-, size-, and composition-dependent properties of some colloidal semiconductor nanocrystals. Acc Chem Res 37:326–333CrossRefGoogle Scholar
  199. 199.
    Wei Z, Zamborini FP (2004) Directly monitoring the growth of gold nanoparticle seeds into gold nanorods. Langmuir 20:11301–11304CrossRefGoogle Scholar
  200. 200.
    Li J, Daniel C, Wood D (2011) Materials processing for lithium ion batteries. J Power Sources 196:2452–2460CrossRefGoogle Scholar
  201. 201.
    Long JW, Dunn B, Rolison DR, White HS (2004) Three-dimensional battery architectures. Chem Rev 104:4463–4492CrossRefGoogle Scholar
  202. 202.
    Teo BK, Sun XH (2007) Silicon-based low-dimensional nanomaterials and nanodevices. Chem Rev 107:1454–1532CrossRefGoogle Scholar
  203. 203.
    Talapin DV, Lee J-S, Kovalenko MV, Shevchenko EV (2010) Prospects of colloidal nanocrystals for electric and optoelectronic applications. Chem Rev 110:389–458CrossRefGoogle Scholar
  204. 204.
    Caminade A-M, Majoral J-P (2004) Nanomaterials based on phosphorous dendrimers. Acc Chem Res 37:341–348CrossRefGoogle Scholar
  205. 205.
    Woehrle GH, Warner MG, Hutchison JE (2004) Molecular-level control of feature separation in one-dimensional nanostructure assemblies formed by biomolecular nanolithography. Langmuir 20:5982–5988CrossRefGoogle Scholar
  206. 206.
    Hannon JB, Afzali A, Klinke C, Avouris P (2005) Selective placement of carbon nanotubes on metal-oxide surfaces. Langmuir 21:8569–8571CrossRefGoogle Scholar
  207. 207.
    Díaz C, Valenzuela ML, Laguna A, Lavayen V, Jiménez J, Power LA, O’Dwyer C (2010) Metallophosphazene precursor routes to the solid-state deposition of metallic and dielectric microstructures and nanostructures on Si and SiO2. Langmuir 26:10223–10233CrossRefGoogle Scholar
  208. 208.
    Allan R (2006) This little nano went to market…eventually. Accessed 26 Jan 2011
  209. 209.
    NNI Signature Initiative (2010) Nanoelectronics for 2020 and beyond. Accessed 26 Jan 2011
  210. 210.
    (2004) Emerging nanoelectronics markets: the next opportunity for the semiconductor and advanced materials industries. Accessed 26 Jan 2011
  211. 211.
    U.S. Cancer Statistics Working Group (2011) United States Cancer Statistics: 1999–2006 incidence and mortality web-based report. U.S. Department of Health and Human Services, Centers for Disease Control and Prevention and National Cancer Institute; 2010, Atlanta. Accessed 4 Feb 2011
  212. 212.
    U.S. Cancer Statistics Working Group (2010) United States Cancer Statistics: 1999–2005 incidence, WONDER on-line database. United States Department of Health and Human Services, Centers for Disease Control and Prevention and National Cancer Institute; August 2008. Accessed 2 Nov 2010
  213. 213.
    U.S. Census Bureau (2010) U.S. and World Population Clocks. Accessed 2 Nov 2010
  214. 214.
    Fayed L (2010) Side effects of radiation therapy: what the side effects are and how to manage them. Accessed 5 Nov 2010
  215. 215.
    Fayed L (2010) Chemotherapy side effects: what are the side effects and how to prevent them. Accessed 5 Nov 2010
  216. 216.
    American Cancer Society (2010) Pancreatic cancer: detailed guide, American Cancer Society, 2010. Accessed 5 Nov 2010
  217. 217.
    Yong K-T, Hu R, Roy I, Ding H, Vathy LA, Bergey EJ, Mizuma M, Anirban Maitra A, Prasad PN (2009) Tumor targeting and imaging in live animals with functionalized semiconductor quantum rods. ACS Appl Mater Interfaces 1:710–719CrossRefGoogle Scholar
  218. 218.
    Wei A, Leonov AP, Wei Q (2010) Gold nanorods: multifunctional agents for cancer imaging and therapy. Methods Mol Biol 624:119–130CrossRefGoogle Scholar
  219. 219.
    Wu W, Aiello M, Zhou T, Berliner A, Banerjee P, Zhou S (2010) In-situ immobilization of quantum dots in polysaccharide-based nanogels for integration of optical pH-sensing, tumor cell imaging, and drug delivery. Biomaterials 31:3023–3031CrossRefGoogle Scholar
  220. 220.
    Huo Q (2010) Protein complexes/aggregates as potential cancer biomarkers revealed by a nanoparticle aggregation immunoassay. Colloid Surf B Interfaces 78:259–265CrossRefGoogle Scholar
  221. 221.
    Zheng W, He L (2010) Multiplexed detection of protein cancer markers on Au/Ag-barcoded nanorods using fluorescent-conjugated polymers. Anal Bioanal Chem 397:2261–2270CrossRefGoogle Scholar
  222. 222.
    Abdalla MO, Karna P, Sajja HK, Mao H, Yates C, Turner T, Aneja R (2011) Enhanced noscapine delivery using uPAR-targeted optical-imaging trackable nanoparticles for prostate cancer delivery. J Control Release 149:314–322CrossRefGoogle Scholar
  223. 223.
    Yang X, Grailler JJ, Rowland IJ, Javadi A, Hurley SA, Matson VZ, Steeber DA, Gong S (2010) Multifunctional stable and ph-responsive polymer vesicles formed by heterofunctional triblock copolymer for targeted anticancer drug delivery and ultrasensitive MR imaging. ACS Nano 4:6805–6817CrossRefGoogle Scholar
  224. 224.
    Balivada S, Rachakatla RS, Wang H, Samarakoon TN, Dani RK, Pyle M, Kroh FO, Walker B, Leaym X, Koper OB, Tamura M, Chikan V, Bossmann SH, Troyer DL (2010) A/C magnetic hyperthermia of melanoma mediated by iron(0)/iron oxide core/shell magnetic nanoparticles: a mouse study. BMC Cancer 10 (2010). Accessed 8 May 2011
  225. 225.
    Du Y, Zhang D, Liu H, Lai R (2009) Chemotherapy effect of nanosized As2O3/Fe3O4 complex on experimental mouse tumors and its influence on the expression of CD44v6, VEGF-C, and MMP-9. BMC Biotechnol 9. Accessed 8 May 2011
  226. 226.
    Thakare VS, Das M, Jain AK, Patil S, Jain S (2010) Carbon nanotubes in cancer theragnosis. Nanomedicine 5:1277–1301CrossRefGoogle Scholar
  227. 227.
    Huang N, Wang H, Zhao J, Lui H, Korbelik M, Zeng H (2010) Single-wall carbon nanotubes assisted photothermal cancer therapy: animal study with a murine model of squamous cell carcinoma. Lasers Surg Med 42:638–648CrossRefGoogle Scholar
  228. 228.
    Liu X, Tao H, Yang K, Zhang S, Lee ST, Liu Z (2010) Optimization of surface chemistry on single-walled carbon nanotubes for in vivo photothermal ablation of tumors. Biomaterials 32:144–151CrossRefGoogle Scholar
  229. 229.
    Li Y, Lu W, Huang Q, Huang M, Li C, Chen W (2010) Copper sulfide nanoparticles for photothermal ablation of tumor cells. Nanomedicine (Lond) 5:1161–1171CrossRefGoogle Scholar
  230. 230.
    Li L, Tang F, Liu H, Liu T, Hao N, Chen D, Teng X, He J (2010) In vivo delivery of silica nanorattle encapulated docetaxel for liver cancer therapy with low toxicity and high efficacy. ACS Nano 4:6874–6882CrossRefGoogle Scholar
  231. 231.
    Lebret V, Raehm L, Durand JO, Smaïhi M, Werts MH, Blanchard-Desce M, Méthy-Gonnod D, Dubernet C (2010) Folic-acid targeted mesoporous silica nanoparticles for two-photon fluorescence. J Biomed Nanotechnol 6:176–180CrossRefGoogle Scholar
  232. 232.
    Side effects of cisplatin (2010) Accessed 5 Nov 2010
  233. 233.
    Paraskar AS, Soni S, Chin KT, Chaudhuri P, Muto KW, Berkowitz J, Handlogten MW, Alves NJ, Bilgicer B, Dinulescu DM, Mashelkar RA, Sengupta S (2010) Harnessing structure-activity relationship to engineer a cisplatin nanoparticle for enhanced antitumor efficacy. Proc Natl Acad Sci U S A 107:12435–12440CrossRefGoogle Scholar
  234. 234.
    Azzi J, Tang L, Moore R, Tong R, El Haddad N, Akiyoshi T, Mfarrej B, Yang S, Jurewicz M, Ichimura T, Lindeman N, Cheng J, Abdi R (2010) Polyactide-cyclosporin A nanoparticles for targeted immunosuppression. FASEB J 24:3927–3938CrossRefGoogle Scholar
  235. 235.
    Jain AK, Swarnakar NK, Godugu C, Singh RP, Jain S (2010) The effect of the oral administration of polymeric nanoparticles on the efficacy and toxicity of tamoxifen. Biomaterials 32:503–515CrossRefGoogle Scholar
  236. 236.
    Liu J, Qui Z, Wang S, Zhou L, Zhang S (2010) A modified double-emulsion method for the preparation of daunorubicin-loaded polymeric nanoparticle with enhanced in vitro anti-tumor activity. Biomed Mater 5:065002CrossRefGoogle Scholar
  237. 237.
    Tahara K, Miyazaki Y, Kawashima Y, Kreuter J, Yamamoto H (2011) Brain targeting with surface-modified poly(DL-lactic-co-glycolic acid) nanoparticles delivered via carotid artery administration. Eur J Pharm Biopharm 77:84–88CrossRefGoogle Scholar
  238. 238.
    Lui Z, Zhang X, Wu H, Li J, Shu L, Liu R, Li L, Li N (2010) Preparation and evaluation of solid lipid nanoparticles of baicalin for ocular drug delivery system in vitro and in vivo. Drug Dev Ind Pharm 37:475–481Google Scholar
  239. 239.
    Nagpal K, Singh SK, Mishra DN (2010) Chitosan nanoparticles: a promising system in drug delivery. Chem Pharm Bull 58:1423–1430CrossRefGoogle Scholar
  240. 240.
    Liu D, Ge Y, Tang Y, Yuan Y, Zhang Q, Li R, Xu Q (2010) Solid lipid nanoparticles for transdermal delivery of diclofenac sodium: preparation, characterization, and in vitro studies. J Microencapsul 27:726–734CrossRefGoogle Scholar
  241. 241.
    Lalatonne Y, Monteil M, Jouni H, Serfaty JM, Sainte-Catherine O, Lièvre N, Kusmia S, Weinmann P, Lecouvey M, Motte L (2010) Superparamagnetic bifunctional bisphosphonates nanoparticles: a potential MRI contrast agent for osteoporosis therapy and diagnostic. J Osteoporos. doi: 10.4061/2010/747852
  242. 242.
    Treatment With Cisplatin (2010) Accessed 24 Nov 2010
  243. 243.
    National Institute of Diabetes and Digestive and Kidney Diseases (2008) National diabetes statistics, 2007, NIH Publication No. 08-3892Google Scholar
  244. 244.
    Centers for Disease Control (2010) Number of Americans with diabetes expected to double or triple by 2050. Accessed on 24 Nov 2010
  245. 245.
    Diaz A, David A, Perez R, González ML, Báez A, Wark SE, Zhang P, Clearfield A, Colón JL (2010) Nanoencapsulation of insulin into zirconium phosphate nanoparticles for oral delivery applications. Biomacromolecules 11:2465–2470CrossRefGoogle Scholar
  246. 246.
    Zhao X, Zu Y, Zu S, Wang D, Zhang Y, Zu B (2010) Insulin nanoparticles for transdermal delivery: preparation and physicochemical characterization and in vitro evaluation. Drug Dev Ind Pharm 36:1177–1185CrossRefGoogle Scholar
  247. 247.
    Bi R, Shao W, Wang Q, Zhang N (2009) Solid lipid nanoparticles act as insulin inhalation carriers for enhanced pulmonary drug delivery. J Biomed Nanotechnol 5:84–92CrossRefGoogle Scholar
  248. 248.
    Dolenc A, Govedarica B, Dreu R, Kocbek P, Srčič S, Kristl J (2010) Nanosized particles of orlistat with enhanced in vitro dissolution rate and lipase inhibition. Int J Pharm 396:149–155CrossRefGoogle Scholar
  249. 249.
    Moon HS, Guo DD, Song HH, Kim IY, Jin HL, Kim YK, Chung CS, Choi YJ, Lee HK, Cho CS (2007) Regulation of adipocyte differentiation by PEGylated all-trans retinoic acid: reduced cytotoxicity and attenuated lipid accumulation. J Nutr Biochem 18:322–331CrossRefGoogle Scholar
  250. 250.
    Luthi AJ, Patel PC, Ko CH, Mutharasan RK, Mirkin CA, Thaxton CS (2010) Nanotechnology for synthetic high-density lipoproteins. Trends Mol Med 16:553–560CrossRefGoogle Scholar
  251. 251.
    Yin YD, Yeh ML, Yang YJ, Tsai D-C, Chu T-Y, Shih Y-Y, Chang M-Y, Liu Y-W, Tang ACL, Chen T-Y, Luo C-Y, Kung-Chao Chang K-C, Chen J-H, Wu H-L, Tin-Kan Hung T-K, Hsieh PCH (2010) Intramyocardial peptide nanofiber injection improves postinfarction ventricular remodeling and efficacy of bone marrow cell therapy in pigs. Circulation 122:S132–S141CrossRefGoogle Scholar
  252. 252.
    Antoniardes C, Psarros C, Tousoulis D, Bakogiannis C, Shirodaria C, Stefanadis C (2010) Nanoparticles: a promising therapeutic approach in atherosclerosis. Curr Drug Deliv 7:303–311CrossRefGoogle Scholar
  253. 253.
    Sinha RR, Soni S, Harfouche R, Vasudevan PR, Holmes O, de Jonge H, Rowe A, Paraskar A, Hentschel DM, Chirgadze D, Blundell TL, Gherardi E, Mashelkar RA, Sengupta S (2010) Coupling growth-factor engineering with nanotechnology for therapeutic angiogenesis. Proc Natl Acad Sci U S A 107:13608–13613CrossRefGoogle Scholar
  254. 254.
    Hattori Y (2010) Development of non-viral vector for cancer gene therapy. Yakugaku Zasshi 130:917–924CrossRefGoogle Scholar
  255. 255.
    Kodama T, Aoi A, Watanabe Y, Horie S, Kodama M, Li L, Chen R, Teramoto N, Morikawa H, Mori S, Fukumoto M (2010) Evaluation of transfection efficiency in skeletal muscle using nano/microbubbles and ultrasound. Ultrasound Med Biol 36:1196–1205CrossRefGoogle Scholar
  256. 256.
    Zarbin MA, Montemagno C, Leary JF, Ritch R (2010) Nanotechnology in ophthalmology. Can J Opthalmol 45:457–476CrossRefGoogle Scholar
  257. 257.
    Allaker RP (2010) The use of nanoparticles to control oral biofilm formation. J Dent Res 89:1175–1186CrossRefGoogle Scholar
  258. 258.
    Zhao YK, Sung WP, Tsai TT, Wang HJ (2010) Application of silver-doped nanoscale titanium dioxide as photocatalyst for indoor airborne bacteria control: a feasibility study in medical nursing institutions. J Air Waste Manag Assoc 60:337–345CrossRefGoogle Scholar
  259. 259.
    Cökeliler D, Göktaş H, Tosun PD, Mutlu S (2010) Infection free titanium alloys by stabile thiol based nanocoating. J Nanosci Nanotechnol 10:2583–2589CrossRefGoogle Scholar
  260. 260.
    Business Insight Nanotechnology Industry (2010) Nanotechnology in healthcare: market outlook for applications, tools and materials, and 40 company profilesGoogle Scholar
  261. 261.
    Elan Drug Technologies website, NanoCrystal® Technology—the insoluble solved™ (2010) Accessed 3 Nov 2010
  262. 262.
    NanoBio Corporation website, NanoStat™ Platform (2010) Accessed 12 Dec 2010
  263. 263.
    Park K (2007) Nanotechnology: what it can do for drug delivery. J Control Release 120:1–3. Accessed 12 Dec 2010Google Scholar
  264. 264. (2011) Nanotechnology in fabrics. Accessed 31 Jan 2011
  265. 265.
    Cohen MS, Stern JM, Vanni AJ, Kelley RS, Baumgart E, Field D, Libertino JA, Summerhayes IC (2007) In vitro analysis of a nanocrystalline silver-coated surgical mesh. Surg Infect (Larchmt) 8:397–403CrossRefGoogle Scholar
  266. 266.
    NanoPhos website (2011) Accessed 31 Jan 2011
  267. 267. (2011) Glimpse of NanoMarkets report: conductive coatings markets for 2010 and beyond. Accessed 31 Jan 2011
  268. 268.
    Schmidt H (2010) Commercial success with nanomaterials. Nano Mag 12. Accessed 31 Jan 2011
  269. 269.
    Lines MG (2008) Nanomaterials for practical functional uses. J Alloys Compd 449:242–245CrossRefGoogle Scholar
  270. 270.
    Azeredo HM, Mattoso LH, Avena-Bustillos RJ, Filho GC, Munford ML, Wood D, McHugh TH (2010) Nanocellulose chitosan composite films as effected by nanofiller loading and plasticizer content. J Food Sci 75:N1–N7CrossRefGoogle Scholar
  271. 271.
    Rudra JS, Dave K, Haynie DT (2006) Antimicrobial polypeptide multilayer nanocoatings. J Biomater Sci Polym Ed 17:1301–1315CrossRefGoogle Scholar
  272. 272.
    Chen X, Schluesener AJ (2008) Nanosilver: a nanoproduct in medical application. Toxicol Lett 176:1–12CrossRefGoogle Scholar
  273. 273.
    Banerjee I, Pangule RC, Kane RS (2011) Antifouling coatings: recent developments in the design of surfaces that prevent fouling by proteins, bacteria, and marine organisms. Adv Mater 23:690–715CrossRefGoogle Scholar
  274. 274.
    Green AA, Hersam MC (2008) Colored semitransparent conductive coatings consisting of monodisperse metallic single-walled carbon nanotubes. Nano Lett 8:1417–1422CrossRefGoogle Scholar
  275. 275.
    Tettey KE, Yee MQ, Lee D (2010) Photocatalytic and conductive MWCNT/TiO2 nanocomposite thin films. ACS Appl Mater Interfaces 2:2646–2652CrossRefGoogle Scholar
  276. 276.
    Centers for Disease Control (2011) Estimates of foodborne illness in the United States. Accessed 17 Jan 2011
  277. 277.
    Souza BW, Cerqueira MA, Ruiz HA, Martins JT, Casariego A, Teixeira JA, Vicente AA (2010) Effect of chitosan-based coatings on the shelf life of salmon (Salmo salar). J Agric Food Chem 58:11456–11462CrossRefGoogle Scholar
  278. 278.
    Juck G, Neetoo H, Chen H (2010) Application of an active alginate coating to control the growth of Listeria monocytogenes on poached and deli turkey products. Int J Food Microbiol 142:302–308CrossRefGoogle Scholar
  279. 279.
    Azeredo HM, Mattoso LH, Wood D, Williams TG, Avena-Bustillos RJ, McHugh TH (2009) Nanocomposite edible films from mango puree reinforced with cellulose nanofibers. J Food Sci 74:N31–N35CrossRefGoogle Scholar
  280. 280.
    Chaloupka K, Malam Y, Seifalian AM (2010) Nanosilver as a new generation of nanoproduct in biomedical applications. Trends Biotechnol 28:580–588CrossRefGoogle Scholar
  281. 281.
    Eby DM, Luckarift HR, Johnson GR (2009) Hybrid antimicrobial enzyme and silver nanoparticle coatings for medical instruments. ACS Appl Mater Interfaces 1:1553–1560CrossRefGoogle Scholar
  282. 282.
    Stevens KN, Crespo-Biel O, van der Bosch EE, Dias AA, Knetsch MLW, Aldenhoff YBJ, van der Veen FH, Maessen JG, Stobberingh EE, Koole LH (2009) The relationship between the antimicrobial effect of catheter coatings containing silver nanoparticles and the coagulation of contacting blood. Biomaterials 30:3682–3690CrossRefGoogle Scholar
  283. 283.
    Dong J, Frethem C, Haustad G, Hoerr RA, Foley JD, Matuszewski MJ, Puskas JE (2009) Effect of the coating morphology on the drug release from engineered drug-polymer nanocomposites. Conf Proc IEEE Eng Med Biol Soc 2009:6006–6009Google Scholar
  284. 284.
    Lo CT, Van Tassel PR, Saltzman WM (2009) Simultaneous release of multiple molecules from poly(lactide-co-glycolide) nanoparticles assembled onto medical devices. Biomaterials 30:4889–4897CrossRefGoogle Scholar
  285. 285.
    Junker R, Dimakis A, Thoneick M, Jansen JA (2009) Effects of implant surface coatings and composition on bone integration: a systematic review. Clin Oral Implants Res 20(s4):185–206CrossRefGoogle Scholar
  286. 286.
    Natalio F, Link T, Müller WE, Schröder HC, Cui F-Z, Wang X, Wiens M (2010) Bioengineering of the silica-polymerizing enzyme silicaten-alpha for a targeted application to hydroxyapatite. Acta Biomater 6:3720–3728CrossRefGoogle Scholar
  287. 287.
    Nanowerk News (2011) Nanocoating safely kills MRSA on contact. Accessed 3 Feb 2011
  288. 288.
    Wouters M, Rentrop C, Willemsen P (2010) Surface structuring and coating performance: novel biocidefree nanocomposite coatings with anti-fouling and fouling-release properties. Prog Org Coat 68:4–11CrossRefGoogle Scholar
  289. 289.
    Asuri P, Karajanagi SS, Kane RS, Dordick JS (2007) Polymer-nanotube-enzyme composites as active antifouling films. Small 3:50–53CrossRefGoogle Scholar
  290. 290.
    Kananeh AB, Scharnbeck E, Hartmann D (2009) Application of antifouling surfaces in plate heat exchanger for food production. Accessed 21 Jan 2011
  291. 291.
    Nix G (2004) Selected energy conversion activities.,1. Accessed 21 Jan 2011
  292. 292.
    GE Water & Process Technologies (2008) Microbiological control—cooling system (Chapter 26). In: Handbook of industrial water treatment. General Electric Company (GE), GE Water & Process Technologies, TrevoseGoogle Scholar
  293. 293.
    Adler-Abramovich L, Aronov D, Beker P, Yevnin M, Stempler S, Buzhansky L, Rosenman G, Gazit E (2009) Self-assembled arrays of peptide nanotubes by vapor deposition. Nature Nanotech 4:849–854CrossRefGoogle Scholar
  294. 294.
    Czarneka M (2011) Self-cleaning solar panels could boost efficiency. Accessed 23 Jan 2011Google Scholar
  295. 295.
    SurfaPore R™ (2011) Accessed 31 Jan 2011
  296. 296.
    Cayton RH (2011) Nanomaterials for abrasion-resistant coating applications. Accessed 24 Jan 2011
  297. 297.
    Salata OV (2004) Applications of nanoparticles in biology and medicine. J Nanobiotechnol. Accessed 5 May 2011
  298. 298.
    Bauer F, Flyunt R, Czihal K, Buchmeiser MR, Langguth H, Mehnert R (2006) Nano/micro particle hybrid composites for scratch and abrasion resistant polyacrylate coatings. Macromol Mater Eng 5:493–498CrossRefGoogle Scholar
  299. 299.
    Green AA, Hersam MC (2008) Colored semitransparent conductive coatings consisting of monodisperse metallic single-walled carbon nanotubes. Nano Lett 8:1417–1422CrossRefGoogle Scholar
  300. 300.
    Daoud WA, Xin JH, Szeto YS (2005) Polyethylenedioxythiophene coatings for humidity, temperature and strain sensing polyamide fibers. Sens Act B Chem 109:329–333CrossRefGoogle Scholar
  301. 301.
    Hu L, Choi JW, Yang Y, Jeong S, La Mantia F, Cui L-F, Cui Y (2009) Highly conductive paper for energy storage devices. Proc Natl Acad Sci U S A 106:21490–21494CrossRefGoogle Scholar
  302. 302.
    Azonano (2011) Nanocoatings market expected to reach US$ 5 billion by 2013. Accessed 3 Feb 2011
  303. 303.
    Xurex (2011) Markets. Accessed 3 Feb 2011
  304. 304.
    Rice University (2011) Nanomaterials poised for big impact in construction, ScienceDaily, 28 July 2010. Accessed 3 Feb 2011
  305. 305.
    Research and (2011) Nanocoatings for aerospace applications. Accessed 3 Feb 2011
  306. 306.
    Jones CF, Grainger DW (2009) In vitro assessments of nanomaterial toxicity. Adv Drug Delivery Rev 61:438–456CrossRefGoogle Scholar
  307. 307.
    Liao CM, Chiang YH, Chio CP (2008) Model-based assessment for human inhalation exposure risk to airborne nano/fine titanium dioxide particles. Sci Total Environ 407:165–177CrossRefGoogle Scholar
  308. 308.
    Warheit DB, Sayes CM, Reed KL (2009) Nanoscale and fine zinc oxide particles: can in vitro assays accurately forecast lung hazards following inhalation exposures? Environ Sci Technol 43:7939–7945CrossRefGoogle Scholar
  309. 309.
    Xia T, Zhao Y, Sager T, George S, Pokhrel S, Li N, Schoenfeld D, Meng H, Lin S, Wang X, Wang M, Ji Z, Zink JI, Mädler L, Castranova V, Lin S, Nel AE (2011) Decreased dissolution of ZnO by iron doping yields nanoparticles with reduced toxicity in the rodent lung and zebrafish embryos. ACS Nano 5:1223–1235CrossRefGoogle Scholar
  310. 310.
    Voinov MA, Sosa Pagan JO, Morrison E, Smirnova TI, Smirnov AI (2011) Surface-mediated production of hydroxyl radicals as a mechanism of iron oxide nanoparticle biotoxicity. J Am Chem Soc 133:35–41CrossRefGoogle Scholar
  311. 311.
    Stampoulis D, Sinha SK, White JC (2009) Assay-dependent phytotoxicity of nanoparticles to plants. Environ Sci Technol 43:9473–9479CrossRefGoogle Scholar
  312. 312.
    Brayner R, Dahoumane SA, Yepremian C, Djediat C, Meyer M, Couté A, Fiévet F (2010) ZnO nanoparticles: synthesis, characterization, and ecotoxicological studies. Langmuir 26:6522–6528CrossRefGoogle Scholar
  313. 313.
    Ge Y, Schimel JP, Holden PA (2011) Evidence for negative effects of TiO2 and ZnO nanoparticles on soil bacterial communities. Environ Sci Technol 45:1659–1664CrossRefGoogle Scholar
  314. 314.
    Roco MC (2005) Environmentally responsible development of nanotechnology. Environ Sci Technol 39:107A–112ACrossRefGoogle Scholar
  315. 315.
    Choi JY, Ramachandran G, Kandlikar M (2009) The impact of toxicity testing costs on nanomaterial regulation. Environ Sci Technol 43:3030–3034CrossRefGoogle Scholar
  316. 316.
    Schmid K, Riediker M (2008) Use of nanoparticles in Swiss industry: a targeted survey. Environ Sci Technol 42:2253–2260CrossRefGoogle Scholar
  317. 317.
    Robichaud CO, Tanzil D, Weilenmann U, Wiesner MR (2005) Relative risk analysis of several manufactured nanomaterials: an insurance industry context. Environ Sci Technol 39:8985–8994CrossRefGoogle Scholar
  318. 318.
    Conti JA, Killpack K, Gerritzen G, Huang L, Mircheva M, Delmas M, Harthorn BH, Appelbaum RP, Holden PA (2008) Health and safety practices in the nanomaterials workplace: results from an international survey. Environ Sci Technol 42:3155–3162CrossRefGoogle Scholar
  319. 319.
    Helland A, Scheringer M, Siegrist M, Kastenholz HG, Wiek A, Scholz RW (2008) Risk assessment of engineered nanomaterials: a survey of industrial approaches. Environ Sci Technol 42:640–646CrossRefGoogle Scholar
  320. 320.
    Meyer DE, Curran MA, Gonzolez MA (2009) An examination of existing data for the industrial manufacture and use of nanocomponents and their role in the life cycle impact of nanoproducts. Environ Sci Technol 43:1256–1262CrossRefGoogle Scholar
  321. 321.
    Walser T, Demou E, Lang DJ, Hellweg S (2011) Prospective environmental life cycle assessment of nanosilver T-shirts. Environ Sci Technol. doi:  10.1021/es2001248
  322. 322.
    Botta C, Labille J, Auffan M, Borschneck D, Miche H, Cabie M, Masion A, Rose J, Bottero J-Y (2011) TiO2-based nanoparticles released in water from commercialized sunscreens in a life-cycle perspective: structures and quantities. Environ Pollut 159:1543–1550CrossRefGoogle Scholar
  323. 323.
    Cassee FR, Van Balen EC, Singh C, Green D, Muijser H, Weinstien J, Dreher K (2011) Exposure, health and ecological effects review of engineered nanoscale cerium and cerium oxide associated with its use as a fuel additive. Crit Rev Toxicol 41:213–229CrossRefGoogle Scholar
  324. 324.
    Musee N (2011) Nanowastes and the environment: potential new waste management paradigm. Environ Int 37:112–128CrossRefGoogle Scholar
  325. 325.
    Reijnders L (2006) Cleaner nanotechnology and hazard reduction of manufactured nanoparticles. J Clean Prod 14:124–133CrossRefGoogle Scholar
  326. 326.
    DHHS (NIOSH) Publication No. 2010–104 Progress toward safe nanotechnology in the workplace, project updates for 2007 and 2008Google Scholar
  327. 327.
    DHHS (NIOSH) Publication No. 2007–123 Progress toward safe nanotechnology in the workplaceGoogle Scholar
  328. 328.
    DHHS (NIOSH) Publication No. 2009–125 Approaches to safe nanotechnologyGoogle Scholar
  329. 329.
    (2011), NIOSH topic: nanotechnology: nanoparticle information library. Administered by Oregon State University, created by NIOSH. Accessed 25 Apr 2011
  330. 330.
    Research & Markets (2011) The world market for nanotechnology and nanomaterials in consumer products, 2010–2015. 10 June 2010. Accessed 4 Feb 2011
  331. 331.
    Nano Tech Project website (2011) 9 June 2010. Accessed 4 Feb 2011
  332. 332.
    Nano Tech Project website (2011) 9 June 2010. Accessed 4 Feb 2011
  333. 333.
    Nano Tech Project website (2011) 10 June 2010. Accessed 4 Feb 2011
  334. 334.
    Serpone N, Dondi D, Albini A (2007) Inorganic and organic UV filters: their role and efficacy in sunscreens and suncare products. Inorg Chim Acta 360:794–802CrossRefGoogle Scholar
  335. 335.
    Yuranova T, Laub D, Kiwi J (2007) Synthesis, activity, and characterization of textiles showing self-cleaning activity under daylight irradiation. Catal Today 122:109–117CrossRefGoogle Scholar
  336. 336.
    Sundarajan G, Rao TN (2009) Commercial prospects for nanomaterials in India. J Indian Inst Sci 89:35–41Google Scholar
  337. 337.
    Guitterez JM, Gonzalez C, Maestro A, Sole I, Pey CM, Nolla J (2008) Nano-emulsions: new applications and optimization of their preparation. Curr Opin Colloid In 13:245–251CrossRefGoogle Scholar
  338. 338.
    Nanotechnology Now website (2011) Nanotechnology Business Programs. Accessed 5 May 2011
  339. 339.
    IBM Research website (2011) 8 June 2010. Accessed 4 Feb 2011
  340. 340.
    Rickerby DG (2007) Nanotechnological devices and nanopharmaceuticals: the European regulatory framework and research needs. J Nanosci Nanotechnol 7:4618–4625Google Scholar
  341. 341.
    U.S. EPA (2009) Nanomaterial research strategy, EPA 620/K-09/11. U.S. EPA, Washington, DCGoogle Scholar
  342. 342.
    Liu K, Sun Y, Lin X, Zhou R, Wang J, Fan S, Jiang K (2010) Scratch resistant, highly conductive, and high-strength carbon nanotube-based composite yarns. ACS Nano 4:5827–5834CrossRefGoogle Scholar
  343. 343.
    Smith CJ, Shaw BJ, Handy RD (2007) Toxicity of single-walled carbon nanotubes to rainbow trout (Onchorhynchus mykiss): respiratory toxicity, organ pathologies, and other physiological effects. Aquat Toxicol 82:94–109CrossRefGoogle Scholar
  344. 344.
    Brausch KA, Anderson TA, Smith PN, Maul JD (2010) Effects of functionalized fullerenes on bifenthrin and tribufos toxicity to Daphnia magna: survival, reproduction, and growth rate. Environ Toxicol Chem 29:2600–2606CrossRefGoogle Scholar
  345. 345.
    ASTM Standard E2456, 2006 (2006) Standard terminology relating to nanotechnology. ASTM International, West Conshohocken. doi:  10.1520/E2526-08,
  346. 346.
    ASTM Standard E2578, 2007 (2006) Standard practice for calculation of mean sizes/diameters and standard deviations of particle size distributions. ASTM International, West Conshohocken, PA, doi:  10.1520/E2578-07,
  347. 347.
    ASTM Standard E2490, 2009 (2006) Standard guide for measurement of particle size distribution of nanomaterials in suspension by photon correlation spectroscopy (PCS). ASTM International, West Conshohocken, PAGoogle Scholar
  348. 348.
    ASTM Standard E2535, 2007 (2006) Standard guide for handling unbound engineered nanoscale particles in occupational settings. ASTM International, West Conshohocken, PAGoogle Scholar
  349. 349.
    ASTM Standard E2524, 2008 (2006) Standard test method for analysis of hemolytic properties of nanoparticles, ASTM International, West Conshohocken, PAGoogle Scholar
  350. 350.
    ASTM Standard E2525, 2008 (2006) Standard test method for evaluation of the effect of nanoparticulate materials on the formation of mouse granulocyte-macrophage colonies. ASTM International, West Conshohocken, PAGoogle Scholar
  351. 351.
    ASTM Standard E2526, 2008 (2006) Standard test method for evaluation of cytotoxicity of nanoparticulate materials in porcine kidney cells and human hepatocarcinoma cells. ASTM International, West Conshohocken, PAGoogle Scholar

Suggested Further Reading

  1. Klabunde K, Richards R (2009) Nanoscale materials in chemistry, 2nd edn. Wiley, New YorkCrossRefGoogle Scholar
  2. Executive Office of the President (2010) Report to the President and Congress on the third assessment of the national nanotechnology initiative. President’s Council of Advisors on Science and Technology, 12 Mar 2010Google Scholar
  3. Organisation for Economic Co-operation and Development (2009) Inventory of National science, technology and innovation policies for nanotechnology 2008. Working Party on Nanotechnology, 17 July 2009Google Scholar
  4. Cho G (2010) Smart clothing: technology and applications. Taylor & Francis, Boca RatonGoogle Scholar
  5. ObservatoryNANO (2010) Medical textiles, sport/outdoor textiles. Report on Nanotechnology & Textiles, Apr 2010Google Scholar
  6. Ventra M, Evoy S, Heflin JR (eds) (2004) Introduction to nanoscale science and technology (nanostructure science and technology), 1st edn. Springer, New YorkGoogle Scholar
  7. Sahu SN, Choudary RK, Jena P (eds) (2006) Nano-scale materials: from science to technology. Nova Science, New YorkGoogle Scholar
  8. Pagliaro M (ed) (2010) Nano-age: how nanotechnology changes our future. Wiley, WeinheimGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  • Kristin Clement
    • 1
  • Angela Iseli
    • 1
  • Dennis Karote
    • 1
  • Jessica Cremer
    • 1
  • Shyamala Rajagopalan
    • 1
    Email author
  1. 1.NanoScaleManhattanUSA

Personalised recommendations