Multiband Simultaneous Photometry of Type II SN 2023ixf with Mephisto and the Twin 50-cm Telescopes

Multiband Simultaneous Photometry of Type II SN 2023ixf with Mephisto and the Twin 50-cm Telescopes

Yuan-Pei Yang South-Western Institute for Astronomy Research, Yunnan University, Kunming, Yunnan 650504, P.R. China These authors contributed equally to this work Xiangkun Liu South-Western Institute for Astronomy Research, Yunnan University, Kunming, Yunnan 650504, P.R. China These authors contributed equally to this work Yu Pan South-Western Institute for Astronomy Research, Yunnan University, Kunming, Yunnan 650504, P.R. China Xinzhong Er South-Western Institute for Astronomy Research, Yunnan University, Kunming, Yunnan 650504, P.R. China Dezi Liu South-Western Institute for Astronomy Research, Yunnan University, Kunming, Yunnan 650504, P.R. China Yuan Fang South-Western Institute for Astronomy Research, Yunnan University, Kunming, Yunnan 650504, P.R. China Guowang Du South-Western Institute for Astronomy Research, Yunnan University, Kunming, Yunnan 650504, P.R. China Yongzhi Cai Yunnan Observatories, Chinese Academy of Sciences, Kunming 650216, P.R. China Key Laboratory for the Structure and Evolution of Celestial Objects, Chinese Academy of Sciences, Kunming 650216, P.R. China International Centre of Supernovae, Yunnan Key Laboratory, Kunming 650216, P.R. China Xian Xu South-Western Institute for Astronomy Research, Yunnan University, Kunming, Yunnan 650504, P.R. China Xinlei Chen South-Western Institute for Astronomy Research, Yunnan University, Kunming, Yunnan 650504, P.R. China Xingzhu Zou South-Western Institute for Astronomy Research, Yunnan University, Kunming, Yunnan 650504, P.R. China Helong Guo South-Western Institute for Astronomy Research, Yunnan University, Kunming, Yunnan 650504, P.R. China Chenxu Liu South-Western Institute for Astronomy Research, Yunnan University, Kunming, Yunnan 650504, P.R. China Yehao Cheng South-Western Institute for Astronomy Research, Yunnan University, Kunming, Yunnan 650504, P.R. China Brajesh Kumar South-Western Institute for Astronomy Research, Yunnan University, Kunming, Yunnan 650504, P.R. China Xiaowei Liu South-Western Institute for Astronomy Research, Yunnan University, Kunming, Yunnan 650504, P.R. China
Abstract

SN 2023ixf, recently reported in the nearby galaxy M101 at a distance of 6.85Mpc6.85Mpc6.85~{}{\rm Mpc}6.85 roman_Mpc, was one of the closest and brightest core-collapse supernovae (CCSNe) in the last decade. In this work, we present multi-wavelength photometric observation of SN 2023ixf with the Multi-channel Photometric Survey Telescope (Mephisto) in uvgr𝑢𝑣𝑔𝑟uvgritalic_u italic_v italic_g italic_r bands and with the twin 50-cm telescopes in griz𝑔𝑟𝑖𝑧grizitalic_g italic_r italic_i italic_z bands. We find that the bolometric luminosity reached the maximum value of 3×1043ergs13superscript1043ergsuperscripts13\times 10^{43}~{}{\rm erg~{}s^{-1}}3 × 10 start_POSTSUPERSCRIPT 43 end_POSTSUPERSCRIPT roman_erg roman_s start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT at 3.9 days after the explosion and fully settled onto the radioactive tail at 90similar-toabsent90\sim 90∼ 90 days. The effective temperature decreased from 3.2×104K3.2superscript104K3.2\times 10^{4}~{}{\rm K}3.2 × 10 start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT roman_K at the first observation and approached to a constant of (30004000)Ksimilar-toabsent30004000K\sim(3000-4000)~{}{\rm K}∼ ( 3000 - 4000 ) roman_K after the first two months. The evolution of the photospheric radius is consistent with a homologous expansion with a velocity of 8700kms18700kmsuperscripts18700~{}{\rm km~{}s^{-1}}8700 roman_km roman_s start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT in the first two months, and it shrunk subsequently. Based on the radioactive tail, the initial nickel mass is about MNi0.098Msimilar-tosubscript𝑀Ni0.098subscript𝑀direct-productM_{\rm Ni}\sim 0.098M_{\odot}italic_M start_POSTSUBSCRIPT roman_Ni end_POSTSUBSCRIPT ∼ 0.098 italic_M start_POSTSUBSCRIPT ⊙ end_POSTSUBSCRIPT. The explosion energy and the ejecta mass are estimated to be E(1.05.7)×1051ergsimilar-to-or-equals𝐸1.05.7superscript1051ergE\simeq(1.0-5.7)\times 10^{51}~{}{\rm erg}italic_E ≃ ( 1.0 - 5.7 ) × 10 start_POSTSUPERSCRIPT 51 end_POSTSUPERSCRIPT roman_erg and Mej(3.816)Msimilar-to-or-equalssubscript𝑀ej3.816subscript𝑀direct-productM_{\rm ej}\simeq(3.8-16)M_{\odot}italic_M start_POSTSUBSCRIPT roman_ej end_POSTSUBSCRIPT ≃ ( 3.8 - 16 ) italic_M start_POSTSUBSCRIPT ⊙ end_POSTSUBSCRIPT, respectively. The peak bolometric luminosity is proposed to be contributed by the interaction between the ejecta and the circumstellar medium (CSM). We find a shocked CSM mass of MCSM0.013Msimilar-tosubscript𝑀CSM0.013subscript𝑀direct-productM_{\rm CSM}\sim 0.013M_{\odot}italic_M start_POSTSUBSCRIPT roman_CSM end_POSTSUBSCRIPT ∼ 0.013 italic_M start_POSTSUBSCRIPT ⊙ end_POSTSUBSCRIPT, a CSM density of ρCSM2.5×1013gcm3similar-tosubscript𝜌CSM2.5superscript1013gsuperscriptcm3\rho_{\rm CSM}\sim 2.5\times 10^{-13}~{}{\rm g~{}cm^{-3}}italic_ρ start_POSTSUBSCRIPT roman_CSM end_POSTSUBSCRIPT ∼ 2.5 × 10 start_POSTSUPERSCRIPT - 13 end_POSTSUPERSCRIPT roman_g roman_cm start_POSTSUPERSCRIPT - 3 end_POSTSUPERSCRIPT and a mass loss rate of the progenitor of M˙0.022Myr1similar-to˙𝑀0.022subscript𝑀direct-productsuperscriptyr1\dot{M}\sim 0.022M_{\odot}~{}{\rm yr^{-1}}over˙ start_ARG italic_M end_ARG ∼ 0.022 italic_M start_POSTSUBSCRIPT ⊙ end_POSTSUBSCRIPT roman_yr start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT.

Core-collapse supernovae (304); Type II supernovae (1731); Circumstellar matter (241); Stellar mass loss (1613)

1 Introduction

Core-collapse supernovae (CCSNe) arise from the core collapses of massive stars (M8Mgreater-than-or-equivalent-to𝑀8subscript𝑀direct-productM\gtrsim 8M_{\odot}italic_M ≳ 8 italic_M start_POSTSUBSCRIPT ⊙ end_POSTSUBSCRIPT) in their final evolutionary stages when the radiation pressure from the nuclear fusion in the core cannot resist its own gravity. Given the extreme physical conditions, many details of the explosion process remain elusive. Based on the observed spectra and light curves, CCSNe could be classified into types IIP, IIL, IIn, IIb, Ib, and Ic (Filippenko, 1997; Modjaz et al., 2019). CCSNe retaining a large portion of the hydrogen envelope are known as Type II SNe, and their observed spectra are dominated by the Balmer lines. CCSNe having no hydrogen envelope but showing helium features are known as Type Ib. Those that have lost much or all of their helium envelope are known as Type Ic.

SNe II are among the most commonly observed SNe. They mark the deaths of massive stars and play an important role in the cosmic chemical enrichment. The light curves and spectra of SNe II give insight into the SN explosion mechanisms and the progenitor properties. The observed features of the light curves and the spectra of the SNe II vary across the sub-classes that depend on the fraction of the losses of the outer layer(s) (e.g., Branch & Wheeler, 2017). SNe IIP have thick hydrogen envelopes and show long plateau phases (100similar-toabsent100\sim 100∼ 100 days) with roughly constant or slowly declining luminosity (Anderson et al., 2014), and about half of CCSNe are SNe IIP. SNe IIL have thinner envelopes and decline more quickly and account for 6% of all CCSNe. The differentiation between SNe IIP and SNe IIL is mainly based on photometry, although it is not clear that the light curves of SNe IIL can be rigorously distinguished from those of SNe IIP (Anderson et al., 2014; Sanders et al., 2015; Holoien et al., 2016). SNe IIn, accounting for 10% of all CCSNe, are characterized by narrow (10100kms1similar-toabsent10100kmsuperscripts1\sim 10-100~{}{\rm km~{}s^{-1}}∼ 10 - 100 roman_km roman_s start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT) or intermediate-width (1000kms1similar-toabsent1000kmsuperscripts1\sim 1000~{}{\rm km~{}s^{-1}}∼ 1000 roman_km roman_s start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT ) hydrogen emission lines attributed to the circumstellar interaction (Schlegel, 1990). It is noteworthy that some SNe IIL also show narrow emission lines. Meanwhile, some SNe IIn present linear-decline phases in their light curves (Di Carlo et al., 2002; Smith et al., 2009). It is unclear whether SNe IIL can be rigorously distinguished from SNe IIn. Therefore, it is crucial to investigate the observational properties of Type II SNe in detail.

Very recently, SN 2023ixf was reported on 2023 May 19.727 UTC in the nearby face-on “Pinwheel Galaxy” Messier 101 (M101; NGC 5457) (Itagaki, 2023) at a distance of 6.85±0.15Mpcplus-or-minus6.850.15Mpc6.85\pm 0.15~{}{\rm Mpc}6.85 ± 0.15 roman_Mpc (Riess et al., 2022), and it was one of the closest and brightest CCSNe in the last decade. The evolution of SN 2023ixf has been extensively monitored by numerous facilities all over the world, and both professional and amateur astronomers reported their early observations of photometry (e.g., Balam & Kendurkar, 2023; Brothers et al., 2023; Chen et al., 2023; D’Avanzo et al., 2023; Daglas, 2023; Desrosiers et al., 2023; Fowler et al., 2023; González-Carballo et al., 2023; Kendurkar & Balam, 2023b, c, d; Koltenbah, 2023; Li et al., 2023; Maund et al., 2023; Mayya et al., 2023; Pessev et al., 2023; Sgro et al., 2023; Silva, 2023a, b; Singh et al., 2023; Vannini, 2023; Vannini & Julio, 2023a, b; Villafane et al., 2023; Zimmerman et al., 2024) and spectroscopy (e.g., BenZvi et al., 2023a, b; Lundquist et al., 2023; Stritzinger et al., 2023; Sutaria & Ray, 2023; Sutaria et al., 2023; Zhang et al., 2023; Zimmerman et al., 2024) of this object. SN 2023ixf was classified as a Type II SN (Perley et al., 2023) and showed a strong blue continuum and prominent optical flash-ionization features (H, He, N, and C) in its early-phase spectrum, all indicative of the presence of circumstellar medium (CSM). Interestingly, the early photometric and spectroscopic studies have revealed evidence of the interaction between the SN ejecta and a dense confined CSM that boosted the early-phase optical luminosity of the SN (Bostroem et al., 2023; Hiramatsu et al., 2023; Hosseinzadeh et al., 2023; Jacobson-Galan et al., 2023; Smith et al., 2023; Teja et al., 2023; Yamanaka et al., 2023; Li et al., 2023). The X-ray detection, starting about four days after the explosion, also supported the scenario of the circumstellar interaction (Chandra et al., 2023; Grefenstette et al., 2023; Mereminskiy et al., 2023). So far no evidence has been found for statistically significant emission in the sub-millimeter (Berger et al., 2023), radio (at 10 GHz Matthews et al., 2023c, d, a, b), gamma-rays (Müller et al., 2023) and neutrinos (Thwaites et al., 2023; Guetta et al., 2023). Further, the spectropolarimetric investigation of this event revealed an aspherical SN explosion and distinct geometry of the CSM (Vasylyev et al., 2023) and provided a temporally-resolved description of a massive-star explosion (Zimmerman et al., 2024).

In addition to the SN 2023ixf itself, the currently available photometric information pointed to a luminous red supergiant with a dense shell of circumstellar material as its progenitor candidate (Jencson et al., 2023; Kilpatrick et al., 2023; Xiang et al., 2023; Liu et al., 2023). The progenitor has been estimated to have a bolometric luminosity of L(104.7105.4)Lsimilar-to𝐿superscript104.7superscript105.4subscript𝐿direct-productL\sim(10^{4.7}-10^{5.4})L_{\odot}italic_L ∼ ( 10 start_POSTSUPERSCRIPT 4.7 end_POSTSUPERSCRIPT - 10 start_POSTSUPERSCRIPT 5.4 end_POSTSUPERSCRIPT ) italic_L start_POSTSUBSCRIPT ⊙ end_POSTSUBSCRIPT, an effective temperature of Teff(32003900)Ksimilar-tosubscript𝑇eff32003900KT_{\rm eff}\sim(3200-3900)~{}{\rm K}italic_T start_POSTSUBSCRIPT roman_eff end_POSTSUBSCRIPT ∼ ( 3200 - 3900 ) roman_K, and a mass of M(920)Msimilar-to𝑀920subscript𝑀direct-productM\sim(9-20)M_{\odot}italic_M ∼ ( 9 - 20 ) italic_M start_POSTSUBSCRIPT ⊙ end_POSTSUBSCRIPT (Niu et al., 2023; Hosseinzadeh et al., 2023; Pledger & Shara, 2023; Jencson et al., 2023; Kilpatrick et al., 2023; Soraisam et al., 2023; Neustadt et al., 2023; Xiang et al., 2023). The estimated values of the parameters depend on the model of the progenitor and its dust-driven wind environment reported in the literature, though Van Dyk et al. (2023) recently proposed that the progenitor candidate has a spectral energy distribution (SED) and luminosity strikingly similar to a Galactic red supergiant analog (IRC-10414).

In this work, we present and model multi-wavelength photometry of SN 2023ixf based on the observations with the Multi-channel Photometric Survey Telescope (Mephisto) and with the twin 50-cm telescopes. We choose 2023 May 18 18:00 (MJD 60082.75) as phase zero, which is approximately midway between the first detection of the SN and the deep nondetection, as proposed by Hosseinzadeh et al. (2023). All times in the results and figures are related to this phase zero. The paper is organized as follows. We describe our photometric observations and present the observed properties of SN 2023ixf in Section 2. We describe the evolution of the bolometric luminosity, effective temperature, and photospheric radius in Section 3. We analyze the physical properties of SN 2023ixf in Section 4. The results are discussed and summarized in Section 5. The convention Qx=Q/10xsubscript𝑄𝑥𝑄superscript10𝑥Q_{x}=Q/10^{x}italic_Q start_POSTSUBSCRIPT italic_x end_POSTSUBSCRIPT = italic_Q / 10 start_POSTSUPERSCRIPT italic_x end_POSTSUPERSCRIPT is adopted in cgs units unless otherwise specified.

2 Multiband Photometric Observations and Data Reduction

Since the discovery alert of SN 2023ixf, we carried out continuous photometric follow-up observations from May 20, 2023 with the Multi-channel Photometric Survey Telescope (Mephisto) under commissioning. The data presented in this work were collected between May 20, 2023 and February 24, 2024. Mephisto is a wide-field multi-channel telescope, the first of its type in the world, located at Lijiang Observatory (IAU code: 044) of Yunnan Astronomical Observatories, Chinese Academy of Sciences (CAS), with longitude 1000148′′superscript100superscript01superscript48′′100^{\circ}01^{\prime}48^{\prime\prime}100 start_POSTSUPERSCRIPT ∘ end_POSTSUPERSCRIPT 01 start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT 48 start_POSTSUPERSCRIPT ′ ′ end_POSTSUPERSCRIPT East, latitude 264142′′superscript26superscript41superscript42′′26^{\circ}41^{\prime}42^{\prime\prime}26 start_POSTSUPERSCRIPT ∘ end_POSTSUPERSCRIPT 41 start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT 42 start_POSTSUPERSCRIPT ′ ′ end_POSTSUPERSCRIPT North and altitude 3200320032003200m. The telescope has a 1.61.61.61.6m primary mirror and covers a field-of-view (FOV) of 2superscript22^{\circ}2 start_POSTSUPERSCRIPT ∘ end_POSTSUPERSCRIPT in diameter. It is capable of imaging the same FOV in three optical bands simultaneously and delivering real-time, high-quality colors of unprecedented accuracy of surveyed celestial objects. Mephisto was equipped with two commercial Oxford Instruments/Andor Technology iKon-XXL single-chip CCD cameras for the blue and yellow channels during most of this period, allowing imaging respectively uv𝑢𝑣uvitalic_u italic_v and gr𝑔𝑟gritalic_g italic_r filters. Each camera employs an e2v CCD231-C6 6144×6160614461606144\times 61606144 × 6160 sensor with a pixel size of 15μ15𝜇15~{}\mu15 italic_μm (corresponding to 0.4290.4290.4290.429 arcsec projected on the sky), and covers an area about a quarter of the full FOV. The wavelength coverages of the uvgr𝑢𝑣𝑔𝑟uvgritalic_u italic_v italic_g italic_r filters are respectively 320365320365320-365320 - 365, 365405365405365-405365 - 405, 480580480580480-580480 - 580, and 580680580680580-680580 - 680 nm, with a corresponding average efficiency of 90%percent9090\%90 %, 93%percent9393\%93 %, 99%percent9999\%99 %, and 98%percent9898\%98 %, as shown in Figure 1. The observations were performed with filter combinations of ug𝑢𝑔ugitalic_u italic_g and vr𝑣𝑟vritalic_v italic_r for the blue and yellow channels in a simultaneous mode. To ensure optimal signal-to-noise ratios of the target, the exposure times in different bands were adjusted accordingly over the time, ranging from 10 to 300s, and 2 to 180s, for the uv𝑢𝑣uvitalic_u italic_v and gr𝑔𝑟gritalic_g italic_r bands, respectively. After eliminating data of bad quality, we are left with 242, 229, 327, and 317 exposures collected in 41 days in the u𝑢uitalic_u, v𝑣vitalic_v, g𝑔gitalic_g, and r𝑟ritalic_r bands, respectively.

Refer to caption
Figure 1: The transmission curves of the filters of Mephisto and the twin 50-cm telescopes compared with other optical telescopes and filter systems. The transmission curves of SkyMapper are given by Bessell et al. (2011), and the transmission curves of SDSS and the filter systems of Johnson-Cousins and Bessell are from http://svo2.cab.inta-csic.es/theory/fps/.

As auxiliary photometric telescopes of Mephisto, the twin 50-cm telescopes, also located at Lijiang Observatory, were also involved in the observations of SN 2023ixf. The twin telescopes are of model Alluna RC20, with a flat-field corrector, and have a 505505505505mm optical aperture and a f/8.1𝑓8.1f/8.1italic_f / 8.1 focal ratio. Each telescope is equatorial mounted with a 10 Micron GM4000 mount, and equipped with a FLI ML 50100 CCD camera. The camera employs an On Semi KAF-50100 sensor, with 8176×6132817661328176\times 61328176 × 6132 pixels of size 6μ6𝜇6\mu6 italic_μm (corresponding to 0.30.30.30.3 arcsec projected on the sky). The observations were performed simultaneously with the twin telescopes, in two bands of filters griz𝑔𝑟𝑖𝑧grizitalic_g italic_r italic_i italic_z. The CCDs were binned by 2 at the readout, resulting in a pixel scale of 0.60.60.60.6 arcsec. The gr𝑔𝑟gritalic_g italic_r filters have transmission curves similar to those of Mephisto, and the wavelength coverages of iz𝑖𝑧izitalic_i italic_z filters are 775900775900775-900775 - 900 and 90010509001050900-1050900 - 1050 nm, respectively, with an average efficiency of 99%percent9999\%99 %. In most cases, the exposure times were 10, 10, 60, and 120s in griz𝑔𝑟𝑖𝑧grizitalic_g italic_r italic_i italic_z bands, respectively. In total, 34, 47, 50, and 30 exposures were collected in 12 days in g𝑔gitalic_g, r𝑟ritalic_r, i𝑖iitalic_i, and z𝑧zitalic_z bands, respectively, after excluding abnormal or overexposed images.

Refer to caption
Figure 2: Images of SN 2023ixf with Mephisto (a-f,i-l) in uvgr𝑢𝑣𝑔𝑟uvgritalic_u italic_v italic_g italic_r bands and the twin 50-cm telescopes (g,h,m,n) in iz𝑖𝑧izitalic_i italic_z bands. Panel (a): the vgr𝑣𝑔𝑟vgritalic_v italic_g italic_r-band composite image of the “Pinwheel Galaxy” Messier 101 with Mephisto on 2023 May 20. Panel (b): the image of the region near SN 2023ixf. Panel (c-h): images of SN 2023ixf in uvgriz𝑢𝑣𝑔𝑟𝑖𝑧uvgrizitalic_u italic_v italic_g italic_r italic_i italic_z bands with different exposures on 2023 May 21. Panel (i-n): images of SN 2023ixf in uvgriz𝑢𝑣𝑔𝑟𝑖𝑧uvgrizitalic_u italic_v italic_g italic_r italic_i italic_z bands with different exposures on 2023 June 4.

We first performed pre-processing for each raw image, including bias/dark subtraction, flat-fielding with twilight flats, and gain correction. After pre-processing, the satellite trajectories and cosmic rays were removed. We then carried out astrometric calibration, using stars from the Gaia EDR3 catalog as the reference (Gaia Collaboration et al., 2021). The astrometric calibration is typically accurate to 40 mas. Multiple observations of HST standard stars covering a sufficiently large airmass range were conducted on two photometric nights, April 9 and May 29, 2023. Those observations were used to derive the zero points of magnitude and first-order atmospheric extinction coefficients of the observed bands for absolute photometric calibration for data obtained with the Mephisto and the twin 50-cm telescopes. On this basis, we further performed relative photometric calibration to account for non-photometric observing conditions: 1) We first chose an image obtained in a photometric night with small airmass and good image quality with FWHM <2absent2<2< 2 arcsec as the reference image for flux alignment; 2) We scaled the flux levels of the remaining images to that of the reference image using stars of signal-to-noise ratios S/N >50absent50>50> 50. We then applied the following procedures to construct the multiband light curves of SN 2023ixf:

(1) Reference and target images: High-quality images obtained before the supernova explosion were used as the reference images for image subtraction, while images exposed after the explosion were target images.

(2) Image alignment: For each target image, we used SWARP (Bertin et al., 2002) to subtract the sky background and align it with the reference image for image subtraction for a selected area centered on SN 2023ixf. The selected areas were 3000×3000300030003000\times 30003000 × 3000, and 1500×1500150015001500\times 15001500 × 1500 pixels, for images obtained with Mephisto and the twin 50-cm telescopes, respectively. Note the pixel sizes were 0.429 and 0.6 arcsec for the Mephisto and 50-cm image frames.

(3) Point Spread Function (PSF) model construction: we then constructed the PSF model for each image after alignment using SExtractor (Bertin & Arnouts, 1996) and PSFex (Bertin, 2011), and acquired the PSF at the position of SN 2023ixf.

(4) Image subtraction and PSF photometry: After conducting mutual PSF convolution on both target images and reference images for image subtraction, we obtained the subtracted images by subtracting target images from reference image, and performed PSF photometry to construct the light curves.

In Figure 2, we plot the images of SN 2023ixf with Mephisto and the twin 50-cm telescopes in uvgriz𝑢𝑣𝑔𝑟𝑖𝑧uvgrizitalic_u italic_v italic_g italic_r italic_i italic_z bands, the middle panels and the bottom panels correspond to the images of SN 2023ixf region on 2023 May 21 and 2023 June 4, respectively. After obtaining the differential photometric measurements, we further corrected the magnitudes for the interstellar extinction. The foreground extinction from the Milky Way in the line of sight of SN 2023ixf is E(BV)MW𝐸subscript𝐵𝑉MWE(B-V)_{\rm MW}italic_E ( italic_B - italic_V ) start_POSTSUBSCRIPT roman_MW end_POSTSUBSCRIPT= 0.008 mag (Schlegel et al., 1998; Schlafly & Finkbeiner, 2011). For the host galaxy extinction, we used the result of Liu et al. (2023) obtained by analyzing the spectral data from the Hobby Eberly Telescope Dark Energy Experiment (HETDEX), who obtained an extinction value of E(BV)host=0.06±0.14𝐸subscript𝐵𝑉hostplus-or-minus0.060.14E(B-V)_{\rm host}=0.06\pm 0.14italic_E ( italic_B - italic_V ) start_POSTSUBSCRIPT roman_host end_POSTSUBSCRIPT = 0.06 ± 0.14  mag that is slightly larger than E(BV)=0.031mag𝐸𝐵𝑉0.031magE(B-V)=0.031~{}{\rm mag}italic_E ( italic_B - italic_V ) = 0.031 roman_mag given by some previous works (Smith et al., 2023; Teja et al., 2023). Using the extinction law of Cardelli et al. (1989) and assuming RVsubscript𝑅𝑉R_{V}italic_R start_POSTSUBSCRIPT italic_V end_POSTSUBSCRIPT = 3.1, we obtain the extinction values of 0.338, 0.316, 0.221, 0.183, 0.117 and 0.095 mag accounting for both the Milky Way and host galaxy for the uvgriz𝑢𝑣𝑔𝑟𝑖𝑧uvgrizitalic_u italic_v italic_g italic_r italic_i italic_z bands, respectively.

Refer to caption
Figure 3: Multiband light curves of SN 2023ixf obtained with Mephisto and the twin 50-cm telescopes. The photometry data of Mephisto and the twin 50-cm telescopes is shown in the Appendix. Offsets have been added to the magnitudes of different bands for clarity, as specified in the legend.
Refer to caption
Figure 4: The comparison of light curves in g𝑔gitalic_g (green points) and r𝑟ritalic_r (yellow points) bands between this work and other previous works. The data from other previous works (Perley & Irani, 2023; Kendurkar & Balam, 2023a; Fowler et al., 2023; Zimmerman et al., 2024). Offsets have been added to the magnitudes of different bands for clarity, as specified in the legend.
Refer to caption
Figure 5: Spectral energy distributions (SEDs) at 2.9, 9.9, 16.9 days after phase zero. Circles and triangles correspond to apparent magnitudes measured with the Mephisto and the twin 50-cm telescopes, respectively. The green, red, and pink lines correspond to best-fit blackbody spectra of effective temperatures T=25000,13000,9400K𝑇25000130009400KT=25000,13000,9400~{}{\rm K}italic_T = 25000 , 13000 , 9400 roman_K, respectively. The wavelength of the data in this figure is taken as the mean wavelength of the filter.

In Figure 3, we present the observed light curves of SN 2023ixf with Mephisto and the twin 50-cm telescopes in uvgriz𝑢𝑣𝑔𝑟𝑖𝑧uvgrizitalic_u italic_v italic_g italic_r italic_i italic_z bands (the data behind Figure 3 are shown in the appendix, and we should notice that the uncertainties in the appendix mainly include the photon-counting uncertainties. The uncertainties of the photometric calibration and the zero points of magnitude are approximately 0.01mag0.01mag0.01~{}{\rm mag}0.01 roman_mag). All photometric data are in AB magnitudes and have been corrected for the Milky Way and host galaxy extinctions. Since the measurement errors of Mephisto are much smaller than those of the twin 50-cm telescopes, for gr𝑔𝑟gritalic_g italic_r bands, we only include the Mephisto measurements in this work. The Mephisto measurements show that SN 2023ixf has peak magnitudes mu=10.59subscript𝑚𝑢10.59m_{u}=10.59italic_m start_POSTSUBSCRIPT italic_u end_POSTSUBSCRIPT = 10.59 mag, mv=10.71subscript𝑚𝑣10.71m_{v}=10.71italic_m start_POSTSUBSCRIPT italic_v end_POSTSUBSCRIPT = 10.71 mag, mg=11.14subscript𝑚𝑔11.14m_{g}=11.14italic_m start_POSTSUBSCRIPT italic_g end_POSTSUBSCRIPT = 11.14 mag, and mr=11.33subscript𝑚𝑟11.33m_{r}=11.33italic_m start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT = 11.33 mag at 3.9similar-toabsent3.9\sim 3.9∼ 3.9 days after phase zero and decline gradually after the explosion. The rise time (post-explosion) of SN 2023ixf is significantly shorter than the average rise time of other normal Type II events (c.f. similar-to\sim10 days, see Valenti et al., 2016). The comparison of light curves in g𝑔gitalic_g and r𝑟ritalic_r bands between this work and other previous works (Perley & Irani, 2023; Kendurkar & Balam, 2023a; Fowler et al., 2023; Zimmerman et al., 2024) are shown in Figure 4. In Figure 5, we plot the spectral energy distribution (SED) at 2.9, 9.9, and 16.9 days after phase zero and fit them with a blackbody. The mean wavelengths of the uvgriz𝑢𝑣𝑔𝑟𝑖𝑧uvgrizitalic_u italic_v italic_g italic_r italic_i italic_z bands are 3449.953449.953449.953449.95, 3888.793888.793888.793888.79, 5273.225273.225273.225273.22, 6253.806253.806253.806253.80, 8301.758301.758301.758301.75, and 9368.179368.179368.179368.17Å, respectively. One can see that the effective temperature evolves significantly during the early phase of SN 2023ixf.

3 Evolution of Bolometric Luminosity, Effective Temperature and Photospheric Radius

In this section, we discuss the evolving properties of SN 2023ixf. The evolution of an SN could be well described by an isotropic expanding fireball in the early phase. For an SN ejecta with a time-dependent mean density ρ(t)𝜌𝑡\rho(t)italic_ρ ( italic_t ), the evolution of the photospheric radius could be described by (e.g., Arnett, 1982; Liu et al., 2018),

Rph(t)=R(t)23λ(t),subscript𝑅ph𝑡𝑅𝑡23𝜆𝑡\displaystyle R_{\rm ph}(t)=R(t)-\frac{2}{3}\lambda(t),italic_R start_POSTSUBSCRIPT roman_ph end_POSTSUBSCRIPT ( italic_t ) = italic_R ( italic_t ) - divide start_ARG 2 end_ARG start_ARG 3 end_ARG italic_λ ( italic_t ) , (1)

where λ(t)=1/[κ(t)ρ(t)]𝜆𝑡1delimited-[]𝜅𝑡𝜌𝑡\lambda(t)=1/[\kappa(t)\rho(t)]italic_λ ( italic_t ) = 1 / [ italic_κ ( italic_t ) italic_ρ ( italic_t ) ] the mean free path of photons and κ𝜅\kappaitalic_κ the opacity of the SN ejecta. We should notice that the opacity κ𝜅\kappaitalic_κ of Type II SNe could evolve due to the hydrogen recombination process. The SN ejecta enters a homologous expansion phase after a few times of the expansion timescale R0/vsubscript𝑅0𝑣R_{0}/vitalic_R start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT / italic_v, where v𝑣vitalic_v is the ejecta velocity and R0subscript𝑅0R_{0}italic_R start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT the progenitor radius. At the early phase of SN expansion, the mean free path λ(t)𝜆𝑡\lambda(t)italic_λ ( italic_t ) is much smaller than the ejecta radius R(t)𝑅𝑡R(t)italic_R ( italic_t ), resulting in a photosphere that is homologously expanding, Rph(t)R(t)similar-to-or-equalssubscript𝑅ph𝑡𝑅𝑡R_{\rm ph}(t)\simeq R(t)italic_R start_POSTSUBSCRIPT roman_ph end_POSTSUBSCRIPT ( italic_t ) ≃ italic_R ( italic_t ). As the ejecta density decreases with the expansion, the photospheric radius reaches its maximum at the transitional timescale ttrsubscript𝑡trt_{\rm tr}italic_t start_POSTSUBSCRIPT roman_tr end_POSTSUBSCRIPT with dRph(ttr)/dt=0𝑑subscript𝑅phsubscript𝑡tr𝑑𝑡0dR_{\rm ph}(t_{\rm tr})/dt=0italic_d italic_R start_POSTSUBSCRIPT roman_ph end_POSTSUBSCRIPT ( italic_t start_POSTSUBSCRIPT roman_tr end_POSTSUBSCRIPT ) / italic_d italic_t = 0 (e.g., Liu et al., 2018). The photosphere then enters a late declining phase at t>ttr𝑡subscript𝑡trt>t_{\rm tr}italic_t > italic_t start_POSTSUBSCRIPT roman_tr end_POSTSUBSCRIPT.

Assuming that the blackbody radiation dominates the SN emission, we can derive the bolometric luminosity from the multiband photometry at each epoch and infer the effective temperature by fitting the SED at the same epoch. First, the AB magnitude system is defined based on the observed flux density,

mAB,ν=2.5logFν48.6.subscript𝑚AB𝜈2.5subscript𝐹𝜈48.6\displaystyle m_{\rm AB,\nu}=-2.5\log F_{\nu}-48.6.italic_m start_POSTSUBSCRIPT roman_AB , italic_ν end_POSTSUBSCRIPT = - 2.5 roman_log italic_F start_POSTSUBSCRIPT italic_ν end_POSTSUBSCRIPT - 48.6 . (2)

For a fireball of uniform brightness of a photospheric radius Rphsubscript𝑅phR_{\rm ph}italic_R start_POSTSUBSCRIPT roman_ph end_POSTSUBSCRIPT and a radiation intensity Bνsubscript𝐵𝜈B_{\nu}italic_B start_POSTSUBSCRIPT italic_ν end_POSTSUBSCRIPT, the flux density at distance d𝑑ditalic_d is Fν=πBν(Rph/d)2subscript𝐹𝜈𝜋subscript𝐵𝜈superscriptsubscript𝑅ph𝑑2F_{\nu}=\pi B_{\nu}(R_{\rm ph}/d)^{2}italic_F start_POSTSUBSCRIPT italic_ν end_POSTSUBSCRIPT = italic_π italic_B start_POSTSUBSCRIPT italic_ν end_POSTSUBSCRIPT ( italic_R start_POSTSUBSCRIPT roman_ph end_POSTSUBSCRIPT / italic_d ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT, where the intensity of the blackbody radiation satisfies the Planck law,

Bν(Teff,ν)=2hν3c21exp(hν/kTeff)1,subscript𝐵𝜈subscript𝑇eff𝜈2superscript𝜈3superscript𝑐21𝜈𝑘subscript𝑇eff1\displaystyle B_{\nu}(T_{\rm eff},\nu)=\frac{2h\nu^{3}}{c^{2}}\frac{1}{\exp(h% \nu/kT_{\rm eff})-1},italic_B start_POSTSUBSCRIPT italic_ν end_POSTSUBSCRIPT ( italic_T start_POSTSUBSCRIPT roman_eff end_POSTSUBSCRIPT , italic_ν ) = divide start_ARG 2 italic_h italic_ν start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT end_ARG start_ARG italic_c start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG divide start_ARG 1 end_ARG start_ARG roman_exp ( italic_h italic_ν / italic_k italic_T start_POSTSUBSCRIPT roman_eff end_POSTSUBSCRIPT ) - 1 end_ARG , (3)

where Teffsubscript𝑇effT_{\rm eff}italic_T start_POSTSUBSCRIPT roman_eff end_POSTSUBSCRIPT is the effective temperature of the SN ejecta. We consider that the photometry is performed in two bands denoted by i=1,2𝑖12i=1,2italic_i = 1 , 2 and the measured AB magnitude in a band of frequency νisubscript𝜈𝑖\nu_{i}italic_ν start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT is mAB,νisubscript𝑚ABsubscript𝜈𝑖m_{{\rm AB},\nu_{i}}italic_m start_POSTSUBSCRIPT roman_AB , italic_ν start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT end_POSTSUBSCRIPT (ν1<ν2subscript𝜈1subscript𝜈2\nu_{1}<\nu_{2}italic_ν start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT < italic_ν start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT). The color between band 1 and band 2 is,

ΔmAB,ν21=mAB,ν2mAB,ν1=2.5log[Bν(Teff,ν2)Bν(Teff,ν1)].Δsubscript𝑚ABsubscript𝜈21subscript𝑚ABsubscript𝜈2subscript𝑚ABsubscript𝜈12.5subscript𝐵𝜈subscript𝑇effsubscript𝜈2subscript𝐵𝜈subscript𝑇effsubscript𝜈1\displaystyle\Delta m_{\rm AB,\nu_{21}}=m_{\rm AB,\nu_{2}}-m_{\rm AB,\nu_{1}}=% -2.5\log\left[\frac{B_{\nu}(T_{\rm eff},\nu_{2})}{B_{\nu}(T_{\rm eff},\nu_{1})% }\right].roman_Δ italic_m start_POSTSUBSCRIPT roman_AB , italic_ν start_POSTSUBSCRIPT 21 end_POSTSUBSCRIPT end_POSTSUBSCRIPT = italic_m start_POSTSUBSCRIPT roman_AB , italic_ν start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_POSTSUBSCRIPT - italic_m start_POSTSUBSCRIPT roman_AB , italic_ν start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_POSTSUBSCRIPT = - 2.5 roman_log [ divide start_ARG italic_B start_POSTSUBSCRIPT italic_ν end_POSTSUBSCRIPT ( italic_T start_POSTSUBSCRIPT roman_eff end_POSTSUBSCRIPT , italic_ν start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ) end_ARG start_ARG italic_B start_POSTSUBSCRIPT italic_ν end_POSTSUBSCRIPT ( italic_T start_POSTSUBSCRIPT roman_eff end_POSTSUBSCRIPT , italic_ν start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ) end_ARG ] . (4)

The observed evolution of SN 2023ixf in the (ug)(vr)𝑢𝑔𝑣𝑟(u-g)-(v-r)( italic_u - italic_g ) - ( italic_v - italic_r ) color-color diagram is shown in Figure 6. It indicates that the radiation is well approximated by blackbody radiation with some deviations at the later epochs. It is interesting that the observed color-color diagram in the later epochs is distributed on both sides of the theoretical prediction of blackbody radiation with a turning point occurring at 90similar-toabsent90\sim 90∼ 90 days. Such a turning feature is attributed to the effective temperature slightly rising after 90 days, see the following discussion.

Refer to caption
Figure 6: The evolution of SN 2023ixf in the (ug)(vr)𝑢𝑔𝑣𝑟(u-g)-(v-r)( italic_u - italic_g ) - ( italic_v - italic_r ) color-color diagram. The epoch of the measurement after phase zero with Mephisto is represented by the color of the data point. The solid line corresponds to the theoretical prediction of blackbody radiation based on Eq.(4).

Let Lνsubscript𝐿𝜈L_{\nu}italic_L start_POSTSUBSCRIPT italic_ν end_POSTSUBSCRIPT be the specific luminosity at frequency ν𝜈\nuitalic_ν. According to the Planck law, the bolometric luminosity L𝐿Litalic_L is given by,

L=π415(kTeffhν)4[exp(hνkTeff)1]νLν.𝐿superscript𝜋415superscript𝑘subscript𝑇eff𝜈4delimited-[]𝜈𝑘subscript𝑇eff1𝜈subscript𝐿𝜈\displaystyle L=\frac{\pi^{4}}{15}\left(\frac{kT_{\rm eff}}{h\nu}\right)^{4}% \left[\exp\left(\frac{h\nu}{kT_{\rm eff}}\right)-1\right]\nu L_{\nu}.italic_L = divide start_ARG italic_π start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT end_ARG start_ARG 15 end_ARG ( divide start_ARG italic_k italic_T start_POSTSUBSCRIPT roman_eff end_POSTSUBSCRIPT end_ARG start_ARG italic_h italic_ν end_ARG ) start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT [ roman_exp ( divide start_ARG italic_h italic_ν end_ARG start_ARG italic_k italic_T start_POSTSUBSCRIPT roman_eff end_POSTSUBSCRIPT end_ARG ) - 1 ] italic_ν italic_L start_POSTSUBSCRIPT italic_ν end_POSTSUBSCRIPT . (5)

For hνkTeffmuch-less-than𝜈𝑘subscript𝑇effh\nu\ll kT_{\rm eff}italic_h italic_ν ≪ italic_k italic_T start_POSTSUBSCRIPT roman_eff end_POSTSUBSCRIPT, one approximately has L(π4/15)(kTeff/hν)3νLνsimilar-to-or-equals𝐿superscript𝜋415superscript𝑘subscript𝑇eff𝜈3𝜈subscript𝐿𝜈L\simeq(\pi^{4}/15)(kT_{\rm eff}/h\nu)^{3}\nu L_{\nu}italic_L ≃ ( italic_π start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT / 15 ) ( italic_k italic_T start_POSTSUBSCRIPT roman_eff end_POSTSUBSCRIPT / italic_h italic_ν ) start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT italic_ν italic_L start_POSTSUBSCRIPT italic_ν end_POSTSUBSCRIPT. Using Fν=Lν/4πd2subscript𝐹𝜈subscript𝐿𝜈4𝜋superscript𝑑2F_{\nu}=L_{\nu}/4\pi d^{2}italic_F start_POSTSUBSCRIPT italic_ν end_POSTSUBSCRIPT = italic_L start_POSTSUBSCRIPT italic_ν end_POSTSUBSCRIPT / 4 italic_π italic_d start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT, the AB magnitude at frequency ν𝜈\nuitalic_ν could be written as,

mAB,ν=2.5log[154π5Ld2ν(hν/kTeff)4exp(hν/kTeff)1]48.6.subscript𝑚AB𝜈2.5154superscript𝜋5𝐿superscript𝑑2𝜈superscript𝜈𝑘subscript𝑇eff4𝜈𝑘subscript𝑇eff148.6\displaystyle m_{\rm AB,\nu}=-2.5\log\left[\frac{15}{4\pi^{5}}\frac{L}{d^{2}% \nu}\frac{(h\nu/kT_{\rm eff})^{4}}{\exp(h\nu/kT_{\rm eff})-1}\right]-48.6.italic_m start_POSTSUBSCRIPT roman_AB , italic_ν end_POSTSUBSCRIPT = - 2.5 roman_log [ divide start_ARG 15 end_ARG start_ARG 4 italic_π start_POSTSUPERSCRIPT 5 end_POSTSUPERSCRIPT end_ARG divide start_ARG italic_L end_ARG start_ARG italic_d start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_ν end_ARG divide start_ARG ( italic_h italic_ν / italic_k italic_T start_POSTSUBSCRIPT roman_eff end_POSTSUBSCRIPT ) start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT end_ARG start_ARG roman_exp ( italic_h italic_ν / italic_k italic_T start_POSTSUBSCRIPT roman_eff end_POSTSUBSCRIPT ) - 1 end_ARG ] - 48.6 . (6)

For a given SED (i.e., the apparent magnitude as a function of frequency) at time t𝑡titalic_t, the bolometric luminosity L(t)𝐿𝑡L(t)italic_L ( italic_t ) and the effective temperature Teff(t)subscript𝑇eff𝑡T_{\rm eff}(t)italic_T start_POSTSUBSCRIPT roman_eff end_POSTSUBSCRIPT ( italic_t ) could be fitted based on the above relation once the distance d𝑑ditalic_d is specified. Furthermore, for the blackbody radiation, the photospheric radius at time t𝑡titalic_t can be derived by,

Rph(t)=L(t)4πσTeff(t)4,subscript𝑅ph𝑡𝐿𝑡4𝜋𝜎subscript𝑇effsuperscript𝑡4\displaystyle R_{\rm ph}(t)=\sqrt{\frac{L(t)}{4\pi\sigma T_{\rm eff}(t)^{4}}},italic_R start_POSTSUBSCRIPT roman_ph end_POSTSUBSCRIPT ( italic_t ) = square-root start_ARG divide start_ARG italic_L ( italic_t ) end_ARG start_ARG 4 italic_π italic_σ italic_T start_POSTSUBSCRIPT roman_eff end_POSTSUBSCRIPT ( italic_t ) start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT end_ARG end_ARG , (7)

where σ=2π5k4/15c2h3=5.67×105ergcm1s1K4𝜎2superscript𝜋5superscript𝑘415superscript𝑐2superscript35.67superscript105ergsuperscriptcm1superscripts1superscriptK4\sigma=2\pi^{5}k^{4}/15c^{2}h^{3}=5.67\times 10^{-5}~{}{\rm erg~{}cm^{-1}s^{-1% }K^{-4}}italic_σ = 2 italic_π start_POSTSUPERSCRIPT 5 end_POSTSUPERSCRIPT italic_k start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT / 15 italic_c start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_h start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT = 5.67 × 10 start_POSTSUPERSCRIPT - 5 end_POSTSUPERSCRIPT roman_erg roman_cm start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT roman_s start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT roman_K start_POSTSUPERSCRIPT - 4 end_POSTSUPERSCRIPT the Stefan-Boltzmann constant. At last, we should notice that for broad filters as shown in Figure 1, accounting for the different widths of each filter, it would be more appropriate to convolve the passbands of the filters with the SED of the blackbody radiation instead of using a certain frequency.

Refer to captionRefer to captionRefer to caption
Figure 7: The evolution of bolometric luminosity (top panel), effective temperature (middle panel), and photospheric radius of SN 2023ixf. The blue points correspond to the data measured with Mephisto and the twin 50-cm telescopes, as shown in Table LABEL:tabevo of the Appendix. The green points correspond to the data from Zimmerman et al. (2024), which are shown for comparison. The red dashed line in the bolometric luminosity evolution (top panel) indicates the energy deposition from the best-fit 56Ni mass after the plateau. The red dashed line in the photospheric radius evolution (bottom panel) indicates the homologous expansion of the photosphere before hydrogen recombination.

Based on the expanding fireball model, the evolution of bolometric luminosity (top panel), effective temperature (middle panel), and photospheric radius (bottom panel) are shown in Figure 7 with the corresponding data in Table LABEL:tabevo of the Appendix. In doing so we used the data of the Mephisto and the twin 50-cm telescopes and combined the measurements on the same date and calculated the mean value and the standard deviation. We find that the bolometric luminosity reached a maximum value of L3×1043ergs1similar-to𝐿3superscript1043ergsuperscripts1L\sim~{}3\times 10^{43}~{}{\rm erg~{}s^{-1}}italic_L ∼ 3 × 10 start_POSTSUPERSCRIPT 43 end_POSTSUPERSCRIPT roman_erg roman_s start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT at 3.9 days after phase zero, which is 45%similar-toabsentpercent45\sim 45\%∼ 45 % of the maximum luminosity given by Zimmerman et al. (2024). Such a deviation might be due to the following reasons: 1) the maximum luminosity of Zimmerman et al. (2024) has a relatively large uncertainty, i.e., log(L/1042ergs1)=68.59±78.18𝐿superscript1042ergsuperscripts1plus-or-minus68.5978.18\log(L/10^{42}~{}{\rm erg~{}s^{-1}})=68.59\pm 78.18roman_log ( italic_L / 10 start_POSTSUPERSCRIPT 42 end_POSTSUPERSCRIPT roman_erg roman_s start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT ) = 68.59 ± 78.18, see the Supplementary Table 8 of Zimmerman et al. (2024). The maximum luminosity measured in this work is actually in the uncertainty range of Zimmerman et al. (2024). 2) Zimmerman et al. (2024) used UV filters from Swift, while the Mephisto dataset went as blue as the u𝑢uitalic_u band. The different observed band coverages between the two facilities cause a systematic deviation of the temperature measurement (also see Faran et al., 2018, as an example showing this issue), finally leading to the bolometric luminosity deviation. The bolometric luminosity evolution shows a plateau phase in the first 90 days after the explosion. After that, the light curve fully settled onto the radioactive tail. This feature implies a hydrogen recombination process in the first 90 days, which is also consistent with the observation of Zimmerman et al. (2024). We find that the measured bolometric luminosity in the first month is well consistent with that of Zimmerman et al. (2024) but becomes larger than that of Zimmerman et al. (2024) after the first month, meanwhile, for our measurement, the uncertainties of the bolometric luminosity after the first month are larger than those in the first month. The main reason is that the peak wavelength of the blackbody radiation has significantly shifted out from our observed bands after the first month, leading to a systematic deviation and large measurement uncertainties of the effective temperature and the bolometric luminosity, also see the SED evolution of Figure 5. The effective temperature shows a continuous decline in the first two months and gradually tends towards a constant in the following observation, as shown in the middle panel of Figure 7. The maximum effective temperature reaches 3.2×104K3.2superscript104K3.2\times 10^{4}~{}{\rm K}3.2 × 10 start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT roman_K at the first observation epoch and tends towards (30004000)Ksimilar-toabsent30004000K\sim(3000-4000)~{}{\rm K}∼ ( 3000 - 4000 ) roman_K after the first two months. We also notice that the effective temperature slightly rises after 90 days (consistent with the turning feature in the color-color diagram, see Figure 6), although the data has relatively large uncertainties during this period. Similar to the evolution of the bolometric luminosity, due to the limit observed band range, the measured effected temperature in the first month is consistent with that of Zimmerman et al. (2024) but becomes lower than that of Zimmerman et al. (2024) after the first month. The evolution of photospheric radius presents a homologous expansion in the first two months and significantly shrinks after that. The photospheric radius in the homologous expansion phase is given by,

Rph(t)=R+vej(tt),subscript𝑅ph𝑡subscript𝑅subscript𝑣ej𝑡subscript𝑡\displaystyle R_{\rm ph}(t)=R_{\ast}+v_{\rm ej}(t-t_{\ast}),italic_R start_POSTSUBSCRIPT roman_ph end_POSTSUBSCRIPT ( italic_t ) = italic_R start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT + italic_v start_POSTSUBSCRIPT roman_ej end_POSTSUBSCRIPT ( italic_t - italic_t start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT ) , (8)

for t>t𝑡subscript𝑡t>t_{\ast}italic_t > italic_t start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT, where Rsubscript𝑅R_{\ast}italic_R start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT and tsubscript𝑡t_{\ast}italic_t start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT are the initial radius and time for homologous expansion, respectively, and vejsubscript𝑣ejv_{\rm ej}italic_v start_POSTSUBSCRIPT roman_ej end_POSTSUBSCRIPT is the ejecta velocity. Based on the above equation, we fit the evolution of the photospheric radius in the expansion phase. The best-fit result is shown in the red dashed line in the bottom panel of Figure 7 and the photospheric evolution is consistent with a homologous expansion with

R722R,t0.32days,vej8.7×103kms1.formulae-sequencesimilar-to-or-equalssubscript𝑅722subscript𝑅direct-productformulae-sequencesimilar-to-or-equalssubscript𝑡0.32dayssimilar-to-or-equalssubscript𝑣ej8.7superscript103kmsuperscripts1\displaystyle R_{\ast}\simeq 722R_{\odot},~{}t_{\ast}\simeq 0.32~{}{\rm days},% ~{}v_{\rm ej}\simeq 8.7\times 10^{3}~{}{\rm km~{}s^{-1}}.italic_R start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT ≃ 722 italic_R start_POSTSUBSCRIPT ⊙ end_POSTSUBSCRIPT , italic_t start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT ≃ 0.32 roman_days , italic_v start_POSTSUBSCRIPT roman_ej end_POSTSUBSCRIPT ≃ 8.7 × 10 start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT roman_km roman_s start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT . (9)

The photospheric velocity is consistent with previous works (e.g., Zimmerman et al., 2024), but the initial radius is smaller than that of Zimmerman et al. (2024) that involved the constant-radius value as the shock-breakout radius of the SN evolution.

4 Physical Properties of SN 2023ixf

In this section, we constrain the physical properties (e.g., the ejected mass Mejsubscript𝑀ejM_{\rm ej}italic_M start_POSTSUBSCRIPT roman_ej end_POSTSUBSCRIPT, explosion energy E𝐸Eitalic_E, initial 56Ni mass, etc.) of SN 2023ixf based on the observed multi-wavelength light curves. For Type II SN, once the outer layers of ejecta cool below Ti6000Ksimilar-to-or-equalssubscript𝑇𝑖6000KT_{i}\simeq 6000~{}{\rm K}italic_T start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ≃ 6000 roman_K, the hydrogen recombination process will occur and the electron scattering opacity will drop by several orders of magnitude. In this case, the neutral material above the ionization front is transparent, and ionized material inside the front is opaque, i.e., κconstsimilar-to𝜅const\kappa\sim{\rm const}italic_κ ∼ roman_const for T>Ti𝑇subscript𝑇𝑖T>T_{i}italic_T > italic_T start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT and κ0similar-to𝜅0\kappa\sim 0italic_κ ∼ 0 for T<Ti𝑇subscript𝑇𝑖T<T_{i}italic_T < italic_T start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT, and the photosphere is nearly coincident with the ionization front. As radiation escapes, the ionization front recedes inward in the ejecta’s comoving frame. When the ionization front reaches the base of the hydrogen envelope, the internal energy will be largely depleted, leading to the end of the plateau where the light curve drops off sharply. We find that the evolution of the bolometric luminosity, effective temperature, and photospheric radius support the above physical picture: the light curve shows a plateau phase in the first 90 days and fully settles onto the radioactive tail subsequently, meanwhile, the effective temperature tends towards a constant and the photospheric radius shrinks at (5060)dayssimilar-toabsent5060days\sim(50-60)~{}{\rm days}∼ ( 50 - 60 ) roman_days after the explosion. An approximate analytic scaling rule for Type II SNe has been derived for both the luminosity Lpsubscript𝐿𝑝L_{p}italic_L start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT and the duration τpsubscript𝜏𝑝\tau_{p}italic_τ start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT of the plateau (Popov, 1993; Kasen & Woosley, 2009; Sukhbold et al., 2016). Calibrating the analytic scaling rule to a set of numerical models, the luminosity and duration of the plateau are given by (Kasen & Woosley, 2009; Sukhbold et al., 2016),

Lp,501.26×1042ergs1E515/6Mej,101/2R0,5002/3,similar-to-or-equalssubscript𝐿𝑝501.26superscript1042ergsuperscripts1superscriptsubscript𝐸5156superscriptsubscript𝑀ej1012superscriptsubscript𝑅050023\displaystyle L_{p,50}\simeq 1.26\times 10^{42}~{}{\rm erg~{}s^{-1}}E_{51}^{5/% 6}M_{\rm ej,10}^{-1/2}R_{0,500}^{2/3},italic_L start_POSTSUBSCRIPT italic_p , 50 end_POSTSUBSCRIPT ≃ 1.26 × 10 start_POSTSUPERSCRIPT 42 end_POSTSUPERSCRIPT roman_erg roman_s start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT italic_E start_POSTSUBSCRIPT 51 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 5 / 6 end_POSTSUPERSCRIPT italic_M start_POSTSUBSCRIPT roman_ej , 10 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT - 1 / 2 end_POSTSUPERSCRIPT italic_R start_POSTSUBSCRIPT 0 , 500 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 / 3 end_POSTSUPERSCRIPT , (10)
tp122dayE511/4Mej,101/2R0,5001/6,similar-to-or-equalssubscript𝑡𝑝122daysuperscriptsubscript𝐸5114superscriptsubscript𝑀ej1012superscriptsubscript𝑅050016\displaystyle t_{p}\simeq 122~{}{\rm day}E_{51}^{-1/4}M_{\rm ej,10}^{1/2}R_{0,% 500}^{1/6},italic_t start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT ≃ 122 roman_day italic_E start_POSTSUBSCRIPT 51 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT - 1 / 4 end_POSTSUPERSCRIPT italic_M start_POSTSUBSCRIPT roman_ej , 10 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 1 / 2 end_POSTSUPERSCRIPT italic_R start_POSTSUBSCRIPT 0 , 500 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 1 / 6 end_POSTSUPERSCRIPT , (11)

where Mej,10=Mej/10Msubscript𝑀ej10subscript𝑀ej10subscript𝑀direct-productM_{\rm ej,10}=M_{\rm ej}/10M_{\odot}italic_M start_POSTSUBSCRIPT roman_ej , 10 end_POSTSUBSCRIPT = italic_M start_POSTSUBSCRIPT roman_ej end_POSTSUBSCRIPT / 10 italic_M start_POSTSUBSCRIPT ⊙ end_POSTSUBSCRIPT, R0,500=R0/500Rsubscript𝑅0500subscript𝑅0500subscript𝑅direct-productR_{0,500}=R_{0}/500R_{\odot}italic_R start_POSTSUBSCRIPT 0 , 500 end_POSTSUBSCRIPT = italic_R start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT / 500 italic_R start_POSTSUBSCRIPT ⊙ end_POSTSUBSCRIPT, Lp,50subscript𝐿𝑝50L_{p,50}italic_L start_POSTSUBSCRIPT italic_p , 50 end_POSTSUBSCRIPT is the plateau luminosity at 50 days, and the helium mass fraction is assumed to be XHe=0.33subscript𝑋He0.33X_{\rm He}=0.33italic_X start_POSTSUBSCRIPT roman_He end_POSTSUBSCRIPT = 0.33 here. Thus, the explosion energy E𝐸Eitalic_E and the ejecta mass Mejsubscript𝑀ejM_{\rm ej}italic_M start_POSTSUBSCRIPT roman_ej end_POSTSUBSCRIPT could be estimated by the above approximate analytic scaling rules. In this work, the plateau luminosity of SN 2023ixf at 50 days is measured to be Lp,504×1042ergs1similar-to-or-equalssubscript𝐿𝑝504superscript1042ergsuperscripts1L_{p,50}\simeq 4\times 10^{42}~{}{\rm erg~{}s^{-1}}italic_L start_POSTSUBSCRIPT italic_p , 50 end_POSTSUBSCRIPT ≃ 4 × 10 start_POSTSUPERSCRIPT 42 end_POSTSUPERSCRIPT roman_erg roman_s start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT (see the top panel of Figure 7), and the plateau duration is estimated to be tp90daysimilar-to-or-equalssubscript𝑡𝑝90dayt_{p}\simeq 90~{}{\rm day}italic_t start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT ≃ 90 roman_day (also see Zimmerman et al., 2024). The progenitor radius is taken as R0(4101400)Rsimilar-to-or-equalssubscript𝑅04101400subscript𝑅direct-productR_{0}\simeq(410-1400)R_{\odot}italic_R start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ≃ ( 410 - 1400 ) italic_R start_POSTSUBSCRIPT ⊙ end_POSTSUBSCRIPT based on the bolometric luminosity and the effective temperature of the progenitor (Niu et al., 2023; Hosseinzadeh et al., 2023; Jencson et al., 2023; Kilpatrick et al., 2023; Soraisam et al., 2023; Xiang et al., 2023; Qin et al., 2023). Using Eq.(10) and Eq.(11), the explosion energy and the ejecta mass are constrained to be,

E(1.05.7)×1051erg,similar-to-or-equals𝐸1.05.7superscript1051erg\displaystyle E\simeq(1.0-5.7)\times 10^{51}~{}{\rm erg},italic_E ≃ ( 1.0 - 5.7 ) × 10 start_POSTSUPERSCRIPT 51 end_POSTSUPERSCRIPT roman_erg , (12)
Mej(3.813.9)M.similar-to-or-equalssubscript𝑀ej3.813.9subscript𝑀direct-product\displaystyle M_{\rm ej}\simeq(3.8-13.9)M_{\odot}.italic_M start_POSTSUBSCRIPT roman_ej end_POSTSUBSCRIPT ≃ ( 3.8 - 13.9 ) italic_M start_POSTSUBSCRIPT ⊙ end_POSTSUBSCRIPT . (13)

We notice that the uncertainties of E𝐸Eitalic_E and Mejsubscript𝑀ejM_{\rm ej}italic_M start_POSTSUBSCRIPT roman_ej end_POSTSUBSCRIPT are mainly attributed to the different measurements of the progenitor radius R0subscript𝑅0R_{0}italic_R start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT in the literature.

In addition to the method that uses the scaling rule between Lpsubscript𝐿𝑝L_{p}italic_L start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT and tpsubscript𝑡𝑝t_{p}italic_t start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT, the ejecta mass can also be measured by the time-weighted integrated luminosity removing the contribution from the initial 56Ni. Since there is a clear distinction at 90 days between the photospheric phase and the radioactive tail in the light curve of SN 2023ixf, as shown in the top panel of Figure 7 (also see Zimmerman et al., 2024) the contributions of the cooling envelope and 56Ni decay to the photospheric emission could be separated based on the measurement of the time-weighted integrated bolometric luminosity (Katz et al., 2013; Nakar et al., 2016). We define the internal energy as Eint(t)subscript𝐸int𝑡E_{\rm int}(t)italic_E start_POSTSUBSCRIPT roman_int end_POSTSUBSCRIPT ( italic_t ) and the input power by the radioactive decay as QNi(t)subscript𝑄Ni𝑡Q_{\rm Ni}(t)italic_Q start_POSTSUBSCRIPT roman_Ni end_POSTSUBSCRIPT ( italic_t ). For a homologously expanding ejecta, the derivative of the internal energy is,

dEint(t)dt=Eint(t)t+QNi(t)L(t),𝑑subscript𝐸int𝑡𝑑𝑡subscript𝐸int𝑡𝑡subscript𝑄Ni𝑡𝐿𝑡\displaystyle\frac{dE_{\rm int}(t)}{dt}=-\frac{E_{\rm int}(t)}{t}+Q_{\rm Ni}(t% )-L(t),divide start_ARG italic_d italic_E start_POSTSUBSCRIPT roman_int end_POSTSUBSCRIPT ( italic_t ) end_ARG start_ARG italic_d italic_t end_ARG = - divide start_ARG italic_E start_POSTSUBSCRIPT roman_int end_POSTSUBSCRIPT ( italic_t ) end_ARG start_ARG italic_t end_ARG + italic_Q start_POSTSUBSCRIPT roman_Ni end_POSTSUBSCRIPT ( italic_t ) - italic_L ( italic_t ) , (14)

where Eint(t)/tsubscript𝐸int𝑡𝑡E_{\rm int}(t)/titalic_E start_POSTSUBSCRIPT roman_int end_POSTSUBSCRIPT ( italic_t ) / italic_t corresponds to the loss rate of the internal energy due to the adiabatic expansion, L(t)𝐿𝑡L(t)italic_L ( italic_t ) the bolometric luminosity. The input power by the radioactive decay is given by(Arnett, 1982; Chatzopoulos et al., 2012),

QNi(t)=MNi[(ϵNiϵCo)et/tNi+ϵCoet/tCo],subscript𝑄Ni𝑡subscript𝑀Nidelimited-[]subscriptitalic-ϵNisubscriptitalic-ϵCosuperscript𝑒𝑡subscript𝑡Nisubscriptitalic-ϵCosuperscript𝑒𝑡subscript𝑡Co\displaystyle Q_{\rm Ni}(t)=M_{\rm Ni}\left[(\epsilon_{\rm Ni}-\epsilon_{\rm Co% })e^{-t/t_{\rm Ni}}+\epsilon_{\rm Co}e^{-t/t_{\rm Co}}\right],italic_Q start_POSTSUBSCRIPT roman_Ni end_POSTSUBSCRIPT ( italic_t ) = italic_M start_POSTSUBSCRIPT roman_Ni end_POSTSUBSCRIPT [ ( italic_ϵ start_POSTSUBSCRIPT roman_Ni end_POSTSUBSCRIPT - italic_ϵ start_POSTSUBSCRIPT roman_Co end_POSTSUBSCRIPT ) italic_e start_POSTSUPERSCRIPT - italic_t / italic_t start_POSTSUBSCRIPT roman_Ni end_POSTSUBSCRIPT end_POSTSUPERSCRIPT + italic_ϵ start_POSTSUBSCRIPT roman_Co end_POSTSUBSCRIPT italic_e start_POSTSUPERSCRIPT - italic_t / italic_t start_POSTSUBSCRIPT roman_Co end_POSTSUBSCRIPT end_POSTSUPERSCRIPT ] , (15)

where MNisubscript𝑀NiM_{\rm Ni}italic_M start_POSTSUBSCRIPT roman_Ni end_POSTSUBSCRIPT the initial nickel mass of the SN ejecta, tNi=8.8dayssubscript𝑡Ni8.8dayst_{\rm Ni}=8.8~{}{\rm days}italic_t start_POSTSUBSCRIPT roman_Ni end_POSTSUBSCRIPT = 8.8 roman_days, tCo=111.3dayssubscript𝑡Co111.3dayst_{\rm Co}=111.3~{}{\rm days}italic_t start_POSTSUBSCRIPT roman_Co end_POSTSUBSCRIPT = 111.3 roman_days, ϵNi=3.9×1010ergs1g1subscriptitalic-ϵNi3.9superscript1010ergsuperscripts1superscriptg1\epsilon_{\rm Ni}=3.9\times 10^{10}~{}{\rm erg~{}s^{-1}g^{-1}}italic_ϵ start_POSTSUBSCRIPT roman_Ni end_POSTSUBSCRIPT = 3.9 × 10 start_POSTSUPERSCRIPT 10 end_POSTSUPERSCRIPT roman_erg roman_s start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT roman_g start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT and ϵCo=6.8×109ergs1g1subscriptitalic-ϵCo6.8superscript109ergsuperscripts1superscriptg1\epsilon_{\rm Co}=6.8\times 10^{9}~{}{\rm erg~{}s^{-1}g^{-1}}italic_ϵ start_POSTSUBSCRIPT roman_Co end_POSTSUBSCRIPT = 6.8 × 10 start_POSTSUPERSCRIPT 9 end_POSTSUPERSCRIPT roman_erg roman_s start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT roman_g start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT are the energy generation rates due to Ni and Co decays, respectively. At t>tp𝑡subscript𝑡𝑝t>t_{p}italic_t > italic_t start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT, the diffusion time through the envelope is much shorter than t𝑡titalic_t, leading to L(t>tp)=QNi(t>tp)𝐿𝑡subscript𝑡𝑝subscript𝑄Ni𝑡subscript𝑡𝑝L(t>t_{p})=Q_{\rm Ni}(t>t_{p})italic_L ( italic_t > italic_t start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT ) = italic_Q start_POSTSUBSCRIPT roman_Ni end_POSTSUBSCRIPT ( italic_t > italic_t start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT ). Therefore, the initial 56Ni mass can be measured by the observed radioactive tail after 90 days. In the top panel of Figure 7, we fit the bolometric luminosity after 90 days using Eq.(15) and obtain an initial 56Ni mass,

MNi0.098M,similar-to-or-equalssubscript𝑀Ni0.098subscript𝑀direct-product\displaystyle M_{\rm Ni}\simeq 0.098M_{\odot},italic_M start_POSTSUBSCRIPT roman_Ni end_POSTSUBSCRIPT ≃ 0.098 italic_M start_POSTSUBSCRIPT ⊙ end_POSTSUBSCRIPT , (16)

which is 27% larger than MNi0.071Msimilar-to-or-equalssubscript𝑀Ni0.071subscript𝑀direct-productM_{\rm Ni}\simeq 0.071M_{\odot}italic_M start_POSTSUBSCRIPT roman_Ni end_POSTSUBSCRIPT ≃ 0.071 italic_M start_POSTSUBSCRIPT ⊙ end_POSTSUBSCRIPT given by Zimmerman et al. (2024). Using the partial integration for Eq.(14), one has (Katz et al., 2013; Nakar et al., 2016),

ETEint(t)t=0tpt[L(t)QNi(t)]𝑑t,𝐸𝑇subscript𝐸intsubscript𝑡subscript𝑡superscriptsubscript0subscript𝑡𝑝𝑡delimited-[]𝐿𝑡subscript𝑄Ni𝑡differential-d𝑡\displaystyle ET\equiv E_{\rm int}(t_{\ast})t_{\ast}=\int_{0}^{t_{p}}t[L(t)-Q_% {\rm Ni}(t)]dt,italic_E italic_T ≡ italic_E start_POSTSUBSCRIPT roman_int end_POSTSUBSCRIPT ( italic_t start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT ) italic_t start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT = ∫ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_t start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT end_POSTSUPERSCRIPT italic_t [ italic_L ( italic_t ) - italic_Q start_POSTSUBSCRIPT roman_Ni end_POSTSUBSCRIPT ( italic_t ) ] italic_d italic_t , (17)

where tsubscript𝑡t_{\ast}italic_t start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT the time at which the homologous expansion phase begins (Nakar et al., 2016). Since the initial 56Ni mass has been measured by the radioactive tail, i.e., MNi=0.098Msubscript𝑀Ni0.098subscript𝑀direct-productM_{\rm Ni}=0.098M_{\odot}italic_M start_POSTSUBSCRIPT roman_Ni end_POSTSUBSCRIPT = 0.098 italic_M start_POSTSUBSCRIPT ⊙ end_POSTSUBSCRIPT. Using the bolometric luminosity evolution L(t)𝐿𝑡L(t)italic_L ( italic_t ) and taking tp=90daysubscript𝑡𝑝90dayt_{p}=90~{}{\rm day}italic_t start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT = 90 roman_day, we obtain

ET7.7×1055ergs.similar-to-or-equals𝐸𝑇7.7superscript1055ergs\displaystyle ET\simeq 7.7\times 10^{55}~{}{\rm erg~{}s}.italic_E italic_T ≃ 7.7 × 10 start_POSTSUPERSCRIPT 55 end_POSTSUPERSCRIPT roman_erg roman_s . (18)

On the other hand, as an observable quantity, ET𝐸𝑇ETitalic_E italic_T satisfies ETER0/vejMejR0vejproportional-to𝐸𝑇𝐸subscript𝑅0subscript𝑣ejproportional-tosubscript𝑀ejsubscript𝑅0subscript𝑣ejET\propto ER_{0}/v_{\rm ej}\propto M_{\rm ej}R_{0}v_{\rm ej}italic_E italic_T ∝ italic_E italic_R start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT / italic_v start_POSTSUBSCRIPT roman_ej end_POSTSUBSCRIPT ∝ italic_M start_POSTSUBSCRIPT roman_ej end_POSTSUBSCRIPT italic_R start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT italic_v start_POSTSUBSCRIPT roman_ej end_POSTSUBSCRIPT, which depends on Mejsubscript𝑀ejM_{\rm ej}italic_M start_POSTSUBSCRIPT roman_ej end_POSTSUBSCRIPT, R0subscript𝑅0R_{0}italic_R start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT, and vejsubscript𝑣ejv_{\rm ej}italic_v start_POSTSUBSCRIPT roman_ej end_POSTSUBSCRIPT and is insensitive to the exact details of radiation transport and CSM mass. The simulation of a large set of SN progenitors suggests a scaling relation of (Shussman et al., 2016)

ET0.1MejR0vej.similar-to-or-equals𝐸𝑇0.1subscript𝑀ejsubscript𝑅0subscript𝑣ej\displaystyle ET\simeq 0.1M_{\rm ej}R_{0}v_{\rm ej}.italic_E italic_T ≃ 0.1 italic_M start_POSTSUBSCRIPT roman_ej end_POSTSUBSCRIPT italic_R start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT italic_v start_POSTSUBSCRIPT roman_ej end_POSTSUBSCRIPT . (19)

The progenitor radius has been measured to be R0(4101400)Rsimilar-to-or-equalssubscript𝑅04101400subscript𝑅direct-productR_{0}\simeq(410-1400)R_{\odot}italic_R start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ≃ ( 410 - 1400 ) italic_R start_POSTSUBSCRIPT ⊙ end_POSTSUBSCRIPT based on the bolometric luminosity and the effective temperature of the progenitor (Niu et al., 2023; Hosseinzadeh et al., 2023; Jencson et al., 2023; Kilpatrick et al., 2023; Soraisam et al., 2023; Xiang et al., 2023; Qin et al., 2023). The ejecta velocity is measured to be vej8.7×103kms1similar-to-or-equalssubscript𝑣ej8.7superscript103kmsuperscripts1v_{\rm ej}\simeq 8.7\times 10^{3}~{}{\rm km~{}s^{-1}}italic_v start_POSTSUBSCRIPT roman_ej end_POSTSUBSCRIPT ≃ 8.7 × 10 start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT roman_km roman_s start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT based on the evolution of the photospheric radius in the early stage. Thus, the ejecta mass is estimated to be

MejET0.1R0vej(4.716)M,similar-to-or-equalssubscript𝑀ej𝐸𝑇0.1subscript𝑅0subscript𝑣ejsimilar-to-or-equals4.716subscript𝑀direct-product\displaystyle M_{\rm ej}\simeq\frac{ET}{0.1R_{0}v_{\rm ej}}\simeq(4.7-16)M_{% \odot},italic_M start_POSTSUBSCRIPT roman_ej end_POSTSUBSCRIPT ≃ divide start_ARG italic_E italic_T end_ARG start_ARG 0.1 italic_R start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT italic_v start_POSTSUBSCRIPT roman_ej end_POSTSUBSCRIPT end_ARG ≃ ( 4.7 - 16 ) italic_M start_POSTSUBSCRIPT ⊙ end_POSTSUBSCRIPT , (20)

which is approximately consistent with Mej(3.813.9)Msimilar-to-or-equalssubscript𝑀ej3.813.9subscript𝑀direct-productM_{\rm ej}\simeq(3.8-13.9)M_{\odot}italic_M start_POSTSUBSCRIPT roman_ej end_POSTSUBSCRIPT ≃ ( 3.8 - 13.9 ) italic_M start_POSTSUBSCRIPT ⊙ end_POSTSUBSCRIPT given by the scaling rule.

The peak bolometric luminosity of SN 2023ixf is L03×1043ergs1similar-to-or-equalssubscript𝐿03superscript1043ergsuperscripts1L_{0}\simeq 3\times 10^{43}~{}{\rm erg~{}s^{-1}}italic_L start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ≃ 3 × 10 start_POSTSUPERSCRIPT 43 end_POSTSUPERSCRIPT roman_erg roman_s start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT at t03.9dayssimilar-to-or-equalssubscript𝑡03.9dayst_{0}\simeq 3.9~{}{\rm days}italic_t start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ≃ 3.9 roman_days after the explosion, which has been proposed to be caused by the interaction between the SN ejecta and the circumstellar medium (CSM). Assuming that the CMS density is ρCSMsubscript𝜌CSM\rho_{\rm CSM}italic_ρ start_POSTSUBSCRIPT roman_CSM end_POSTSUBSCRIPT and the peak bolometric luminosity L0subscript𝐿0L_{0}italic_L start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT corresponds to the kinetic energy of the shock caused by the ejecta-CSM interaction, L0t0(1/2)MCSMvej2similar-tosubscript𝐿0subscript𝑡012subscript𝑀CSMsuperscriptsubscript𝑣ej2L_{0}t_{0}\sim(1/2)M_{\rm CSM}v_{\rm ej}^{2}italic_L start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT italic_t start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ∼ ( 1 / 2 ) italic_M start_POSTSUBSCRIPT roman_CSM end_POSTSUBSCRIPT italic_v start_POSTSUBSCRIPT roman_ej end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT, where the shock medium is dominated by the swept CSM, one has the mass of the shocked CSM of

MCSM2L0t0vej20.013M.similar-tosubscript𝑀CSM2subscript𝐿0subscript𝑡0superscriptsubscript𝑣ej2similar-to-or-equals0.013subscript𝑀direct-product\displaystyle M_{\rm CSM}\sim\frac{2L_{0}t_{0}}{v_{\rm ej}^{2}}\simeq 0.013M_{% \odot}.italic_M start_POSTSUBSCRIPT roman_CSM end_POSTSUBSCRIPT ∼ divide start_ARG 2 italic_L start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT italic_t start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT end_ARG start_ARG italic_v start_POSTSUBSCRIPT roman_ej end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG ≃ 0.013 italic_M start_POSTSUBSCRIPT ⊙ end_POSTSUBSCRIPT . (21)

The CSM density is estimated by MCSM(4π/3)(vejt0)3ρCSMsimilar-tosubscript𝑀CSM4𝜋3superscriptsubscript𝑣ejsubscript𝑡03subscript𝜌CSMM_{\rm CSM}\sim(4\pi/3)(v_{\rm ej}t_{0})^{3}\rho_{\rm CSM}italic_M start_POSTSUBSCRIPT roman_CSM end_POSTSUBSCRIPT ∼ ( 4 italic_π / 3 ) ( italic_v start_POSTSUBSCRIPT roman_ej end_POSTSUBSCRIPT italic_t start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ) start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT italic_ρ start_POSTSUBSCRIPT roman_CSM end_POSTSUBSCRIPT, leading to

ρCSM3L02πvej5t022.5×1013gcm3L0,43.5t0,3.9day2,similar-tosubscript𝜌CSM3subscript𝐿02𝜋superscriptsubscript𝑣ej5superscriptsubscript𝑡02similar-to-or-equals2.5superscript1013gsuperscriptcm3subscript𝐿043.5superscriptsubscript𝑡03.9day2\displaystyle\rho_{\rm CSM}\sim\frac{3L_{0}}{2\pi v_{\rm ej}^{5}t_{0}^{2}}% \simeq 2.5\times 10^{-13}~{}{\rm g~{}cm^{-3}}L_{0,{43.5}}t_{\rm 0,3.9day}^{-2},italic_ρ start_POSTSUBSCRIPT roman_CSM end_POSTSUBSCRIPT ∼ divide start_ARG 3 italic_L start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT end_ARG start_ARG 2 italic_π italic_v start_POSTSUBSCRIPT roman_ej end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 5 end_POSTSUPERSCRIPT italic_t start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG ≃ 2.5 × 10 start_POSTSUPERSCRIPT - 13 end_POSTSUPERSCRIPT roman_g roman_cm start_POSTSUPERSCRIPT - 3 end_POSTSUPERSCRIPT italic_L start_POSTSUBSCRIPT 0 , 43.5 end_POSTSUBSCRIPT italic_t start_POSTSUBSCRIPT 0 , 3.9 roman_day end_POSTSUBSCRIPT start_POSTSUPERSCRIPT - 2 end_POSTSUPERSCRIPT , (22)

where t0,3.9day=t0/(3.9day)subscript𝑡03.9daysubscript𝑡03.9dayt_{\rm 0,3.9day}=t_{0}/(3.9~{}{\rm day})italic_t start_POSTSUBSCRIPT 0 , 3.9 roman_day end_POSTSUBSCRIPT = italic_t start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT / ( 3.9 roman_day ) and the ejecta velocity is taken as vej8700kms1similar-to-or-equalssubscript𝑣ej8700kmsuperscripts1v_{\rm ej}\simeq 8700~{}{\rm km~{}s^{-1}}italic_v start_POSTSUBSCRIPT roman_ej end_POSTSUBSCRIPT ≃ 8700 roman_km roman_s start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT. The mass loss rate of the stellar wind generating the CSM by the progenitor is,

M˙4π(vejt0)2ρCSMvw0.022Myr1L0,43.5,similar-to˙𝑀4𝜋superscriptsubscript𝑣ejsubscript𝑡02subscript𝜌CSMsubscript𝑣𝑤similar-to-or-equals0.022subscript𝑀direct-productsuperscriptyr1subscript𝐿043.5\displaystyle\dot{M}\sim 4\pi(v_{\rm ej}t_{0})^{2}\rho_{\rm CSM}v_{w}\simeq 0.% 022M_{\odot}~{}{\rm yr^{-1}}L_{0,{43.5}},over˙ start_ARG italic_M end_ARG ∼ 4 italic_π ( italic_v start_POSTSUBSCRIPT roman_ej end_POSTSUBSCRIPT italic_t start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_ρ start_POSTSUBSCRIPT roman_CSM end_POSTSUBSCRIPT italic_v start_POSTSUBSCRIPT italic_w end_POSTSUBSCRIPT ≃ 0.022 italic_M start_POSTSUBSCRIPT ⊙ end_POSTSUBSCRIPT roman_yr start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT italic_L start_POSTSUBSCRIPT 0 , 43.5 end_POSTSUBSCRIPT , (23)

where the progenitor wind velocity is assumed to be vw=50kms1subscript𝑣𝑤50kmsuperscripts1v_{w}=50~{}{\rm km~{}s^{-1}}italic_v start_POSTSUBSCRIPT italic_w end_POSTSUBSCRIPT = 50 roman_km roman_s start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT as the typical value. The above CMS density and the mass loss rate of the progenitor are consistent with the results of Jacobson-Galan et al. (2023) and Zimmerman et al. (2024). There are some possible ways to form the CSM near the SN progenitor as proposed by Branch & Wheeler (2017): 1) the fast wind of the massive progenitor produces low-density bubbles surrounded by the swept-up interstellar matter. 2) an episodic matter ejection from the progenitor (or from a common-envelope episode of a binary system) forms the detached CSM shell. 3) the fast wind of the progenitor that has returned to the blue compresses the previous red-supergiant wind into a shell.

5 Discussions and Conclusions

In this paper, we presented the multi-wavelength simultaneous photometric observation of SN 2023ixf located in the nearby spiral host galaxy M101 at d=6.85Mpc𝑑6.85Mpcd=6.85~{}{\rm Mpc}italic_d = 6.85 roman_Mpc in the first 283 days after the explosion. Based on the measurements of the Mephisto and the twin 50-cm telescopes, we calculated and analyzed the evolution of the bolometric luminosity, effective temperature, and photospheric radius. The following conclusions for SN 2023ixf are drawn:

The measurements with the Mephisto showed that the peak apparent magnitudes of SN 2023ixf were mu=10.59subscript𝑚𝑢10.59m_{u}=10.59italic_m start_POSTSUBSCRIPT italic_u end_POSTSUBSCRIPT = 10.59, mv=10.71subscript𝑚𝑣10.71m_{v}=10.71italic_m start_POSTSUBSCRIPT italic_v end_POSTSUBSCRIPT = 10.71, mg=11.14subscript𝑚𝑔11.14m_{g}=11.14italic_m start_POSTSUBSCRIPT italic_g end_POSTSUBSCRIPT = 11.14 and mr=11.33subscript𝑚𝑟11.33m_{r}=11.33italic_m start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT = 11.33 at 3.9 days after phase zero and the brightness declined in the following observation. We find that there is a significant drop in the light curve between 59 days and 90 days, which is consistent with the plateau end reported by Zimmerman et al. (2024). Based on the multi-wavelength photometric data, we derived the evolution of the bolometric luminosity, effective temperature, and photospheric radius. The bolometric luminosity reached a maximum value of L3×1043ergs1similar-to𝐿3superscript1043ergsuperscripts1L\sim~{}3\times 10^{43}~{}{\rm erg~{}s^{-1}}italic_L ∼ 3 × 10 start_POSTSUPERSCRIPT 43 end_POSTSUPERSCRIPT roman_erg roman_s start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT at 3.9 days after phase zero and fully settled onto the radiative tail at 90dayssimilar-toabsent90days\sim 90~{}{\rm days}∼ 90 roman_days. The effective temperature has been a maximum (3.2×104Kgreater-than-or-equivalent-toabsent3.2superscript104K\gtrsim 3.2\times 10^{4}~{}{\rm K}≳ 3.2 × 10 start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT roman_K) at the first observation epochs and approached to a constant of (30004000)K30004000K(3000-4000)~{}{\rm K}( 3000 - 4000 ) roman_K from 60 days to 283 days. The early-phase photospheric radius evolution is consistent with a homologous expansion with an initial radius of R722Rsimilar-to-or-equalssubscript𝑅722subscript𝑅direct-productR_{\ast}\simeq 722R_{\odot}italic_R start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT ≃ 722 italic_R start_POSTSUBSCRIPT ⊙ end_POSTSUBSCRIPT and an ejecta velocity of vej8.7×103kms1similar-to-or-equalssubscript𝑣ej8.7superscript103kmsuperscripts1v_{\rm ej}\simeq 8.7\times 10^{3}~{}{\rm km~{}s^{-1}}italic_v start_POSTSUBSCRIPT roman_ej end_POSTSUBSCRIPT ≃ 8.7 × 10 start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT roman_km roman_s start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT and gradually shrunk 60 days after the explosion. The above features of the bolometric luminosity, effective temperature, and photospheric radius suggest that SN 2023ixf represented a significant hydrogen recombination process in the first three months.

Since the light curve showed a significant radiative tail after 90dayssimilar-toabsent90days\sim 90~{}{\rm days}∼ 90 roman_days, we estimated the initial nickel mass in the SN ejecta as MNi0.098Msimilar-tosubscript𝑀Ni0.098subscript𝑀direct-productM_{\rm Ni}\sim 0.098M_{\odot}italic_M start_POSTSUBSCRIPT roman_Ni end_POSTSUBSCRIPT ∼ 0.098 italic_M start_POSTSUBSCRIPT ⊙ end_POSTSUBSCRIPT, which is 27% larger than the result of Zimmerman et al. (2024). We first estimated the explosion energy E𝐸Eitalic_E and the ejecta mass Mejsubscript𝑀ejM_{\rm ej}italic_M start_POSTSUBSCRIPT roman_ej end_POSTSUBSCRIPT based on the scaling rule of Type II SNe given by Kasen & Woosley (2009) and obtained E(1.05.7)×1051ergsimilar-to-or-equals𝐸1.05.7superscript1051ergE\simeq(1.0-5.7)\times 10^{51}~{}{\rm erg}italic_E ≃ ( 1.0 - 5.7 ) × 10 start_POSTSUPERSCRIPT 51 end_POSTSUPERSCRIPT roman_erg and Mej(3.813.9)Msimilar-to-or-equalssubscript𝑀ej3.813.9subscript𝑀direct-productM_{\rm ej}\simeq(3.8-13.9)M_{\odot}italic_M start_POSTSUBSCRIPT roman_ej end_POSTSUBSCRIPT ≃ ( 3.8 - 13.9 ) italic_M start_POSTSUBSCRIPT ⊙ end_POSTSUBSCRIPT, respectively. On the other hand, due to the existence of the radiative tail in the light curve of SN 2023ixf, we can separate the contributions of the cooling envelope and 56Ni decay to the photospheric emission based on the measurement of the time-weighted integrated bolometric luminosity (Katz et al., 2013; Nakar et al., 2016). In this case, the mass of the SN ejecta is estimated to be Mej(4.716)Msimilar-tosubscript𝑀ej4.716subscript𝑀direct-productM_{\rm ej}\sim(4.7-16)M_{\odot}italic_M start_POSTSUBSCRIPT roman_ej end_POSTSUBSCRIPT ∼ ( 4.7 - 16 ) italic_M start_POSTSUBSCRIPT ⊙ end_POSTSUBSCRIPT. We propose that the peak bolometric luminosity is caused by the interaction between the ejecta and the circumstellar medium (CSM). In this scenario, the shocked CSM mass is MCSM0.013Msimilar-tosubscript𝑀CSM0.013subscript𝑀direct-productM_{\rm CSM}\sim 0.013M_{\odot}italic_M start_POSTSUBSCRIPT roman_CSM end_POSTSUBSCRIPT ∼ 0.013 italic_M start_POSTSUBSCRIPT ⊙ end_POSTSUBSCRIPT, the CSM density is ρCSM2.5×1013gcm3similar-tosubscript𝜌CSM2.5superscript1013gsuperscriptcm3\rho_{\rm CSM}\sim 2.5\times 10^{-13}~{}{\rm g~{}cm^{-3}}italic_ρ start_POSTSUBSCRIPT roman_CSM end_POSTSUBSCRIPT ∼ 2.5 × 10 start_POSTSUPERSCRIPT - 13 end_POSTSUPERSCRIPT roman_g roman_cm start_POSTSUPERSCRIPT - 3 end_POSTSUPERSCRIPT and the mass loss rate of the progenitor is M˙0.022Myr1similar-to˙𝑀0.022subscript𝑀direct-productsuperscriptyr1\dot{M}\sim 0.022M_{\odot}~{}{\rm yr^{-1}}over˙ start_ARG italic_M end_ARG ∼ 0.022 italic_M start_POSTSUBSCRIPT ⊙ end_POSTSUBSCRIPT roman_yr start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT.

Mephisto is developed at and operated by the South-Western Institute for Astronomy Research of Yunnan University (SWIFAR-YNU), funded by the “Yunnan University Development Plan for World-Class University” and “Yunnan University Development Plan for World-Class Astronomy Discipline”. The authors acknowledge supports from the “Science & Technology Champion Project” (202005AB160002) and from two “Team Projects” – the “Innovation Team” (202105AE160021) and the “Top Team” (202305AT350002), all funded by the “Yunnan Revitalization Talent Support Program”. Y.P.Y. is supported by the National Natural Science Foundation of China grant No.12003028 and the National SKA Program of China (2022SKA0130100). X.K.L. acknowledges the supports from NSFC of China under grant No. 12173033, National Key R&D Program of China No. 2022YFF0503403, and YNU grant No. C176220100008. Y.-Z. Cai is supported by the National Natural Science Foundation of China (NSFC, Grant No. 12303054), the Yunnan Fundamental Research Projects (Grant No. 202401AU070063) and the International Centre of Supernovae, Yunnan Key Laboratory (No. 202302AN360001). We thank the anonymous referee for providing helpful comments and suggestions that have allowed us to improve this manuscript significantly. We also acknowledge the helpful discussions with Liang-Duan Liu, Jin-Ping Zhu, Weili Lin, Erez Zimmerman and Andrea Reguitti (INAF-OAPd).

References

  • Anderson et al. (2014) Anderson, J. P., González-Gaitán, S., Hamuy, M., et al. 2014, ApJ, 786, 67
  • Arnett (1982) —. 1982, ApJ, 253, 785
  • Balam & Kendurkar (2023) Balam, D. D., & Kendurkar, M. 2023, Transient Name Server AstroNote, 154, 1
  • BenZvi et al. (2023a) BenZvi, S., Brout, D., Dey, A., et al. 2023a, Transient Name Server AstroNote, 137, 1
  • BenZvi et al. (2023b) —. 2023b, Transient Name Server AstroNote, 140, 1
  • Berger et al. (2023) Berger, E., Keating, G. K., Margutti, R., et al. 2023, ApJ, 951, L31
  • Bertin (2011) Bertin, E. 2011, in Astronomical Society of the Pacific Conference Series, Vol. 442, Astronomical Data Analysis Software and Systems XX, ed. I. N. Evans, A. Accomazzi, D. J. Mink, & A. H. Rots, 435
  • Bertin & Arnouts (1996) Bertin, E., & Arnouts, S. 1996, A&AS, 117, 393
  • Bertin et al. (2002) Bertin, E., Mellier, Y., Radovich, M., et al. 2002, in Astronomical Society of the Pacific Conference Series, Vol. 281, Astronomical Data Analysis Software and Systems XI, ed. D. A. Bohlender, D. Durand, & T. H. Handley, 228
  • Bessell et al. (2011) Bessell, M., Bloxham, G., Schmidt, B., et al. 2011, PASP, 123, 789.
  • Bostroem et al. (2023) Bostroem, K. A., Pearson, J., Shrestha, M., et al. 2023, arXiv e-prints, arXiv:2306.10119
  • Branch & Wheeler (2017) Branch, D., & Wheeler, J. C. 2017, Supernova Explosions, doi:10.1007/978-3-662-55054-0
  • Brothers et al. (2023) Brothers, T., Person, M., Teague, R., & De, K. 2023, The Astronomer’s Telegram, 16057, 1
  • Cardelli et al. (1989) Cardelli, J. A., Clayton, G. C., & Mathis, J. S. 1989, ApJ, 345, 245
  • Chandra et al. (2023) Chandra, P., Maeda, K., Chevalier, R. A., Nayana, A. J., & Ray, A. 2023, The Astronomer’s Telegram, 16073, 1
  • Chatzopoulos et al. (2012) Chatzopoulos, E., Wheeler, J. C., & Vinko, J. 2012, ApJ, 746, 121
  • Chen et al. (2023) Chen, T., Yang, S., Lin, H., et al. 2023, Transient Name Server AstroNote, 175, 1
  • Daglas (2023) Daglas, J. 2023, Transient Name Server AstroNote, 172, 1
  • D’Avanzo et al. (2023) D’Avanzo, P., Bianchetti, N., Bianchessi, M., et al. 2023, Transient Name Server AstroNote, 153, 1
  • Desrosiers et al. (2023) Desrosiers, J. B., Kendurkar, M. R., & Balam, D. D. 2023, Transient Name Server AstroNote, 142, 1
  • Di Carlo et al. (2002) Di Carlo, E., Massi, F., Valentini, G., et al. 2002, ApJ, 573, 144.
  • Faran et al. (2018) Faran, T., Nakar, E., & Poznanski, D. 2018, MNRAS, 473, 513.
  • Filippenko (1997) Filippenko, A. V. 1997, ARA&A, 35, 309
  • Filippenko et al. (2023) Filippenko, A. V., Zheng, W., & Yang, Y. 2023, Transient Name Server AstroNote, 123, 1
  • Fowler et al. (2023) Fowler, M., Sienkiewicz, F., & Dussault, M. 2023, Transient Name Server AstroNote, 143, 1
  • Gaia Collaboration et al. (2021) Gaia Collaboration, Brown, A. G. A., Vallenari, A., et al. 2021, A&A, 649, A1
  • González-Carballo et al. (2023) González-Carballo, J., Farfán, R. G., Limón, F., et al. 2023, Transient Name Server AstroNote, 136, 1
  • Grefenstette et al. (2023) Grefenstette, B. W., Brightman, M., Earnshaw, H. P., Harrison, F. A., & Margutti, R. 2023, ApJ, 952, L3
  • Guetta et al. (2023) Guetta, D., Langella, A., Gagliardini, S., & Della Valle, M. 2023, arXiv e-prints, arXiv:2306.14717
  • Hiramatsu et al. (2023) Hiramatsu, D., Tsuna, D., Berger, E., et al. 2023, arXiv e-prints, arXiv:2307.03165
  • Holoien et al. (2016) Holoien, T. W.-S., Prieto, J. L., Pejcha, O., et al. 2016, Acta Astron., 66, 219.
  • Hosseinzadeh et al. (2023) Hosseinzadeh, G., Farah, J., Shrestha, M., et al. 2023, ApJ, 953, L16
  • Itagaki (2023) Itagaki, K. 2023, Transient Name Server Discovery Report, 2023-1158, 1
  • Jacobson-Galan et al. (2023) Jacobson-Galan, W. V., Dessart, L., Margutti, R., et al. 2023, arXiv e-prints, arXiv:2306.04721
  • Jencson et al. (2023) Jencson, J. E., Pearson, J., Beasor, E. R., et al. 2023, ApJ, 952, L30
  • Kasen & Woosley (2009) Kasen, D. & Woosley, S. E. 2009, ApJ, 703, 2205.
  • Katz et al. (2013) Katz, B., Kushnir, D., & Dong, S. 2013, arXiv:1301.6766.
  • Kendurkar & Balam (2023a) Kendurkar, M. R., & Balam, D. D. 2023a, Transient Name Server AstroNote, 211, 1
  • Kendurkar & Balam (2023b) —. 2023b, The Astronomer’s Telegram, 16047, 1
  • Kendurkar & Balam (2023c) —. 2023c, Transient Name Server AstroNote, 129, 1
  • Kendurkar & Balam (2023d) —. 2023d, Transient Name Server AstroNote, 181, 1
  • Kilpatrick et al. (2023) Kilpatrick, C. D., Foley, R. J., Jacobson-Galán, W. V., et al. 2023, ApJ, 952, L23
  • Koltenbah (2023) Koltenbah, B. 2023, Transient Name Server AstroNote, 144, 1
  • Li et al. (2023) Li, G., Hu, M., Li, W., et al. 2023, arXiv:2311.14409.
  • Liu et al. (2023) Liu, C., Chen, X., Er, X., et al. 2023, ApJ, 958, L37.
  • Liu et al. (2018) Liu, L.-D., Zhang, B., Wang, L.-J., & Dai, Z.-G. 2018, ApJ, 868, L24
  • Lundquist et al. (2023) Lundquist, M., O’Meara, J., & Walawender, J. 2023, Transient Name Server AstroNote, 160, 1
  • Matthews et al. (2023a) Matthews, D., Margutti, R., AJ, N., et al. 2023a, The Astronomer’s Telegram, 16091, 1
  • Matthews et al. (2023b) —. 2023b, Transient Name Server AstroNote, 180, 1
  • Matthews et al. (2023c) Matthews, D., Margutti, R., Alexander, K. D., et al. 2023c, The Astronomer’s Telegram, 16056, 1
  • Matthews et al. (2023d) —. 2023d, Transient Name Server AstroNote, 146, 1
  • Matzner & McKee (1999) Matzner, C. D., & McKee, C. F. 1999, ApJ, 510, 379
  • Maund et al. (2023) Maund, J. R., Wiersema, K., Shrestha, M., Steele, I., & Hume, G. 2023, Transient Name Server AstroNote, 135, 1
  • Mayya et al. (2023) Mayya, Y. D., Carrasco, L., Escobedo, G., et al. 2023, The Astronomer’s Telegram, 16082, 1
  • Mereminskiy et al. (2023) Mereminskiy, I. A., Lutovinov, A. A., Sazonov, S. Y., et al. 2023, The Astronomer’s Telegram, 16065, 1
  • Modjaz et al. (2019) Modjaz, M., Gutiérrez, C. P., & Arcavi, I. 2019, Nature Astronomy, 3, 717
  • Müller et al. (2023) Müller, E., Carenza, P., Eckner, C., & Goobar, A. 2023, arXiv e-prints, arXiv:2306.16397
  • Nakar et al. (2016) Nakar, E., Poznanski, D., & Katz, B. 2016, ApJ, 823, 127.
  • Neustadt et al. (2023) Neustadt, J. M. M., Kochanek, C. S., & Rizzo Smith, M. 2023, arXiv e-prints, arXiv:2306.06162
  • Niu et al. (2023) Niu, Z.-X., Sun, N.-C., Maund, J. R., et al. 2023, arXiv e-prints, arXiv:2308.04677
  • Perley et al. (2023) Perley, D. A., Gal-Yam, A., Irani, I., & Zimmerman, E. 2023, Transient Name Server AstroNote, 119, 1
  • Perley & Irani (2023) Perley, D. A., & Irani, I. 2023, Transient Name Server AstroNote, 120, 1
  • Pessev et al. (2023) Pessev, P., Schildknecht, T., Kleint, L., Vananti, A., & Patole, P. 2023, The Astronomer’s Telegram, 16066, 1
  • Pledger & Shara (2023) Pledger, J. L., & Shara, M. M. 2023, ApJ, 953, L14
  • Popov (1993) Popov, D. V. 1993, ApJ, 414, 712.
  • Qin et al. (2023) Qin, Y.-J., Zhang, K., Bloom, J., et al. 2023, arXiv:2309.10022.
  • Riess et al. (2022) Riess, A. G., Yuan, W., Macri, L. M., et al. 2022, ApJ, 934, L7.
  • Sanders et al. (2015) Sanders, N. E., Soderberg, A. M., Gezari, S., et al. 2015, ApJ, 799, 208.
  • Schlafly & Finkbeiner (2011) Schlafly, E. F., & Finkbeiner, D. P. 2011, ApJ, 737, 103
  • Schlegel et al. (1998) Schlegel, D. J., Finkbeiner, D. P., & Davis, M. 1998, ApJ, 500, 525
  • Schlegel (1990) Schlegel, E. M. 1990, MNRAS, 244, 269
  • Sgro et al. (2023) Sgro, L. A., Esposito, T. M., Blaclard, G., et al. 2023, Research Notes of the American Astronomical Society, 7, 141
  • Shussman et al. (2016) Shussman, T., Nakar, E., Waldman, R., et al. 2016, arXiv:1602.02774.
  • Silva (2023a) Silva, C. M. D. 2023a, Transient Name Server AstroNote, 155, 1
  • Silva (2023b) —. 2023b, Transient Name Server AstroNote, 170, 1
  • Singh et al. (2023) Singh, D., Visweswaran, G., Kagy, C., et al. 2023, The Astronomer’s Telegram, 16054, 1
  • Smith et al. (2009) Smith, N., Silverman, J. M., Chornock, R., et al. 2009, ApJ, 695, 1334.
  • Smith et al. (2023) Smith, N., Pearson, J., Sand, D. J., et al. 2023, arXiv e-prints, arXiv:2306.07964
  • Soraisam et al. (2023) Soraisam, M. D., Szalai, T., Van Dyk, S. D., et al. 2023, arXiv e-prints, arXiv:2306.10783
  • Stritzinger et al. (2023) Stritzinger, M., Valerin, G., Elias-Rosa, N., et al. 2023, Transient Name Server AstroNote, 145, 1
  • Sukhbold et al. (2016) Sukhbold, T., Ertl, T., Woosley, S. E., et al. 2016, ApJ, 821, 38. doi:10.3847/0004-637X/821/1/38
  • Sutaria et al. (2023) Sutaria, F., Mathure, A., & Ray, A. 2023, The Astronomer’s Telegram, 16067, 1
  • Sutaria & Ray (2023) Sutaria, F., & Ray, A. 2023, The Astronomer’s Telegram, 16053, 1
  • Teja et al. (2023) Teja, R. S., Singh, A., Basu, J., et al. 2023, ApJ, 954, L12
  • Thwaites et al. (2023) Thwaites, J., Vandenbroucke, J., Santander, M., & IceCube Collaboration. 2023, The Astronomer’s Telegram, 16043, 1
  • Valenti et al. (2016) Valenti, S., Howell, D. A., Stritzinger, M. D., et al. 2016, MNRAS, 459, 3939
  • Van Dyk et al. (2023) Van Dyk, S. D., Srinivasan, S., Andrews, J. E., et al. 2023, arXiv e-prints, arXiv:2308.14844
  • Vannini & Julio (2023a) Vannini, & Julio. 2023a, Transient Name Server AstroNote, 156, 1
  • Vannini & Julio (2023b) —. 2023b, Transient Name Server AstroNote, 161, 1
  • Vannini (2023) Vannini, J. 2023, Transient Name Server AstroNote, 141, 1
  • Vasylyev et al. (2023) Vasylyev, S. S., Yang, Y., Filippenko, A. V., et al. 2023, ApJ, 955, L37
  • Villafane et al. (2023) Villafane, J., Nespral, D., Zamora, O., et al. 2023, The Astronomer’s Telegram, 16046, 1
  • Xiang et al. (2023) Xiang, D., Mo, J., Wang, L., et al. 2023, arXiv e-prints, arXiv:2309.01389
  • Yamanaka et al. (2023) Yamanaka, M., Fujii, M., & Nagayama, T. 2023, PASJ, arXiv:2306.00263
  • Zhang et al. (2023) Zhang, Y., Fan, Z., Zheng, J., Zhang, J., & He, M. 2023, Transient Name Server AstroNote, 132, 1
  • Zimmerman et al. (2024) Zimmerman, E. A., Irani, I., Chen, P., et al. 2024, Nature, 627, 759.

In this appendix, we provide the photometry data of Mephisto (Table LABEL:tabm) and the twin 50-cm telescopes (Table LABEL:tabf) as the data behind Figure 3. The best-fit results of bolometric luminosity, effective temperature, and photospheric radius for blackbody radiation are shown in Table LABEL:tabevo as the data behind Figure 7.

Table 1: Photometry data of SN 2023ixf with Mephisto in ug𝑢𝑔ugitalic_u italic_g and vr𝑣𝑟vritalic_v italic_r bands. This table is available in its entirety in the online supplementary material, and the full table can also be found at the ScienceDB https://doi.org/10.57760/sciencedb.15753. Notice that the uncertainties in the table mainly include the photon-counting uncertainties. The uncertainties of the photometric calibration and the zero points of magnitude are approximately 0.01mag0.01mag0.01~{}{\rm mag}0.01 roman_mag.
MJD/day u/mag g/mag v/mag r/mag
60084.70538 12.448±plus-or-minus{\pm}±0.001
60084.70539 11.858±plus-or-minus{\pm}±0.001
60084.70627 12.463±plus-or-minus{\pm}±0.001
60084.70628 11.866±plus-or-minus{\pm}±0.001
60084.70735 12.463±plus-or-minus{\pm}±0.001
60084.70736 11.858±plus-or-minus{\pm}±0.001
60084.70846 11.867±plus-or-minus{\pm}±0.001
60084.70932 11.863±plus-or-minus{\pm}±0.001
60084.71094 12.004±plus-or-minus{\pm}±0.002
60084.71179 12.008±plus-or-minus{\pm}±0.002
60354.93491 15.702±plus-or-minus{\pm}±0.008
60354.93715 15.695±plus-or-minus{\pm}±0.008
60354.93939 18.14±plus-or-minus{\pm}±0.03
60354.93941 15.694±plus-or-minus{\pm}±0.008
60354.94166 15.706±plus-or-minus{\pm}±0.008
60364.93336 18.18±plus-or-minus{\pm}±0.03 15.786±plus-or-minus{\pm}±0.008
60364.93560 15.809±plus-or-minus{\pm}±0.008
60364.93771 18.28±plus-or-minus{\pm}±0.03
60364.93785 15.796±plus-or-minus{\pm}±0.008
60364.94009 15.796±plus-or-minus{\pm}±0.008
Table 2: Photometry data of SN 2023ixf with the twin 50-cm telescopes in iz𝑖𝑧izitalic_i italic_z band. This table is available in its entirety in the online supplementary material, and the full table can also be found at the ScienceDB https://doi.org/10.57760/sciencedb.15753. Notice that the uncertainties in the table mainly include the photon-counting uncertainties. The uncertainties of the photometric calibration and the zero points of magnitude are approximately 0.01mag0.01mag0.01~{}{\rm mag}0.01 roman_mag.
MJD/day i/mag z/mag
60084.66164 13.423±plus-or-minus{\pm}±0.005
60084.66464 13.58±plus-or-minus{\pm}±0.01
60084.85436 13.067±plus-or-minus{\pm}±0.003
60085.65457 12.280±plus-or-minus{\pm}±0.002
60085.65757 12.291±plus-or-minus{\pm}±0.002
60085.65759 12.459±plus-or-minus{\pm}±0.006
60085.74509 12.220±plus-or-minus{\pm}±0.002
60085.74809 12.221±plus-or-minus{\pm}±0.002
60085.85156 12.156±plus-or-minus{\pm}±0.002
60085.85160 12.361±plus-or-minus{\pm}±0.006
60096.62810 11.383±plus-or-minus{\pm}±0.001
60096.62811 11.496±plus-or-minus{\pm}±0.003
60097.62223 11.395±plus-or-minus{\pm}±0.001 11.503±plus-or-minus{\pm}±0.003
60097.62383 11.394±plus-or-minus{\pm}±0.001 11.488±plus-or-minus{\pm}±0.003
60098.62184 11.393±plus-or-minus{\pm}±0.001
60098.62341 11.398±plus-or-minus{\pm}±0.001
60098.62344 11.503±plus-or-minus{\pm}±0.003
60099.61574 11.502±plus-or-minus{\pm}±0.003
60099.61575 11.412±plus-or-minus{\pm}±0.001
60099.61734 11.412±plus-or-minus{\pm}±0.001 11.483±plus-or-minus{\pm}±0.003
Table 3: The best-fit results of bolometric luminosity, effective temperature, and photospheric radius for blackbody radiation.
MJD/day log[L/ergs1]𝐿ergsuperscripts1\log[L/{\rm erg~{}s^{-1}}]roman_log [ italic_L / roman_erg roman_s start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT ] log[Teff/K]subscript𝑇effK\log[T_{\rm eff}/{\rm K}]roman_log [ italic_T start_POSTSUBSCRIPT roman_eff end_POSTSUBSCRIPT / roman_K ] log[Rph/cm]subscript𝑅phcm\log[R_{\rm ph}/{\rm cm}]roman_log [ italic_R start_POSTSUBSCRIPT roman_ph end_POSTSUBSCRIPT / roman_cm ]
60084.70734 43.29 ±plus-or-minus\pm± 0.10 4.507 ±plus-or-minus\pm± 0.042 14.206 ±plus-or-minus\pm± 0.099
60085.70783 43.45 ±plus-or-minus\pm± 0.04 4.401 ±plus-or-minus\pm± 0.018 14.498 ±plus-or-minus\pm± 0.044
60086.67782 43.49 ±plus-or-minus\pm± 0.06 4.357 ±plus-or-minus\pm± 0.028 14.603 ±plus-or-minus\pm± 0.064
60087.67758 43.41 ±plus-or-minus\pm± 0.04 4.305 ±plus-or-minus\pm± 0.020 14.673 ±plus-or-minus\pm± 0.045
60090.65298 43.15 ±plus-or-minus\pm± 0.01 4.175 ±plus-or-minus\pm± 0.011 14.802 ±plus-or-minus\pm± 0.024
60091.62564 43.08 ±plus-or-minus\pm± 0.02 4.137 ±plus-or-minus\pm± 0.013 14.838 ±plus-or-minus\pm± 0.029
60092.71010 43.03 ±plus-or-minus\pm± 0.01 4.106 ±plus-or-minus\pm± 0.007 14.876 ±plus-or-minus\pm± 0.015
60093.74334 42.98 ±plus-or-minus\pm± 0.01 4.080 ±plus-or-minus\pm± 0.004 14.901 ±plus-or-minus\pm± 0.009
60094.71458 42.94 ±plus-or-minus\pm± 0.01 4.056 ±plus-or-minus\pm± 0.005 14.931 ±plus-or-minus\pm± 0.011
60095.68900 42.90 ±plus-or-minus\pm± 0.01 4.035 ±plus-or-minus\pm± 0.005 14.955 ±plus-or-minus\pm± 0.012
60096.69822 42.87 ±plus-or-minus\pm± 0.01 4.015 ±plus-or-minus\pm± 0.005 14.979 ±plus-or-minus\pm± 0.011
60097.67836 42.84 ±plus-or-minus\pm± 0.01 3.999 ±plus-or-minus\pm± 0.006 14.996 ±plus-or-minus\pm± 0.014
60098.59604 42.84 ±plus-or-minus\pm± 0.01 3.998 ±plus-or-minus\pm± 0.008 14.997 ±plus-or-minus\pm± 0.017
60099.68435 42.78 ±plus-or-minus\pm± 0.01 3.972 ±plus-or-minus\pm± 0.007 15.023 ±plus-or-minus\pm± 0.016
60101.61025 42.74 ±plus-or-minus\pm± 0.01 3.945 ±plus-or-minus\pm± 0.017 15.052 ±plus-or-minus\pm± 0.036
60113.66383 42.54 ±plus-or-minus\pm± 0.06 3.769 ±plus-or-minus\pm± 0.031 15.306 ±plus-or-minus\pm± 0.070
60121.66017 42.55 ±plus-or-minus\pm± 0.11 3.677 ±plus-or-minus\pm± 0.035 15.496 ±plus-or-minus\pm± 0.089
60125.60418 42.60 ±plus-or-minus\pm± 0.12 3.638 ±plus-or-minus\pm± 0.031 15.597 ±plus-or-minus\pm± 0.087
60126.59941 42.58 ±plus-or-minus\pm± 0.13 3.635 ±plus-or-minus\pm± 0.035 15.595 ±plus-or-minus\pm± 0.097
60141.55753 42.67 ±plus-or-minus\pm± 0.14 3.557 ±plus-or-minus\pm± 0.027 15.797 ±plus-or-minus\pm± 0.090
60172.56913 42.03 ±plus-or-minus\pm± 0.07 3.526 ±plus-or-minus\pm± 0.012 15.537 ±plus-or-minus\pm± 0.043
60173.58373 42.01 ±plus-or-minus\pm± 0.07 3.526 ±plus-or-minus\pm± 0.012 15.525 ±plus-or-minus\pm± 0.043
60190.53759 41.97 ±plus-or-minus\pm± 0.09 3.514 ±plus-or-minus\pm± 0.018 15.529 ±plus-or-minus\pm± 0.059
60191.53887 41.88 ±plus-or-minus\pm± 0.10 3.537 ±plus-or-minus\pm± 0.020 15.442 ±plus-or-minus\pm± 0.067
60192.53781 41.88 ±plus-or-minus\pm± 0.10 3.534 ±plus-or-minus\pm± 0.017 15.448 ±plus-or-minus\pm± 0.062
60193.54465 41.88 ±plus-or-minus\pm± 0.09 3.534 ±plus-or-minus\pm± 0.017 15.445 ±plus-or-minus\pm± 0.060
60195.56868 41.86 ±plus-or-minus\pm± 0.11 3.536 ±plus-or-minus\pm± 0.019 15.432 ±plus-or-minus\pm± 0.069
60201.52122 41.83 ±plus-or-minus\pm± 0.10 3.538 ±plus-or-minus\pm± 0.017 15.413 ±plus-or-minus\pm± 0.062
60221.49577 41.80 ±plus-or-minus\pm± 0.15 3.527 ±plus-or-minus\pm± 0.030 15.423 ±plus-or-minus\pm± 0.097
60274.95250 41.42 ±plus-or-minus\pm± 0.13 3.559 ±plus-or-minus\pm± 0.025 15.166 ±plus-or-minus\pm± 0.083
60282.94518 41.35 ±plus-or-minus\pm± 0.17 3.574 ±plus-or-minus\pm± 0.038 15.100 ±plus-or-minus\pm± 0.118
60307.87612 41.20 ±plus-or-minus\pm± 0.12 3.583 ±plus-or-minus\pm± 0.026 15.009 ±plus-or-minus\pm± 0.083
60312.95936 41.19 ±plus-or-minus\pm± 0.12 3.572 ±plus-or-minus\pm± 0.025 15.026 ±plus-or-minus\pm± 0.080
60313.96008 40.91 ±plus-or-minus\pm± 0.15 3.637 ±plus-or-minus\pm± 0.030 14.756 ±plus-or-minus\pm± 0.096
60314.93569 41.12 ±plus-or-minus\pm± 0.13 3.593 ±plus-or-minus\pm± 0.030 14.950 ±plus-or-minus\pm± 0.091
60320.96748 41.25 ±plus-or-minus\pm± 0.15 3.560 ±plus-or-minus\pm± 0.030 15.080 ±plus-or-minus\pm± 0.096
60324.96763 41.04 ±plus-or-minus\pm± 0.13 3.602 ±plus-or-minus\pm± 0.029 14.892 ±plus-or-minus\pm± 0.089
60331.95188 40.98 ±plus-or-minus\pm± 0.14 3.613 ±plus-or-minus\pm± 0.034 14.839 ±plus-or-minus\pm± 0.101
60337.95158 40.95 ±plus-or-minus\pm± 0.13 3.611 ±plus-or-minus\pm± 0.030 14.829 ±plus-or-minus\pm± 0.089
60354.93162 40.82 ±plus-or-minus\pm± 0.13 3.632 ±plus-or-minus\pm± 0.033 14.722 ±plus-or-minus\pm± 0.094
60364.93665 40.94 ±plus-or-minus\pm± 0.15 3.590 ±plus-or-minus\pm± 0.030 14.867 ±plus-or-minus\pm± 0.096