Introduction to the Schwann cell (Chapter 1) - The Biology of Schwann Cells
Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-ttngx Total loading time: 0 Render date: 2024-05-27T06:20:09.563Z Has data issue: false hasContentIssue false

1 - Introduction to the Schwann cell

Published online by Cambridge University Press:  13 August 2009

Patricia Armati
Affiliation:
University of Sydney
Get access

Summary

THEODOR SCHWANN 1810–1882

The Schwann cell is named in honour of the German physiologist Theodor Schwann (1810–1882, Figure 1.1) who is now acknowledged as the founder of modern histology. In addition to describing the Schwann cell, he made numerous contributions to the fields of biology, physiology and histology – not least as one of the instigators and main advocates of cell theory. The cell theory defined the cell as the base unit of all living organisms, and had great influence on the study of both plants and animals. The cell theory was radical for the time and irrevocably discredited Vitalism, the mainstream belief that life was attributed to a vital force. Among other things, Schwann is known for recognising that the crystals seen during fermentation, first reported by Leeuwenhoek in 1680, were in fact living organisms; although it was not until Pasteur in 1878 wrote to Schwann acknowledging this observation that Schwann's finding was accepted. In fact, Pasteur's germ theory stems from Schwann's work in which he showed that microorganisms were required for the putrefaction of meat.

Schwann spent his undergraduate years at the University of Bonn and then the equivalent of postgraduate study in Wuerzburg and Berlin. Schwann was appointed Professor of Anatomy at Louvain in 1839. In 1848 he moved to the Chair of Anatomy in Liege. In a biography of Schwann (Causey 1960), Causey reported that he avoided the strife of scientific controversy and appears to have risen above petty jealousies.

Type
Chapter
Information
The Biology of Schwann Cells
Development, Differentiation and Immunomodulation
, pp. 1 - 12
Publisher: Cambridge University Press
Print publication year: 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×