Modeling fuel film formation and wall interaction in diesel engines - 百度学术

Modeling fuel film formation and wall interaction in diesel engines

阅读量:

49

摘要:

A fuel film model has been developed and implemented into the KIVA-II code to help account for fuel distribution during combustion in diesel engines. Spray-wall interaction and spray-film interaction are also incorporated into the model. The model simulates thin fuel film flow on solid surfaces of arbitrary configuration. This is achieved by solving the continuity and momentum equations for the two-dimensional film that flows over a three-dimensional surface. The major physical effects considered in the model include mass and momentum contributions to the film due to spray drop impingement, splashing effects, various shear forces, piston acceleration, and dynamic pressure effects. In order to adequately represent the drop interaction process, impingement regimes and post-impingement behavior have been modeled using experimental data and mass, momentum and energy conservation constraints. The regimes modeled for spray-film interaction are stick, rebound, spread, an splash. Numerical simulations are compared to experimental data for spray impingement normal to the wall. The film model compared extremely well with experimental data for secondary droplet velocities, spray radius, spray height, film thickness estimations, and percent of fuel adhering to the wall. In addition, diesel engine simulations are also presented. The film spreading characteristics, amount of fuel deposited on the wall, and fuel film thickness provide insight into cold starting spray-wall interactions. Finally, recommendations are given concerning the addition of thermal and evaporative processes to the model.

展开

会议名称:

SAE Conference

通过文献互助平台发起求助,成功后即可免费获取论文全文。

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献

参考文献

引证文献

来源会议

辅助模式

0

引用

文献可以批量引用啦~
欢迎点我试用!