pGpStt/RunGpStt.m at main · ygraigarw/pGpStt · GitHub
Permalink
main
Switch branches/tags

Name already in use

A tag already exists with the provided branch name. Many Git commands accept both tag and branch names, so creating this branch may cause unexpected behavior. Are you sure you want to create this branch?
Go to file
 
 
Cannot retrieve contributors at this time
263 lines (205 sloc) 9.93 KB
%% Simple code to fit QR, Pss and GP models, all the parameters assumed to be fixed in time
% Mdl(xi, sgm, rho, psi) with xi=xi_0, sgm=sgm_0, ...
% Will run as is for toy data to check
% Need to input data as structure (see occurrences of USER INPUT) below
%
% QR = non-stationary Quantile Regression threshold
% Pss = non-stationary PoiSSon could model for threshold exceedances
% GP = Generalised Pareto model for size of threshold exceedances
%
% This is a simplified version of pGpNonStt
%% Output for further plotting / investigation etc
% Output from the analysis is saved in a structure C
% A typical structure C (when 8 different threshold non-exceedance probabilities are used) is
%
%% C
%
% Nep: [8×1 double] Non-exceedance probabilities for thresholds
% nNep: 8 Number of NEPs
% QR: {[1×1 struct] [1×1 struct] [1×1 struct] [1×1 struct] [1×1 struct] [1×1 struct] [1×1 struct] [1×1 struct]} QR model details (inc posterior sample)
% Pss: {[1×1 struct] [1×1 struct] [1×1 struct] [1×1 struct] [1×1 struct] [1×1 struct] [1×1 struct] [1×1 struct]} Pss model details (inc posterior sample)
% GP: {[1×1 struct] [1×1 struct] [1×1 struct] [1×1 struct] [1×1 struct] [1×1 struct] [1×1 struct] [1×1 struct]} GP model details (inc posterior sample)
% RV: {[1×1 struct] [1×1 struct] [1×1 struct] [1×1 struct] [1×1 struct] [1×1 struct] [1×1 struct] [1×1 struct]} RV details (inc posterior sample)
% RVCmp: [1×1 struct] RV comparison summary
% PrmSmm: [1x1 struct] Assessment of slope parameter changes
%
%% C.QR{q}, C.Pss{q}, C.GP{q} for q=1,2,..., nNep are structures like
%
% Lkl: 'QR'
% nPrm: 1
% PrmNms: {1×1 cell}
% Nep: 0.6000
% nItr: 10000
% n2Plt: 5000
% NgtStr: 0.1000
% AdpItr: 1000
% AdpBet: 0.0500
% PrmStr: [2×1 double]
% AccRat: [10000×1 double]
% Prm: [10000×2 double]
% Nll: [10000×1 double]
% PrmUse: [1×1 double]
%
%% Key output for further plotting etc are
%
% C.QR{q}.Prm nItr x 1 values of psi0 from MCMC (in general it is safe to use the last 9000; first 1000 might involve "burn-in")
% C.Pss{q}.Prm nItr x 1 values of rho0 from MCMC (in general it is safe to use the last 9000; first 1000 might involve "burn-in")
% C.GP{q}.Prm nItr x 2 values of xi0, sigma0 from MCMC (in general it is safe to use the last 9000; first 1000 might involve "burn-in")
% C.RV{q}.RV nRls x 1 values of return values generated using C.QR.Prm, C.Pss.Prm and C.GP.Prm
% C.RVCmp.Qnt nNep x 3 Quantlies (2.5%, 50% and 97.5%) at "time end" and quantlies (2.5%, 50% and 97.5%) at "time end" for each NEP
%% Set up
clc; clear; clf;
VrbNms={'$\xi$';'$\sigma$';'$\psi$'};
%% Simulate a sample of data
if 1; %for testing
% True parameters P0=[xi0;sgm0;rho0;psi0;] of linear regression
%% *** USER INPUT *** Pick the type of simulated data
X.Prm0=[-0.3; 2; 20; 2;];
% Time variable
% NB A COMMON time value used for observations in the same year
X.nYr=85;
tYr=(1:X.nYr)'; % Time in years
% True parameter estimates per year
X.XSM0=[ones(X.nYr,1)*X.Prm0(1) ones(X.nYr,1)*X.Prm0(2) ones(X.nYr,1)*X.Prm0(3) ones(X.nYr,1)*X.Prm0(4)];
% Number of occurrences per annum
tOcc=poissrnd(X.XSM0(:,3));
% Generate data from GP
k=0;
X.nT=sum(tOcc);
X.Tim=nan(X.nT,1);
X.Dat=nan(X.nT,1);
for iY=1:X.nYr;
for iO=1:tOcc(iY);
k=k+1;
X.Tim(k)=tYr(iY)/X.nYr;
X.Dat(k)=gprnd(X.XSM0(iY,1),X.XSM0(iY,2),X.XSM0(iY,4));
end;
end;
X, % See the structure
subplot(2,2,1); plot(tYr,tOcc,'ko');
subplot(2,2,2); plot(X.Tim*X.nYr,X.Dat,'ko');
end;
%% ***USER INPUT*** Read in your data here
if 0;
%X.nYr ; % 1 x 1 number of years
%X.nT ; % 1 x 1 number of occurrences
%X.Tim ; % nT x 1 years on [0,1] (so that floor((X.Tim*X.nYr)+1) gives the year number
%X.Dat ; % nT x 1 data
% load('G:\UoM Climate Change\ssp245.mat');
Fld=Field;
% X.Dat=data(:,3);
% t1=data(:,1);
X.Dat=POT.(Fld)(:,2);
t1=POT.(Fld)(:,1);
t2=(floor(t1(1)):floor(t1(end)))';
X.Tim = (floor(t1)-floor(t1(1))+1)/(floor(t1(end))-floor(t1(1))+1);
% X.Tim=(t2-t2(1))/range(t2);
% X.Tim=1:numel(t1)/numel(t1);
X.nT=size(t1,1);
X.nYr = numel(unique(floor(t1)));
end;
%% ***USER INPUT*** Read in your data here - MADAGASCAR ANALYSIS
if 0;
load Madagascar.mat;
nT=size(yrs,1);
Tim=yrs;
Dat=HsPOTall;
% Kevin's code to create structure X, adapted from above
t1=yrs;
t2=(floor(t1(1)):floor(t1(end)))';
X.Tim = (floor(t1)-floor(t1(1))+1)/(floor(t1(end))-floor(t1(1))+1);
X.nT=size(t1,1);
X.nYr = numel(unique(floor(t1)));
X.Dat=Dat;
plot(X.Tim,X.Dat,'k.');
end;
%% ***USER INPUT*** Specify NEPs to consider
if 1;
%C.Nep=(0.6:0.05:0.95)'; % (0.6:0.05:0.9)' is a good range; but maybe you want to use (0.7:0.1:0.9)' to get going
%C.Nep=(0.7:0.1:0.9)';
C.Nep=[0.9;(0.95:0.01:0.99)';0.995];
%
C.nNep=size(C.Nep,1);
end;
%% Estimate extreme value threshold (linear Quantile Regression)
if 1;
for iN=1:C.nNep
C.QR{iN}.Lkl='QR'; % Likelihood
C.QR{iN}.nPrm=1; % Number of parameters
C.QR{iN}.PrmNms={'$\psi_0$';}; % Names for parameters
C.QR{iN}.Nep=C.Nep(iN); % NEP
C.QR{iN}.nItr=10000; % Number of MCMC iterations - 1e4 minipsim when used in anger
C.QR{iN}.n2Plt=5000; % Number of iterations from end of chain to "beleive"
C.QR{iN}.NgtStr=0.1; % Candidate random walk standard deviation - don't change
C.QR{iN}.AdpItr=1000; % Number of warm up iterations - don't change
C.QR{iN}.AdpBet=0.05; % Adaptive MC - don't change C.Nep=X.Nep(iN);
C.QR{iN}.PrmStr=[quantile(X.Dat,C.Nep(iN))]; % Constant starting solution for quantile regression
C.QR{iN}=McmcStt(X,C.QR{iN}); % Run MCMC algorithm
C.QR{iN}.PrmUse=mean(C.QR{iN}.Prm(C.QR{iN}.nItr-C.QR{iN}.n2Plt+1:C.QR{iN}.nItr,:))'; % Use posterior mean for subsequent inference
tStr=sprintf('Mdl%s-Nep%g',C.QR{iN}.Lkl,C.QR{iN}.Nep); pDatStm(tStr); pGI(tStr,2); % Save plot
tFil=sprintf('MCMC'); save(tFil,'C'); % Save whole chain
end;
end;
%% Estimate rate of threshold exceedance per annum (linear Poisson Process)
if 1;
for iN=1:C.nNep
C.Pss{iN}.Lkl='Pss'; % Likelihood
C.Pss{iN}.Nep=C.Nep(iN); % NEP
C.Pss{iN}.PrmNms={'$\rho_0$';}; % Names for parameters
C.Pss{iN}.nPrm=1; % Number of parameters
C.Pss{iN}.nItr=10000; % Number of MCMC iterations - 1e4 minipsim when used in anger
C.Pss{iN}.n2Plt=5000; % Number of iterations from end of chain to "beleive"
C.Pss{iN}.NgtStr=0.1; % Candidate random walk standard deviation - don't change
C.Pss{iN}.AdpItr=1000; % Number of warm up iterations - don't change
C.Pss{iN}.AdpBet=0.05; % Adaptive MC - don't change C.Nep=X.Nep(iN);
% Estimate Poisson count for threshold exceedances
t1=(X.Dat-ones(X.nT,1)*C.QR{iN}.PrmUse(1))>0; % Threshold exceedances
for iY=1:X.nYr;
t2=floor(X.Tim*X.nYr)>=(iY-1) & floor(X.Tim*X.nYr)<iY; % Particular year
C.Pss{iN}.Cnt(iY,:)=sum(t1(t2==1));
C.Pss{iN}.CntTim(iY,:)=(iY-0.5)/X.nYr; % Take middle of year
end;
% Constant starting solution from Poisson fit
C.Pss{iN}.PrmStr=[poissfit(C.Pss{iN}.Cnt)];
C.Pss{iN}=McmcStt(X,C.Pss{iN}); % Run MCMC algorithm
tStr=sprintf('Mdl%s-Nep%g',C.Pss{iN}.Lkl,C.Pss{iN}.Nep); pDatStm(tStr); pGI(tStr,2); % Save plot
tFil=sprintf('MCMC'); save(tFil,'C'); % Save whole chain
end;
end;
%% Estimate size of threshold exceedance per annum (linear Generalised Pareto)
if 1;
for iN=1:C.nNep
C.GP{iN}.Lkl='GP';
C.GP{iN}.Nep=C.Nep(iN); % NEP
C.GP{iN}.PrmNms={'$\xi_0$';'$\sigma_0$';}; % Names for parameters
C.GP{iN}.nPrm=2; % Number of parameters
C.GP{iN}.nItr=10000; % Number of MCMC iterations - 1e4 minipsim when used in anger
C.GP{iN}.n2Plt=5000; % Number of iterations from end of chain to "beleive"
C.GP{iN}.NgtStr=0.1; % Candidate random walk standard deviation - don't change
C.GP{iN}.AdpItr=1000; % Number of warm up iterations - don't change
C.GP{iN}.AdpBet=0.05; % Adaptive MC - don't change C.Nep=X.Nep(iN);
% Isolate threshold exceedances and times of occurrence
t1=X.Dat-(ones(X.nT,1)*C.QR{iN}.PrmUse(1)); % Threshold exceedances
C.GP{iN}.Exc=t1(t1>0);
C.GP{iN}.ExcTim=X.Tim(t1>0);
% Constant starting solution from GP fit
t=gpfit(C.GP{iN}.Exc);
if t(1)<-0.5; t(1)=-0.4; end;
if t(1)>0.5; t(1)=0.4; end;
C.GP{iN}.PrmStr=[t(1);t(2)];
C.GP{iN}=McmcStt(X,C.GP{iN}); % Run MCMC algorithm
tStr=sprintf('Mdl%s-Nep%g',C.GP{iN}.Lkl,C.GP{iN}.Nep); pDatStm(tStr); pGI(tStr,2); % Save plot
tFil=sprintf('MCMC'); save(tFil,'C'); % Save whole chain
end;
end;
%% Plot tails per threshold, RV with threshold, and parameter estimates nicely
if 1;
RtrPrd=100; % return period to use in years
nRls=1000; % number of realisations of tails to generate
C=GpPltTal(C,X,RtrPrd,nRls); % plot of tails per threshold, and RV quantiles with threshold
C=GpPltPrm(C); % nice plot of QR-Pss-GP parameters for all thresholds
end;
%% Update output file
if 1;
tFil=sprintf('MCMC'); save(tFil,'C'); % Save whole chain
end;