Hacrobia - WikiMili, The Best Wikipedia Reader

Hacrobia

Last updated

Hacrobia
Gephyrocapsa oceanica color.jpg
The coccolithophore Gephyrocapsa oceanica
Scientific classification OOjs UI icon edit-ltr.svg
Domain: Eukaryota
Clade: Diaphoretickes
Kingdom: Chromista
Subkingdom: Hacrobia
Okamoto et al., 2009
Groups
Synonyms
  • CCTH
  • Eukaryomonadae

The cryptomonads-haptophytes assemblage is a proposed but disputed monophyletic grouping [1] of unicellular eukaryotes that are not included in the SAR supergroup. Several alternative names have been used for the group, including Hacrobia (derived from "ha-" referring to Haptophyta, "-cr-" referring to cryptomonads, and "-bia" as a general suffix referring to life); [2] CCTH (standing for Cryptophyta, Centrohelida, Telonemia and Haptophyta); [3] and "Eukaryomonadae". [4]

Contents

As of February 2012, it is unclear whether this group is monophyletic or not; results of phylogenetic studies are "often dependent on the selection of taxa and gene data set". [3] Two 2012 studies produced opposite results. [3] [5]

Members

In the past, heterokonts, haptophytes, and cryptomonads have sometimes been grouped together in a group known as chromists. [6] Though the heterokonts are now split out, Cryptophyta and Haptophyta are considered in some studies to be closely related [7] [8] (and are sometimes simply referred to as the "Cryptophyta+Haptophyta" group). [9] A 2009 paper suggested that the Telonemia and centrohelids may form a clade with the cryptophytes and haptophytes. [10] The picobiliphytes may belong in this group but are too poorly known to be classified with confidence. [2]

Several recent studies have concluded that Haptophyta and Cryptophyta do not form a monophyletic group. [11] The former are a sister group to the SAR group, the latter cluster with the Archaeplastida (plants in the broad sense). [5] As of February 2012, it remains unclear whether the Hacrobia forms a monophyletic group. [3]

Another study [12] suggested the following arrangement: centrohelids are related to haptophytes and form the clade Haptista; Haptista is the sister group to SAR; Cryptista are related to Archaeplastida; and Haptista + SAR is the sister clade to Cryptista + Archaeplastida.

Phylogeny

Based on work done by Silar 2016. [13] [14]

Hacrobia
Alveidia

Alveidea [15]

Haptista
Centroheliozoa

Centrohelea

Haptophytina
Rappemonada

Rappephyceae

Haptomonada

Pavlovophyceae

Prymnesiophyceae

Cryptista  s.l.
Corbihelia
Endohelia

Endohelea

Corbistoma

Picomonadea

Telonemea

Cryptista  s.s.
Palpitia

Palpitea

Rollomonadia
Leucocrypta

Leucocryptea

Cryptomonada

Goniomonadea

Cryptophyceae

Related Research Articles

<span class="mw-page-title-main">Cryptomonad</span> Subphylum of algae

The cryptomonads are a group of algae, most of which have plastids. They are common in freshwater, and also occur in marine and brackish habitats. Each cell is around 10–50 μm in size and flattened in shape, with an anterior groove or pocket. At the edge of the pocket there are typically two slightly unequal flagella.

<span class="mw-page-title-main">Centrohelid</span> Group of algae

The centrohelids or centroheliozoa are a large group of heliozoan protists. They include both mobile and sessile forms, found in freshwater and marine environments, especially at some depth.

<span class="mw-page-title-main">Chromista</span> Eukaryotic biological kingdom

Chromista is a proposed but polyphyletic biological kingdom consisting of single-celled and multicellular eukaryotic species that share similar features in their photosynthetic organelles (plastids). It includes all eukaryotes whose plastids contain chlorophyll c and are surrounded by four membranes. If the ancestor already possessed chloroplasts derived by endosymbiosis from red algae, all non-photosynthetic Chromista have secondarily lost the ability to photosynthesise. Its members might have arisen independently as separate evolutionary groups from the last eukaryotic common ancestor.

<span class="mw-page-title-main">Amorphea</span> Members of the Unikonta, a taxonomic group proposed by Thomas Cavalier-Smith

Amorphea is a taxonomic supergroup that includes the basal Amoebozoa and Obazoa. That latter contains the Opisthokonta, which includes the Fungi, Animals and the Choanomonada, or Choanoflagellates. The taxonomic affinities of the members of this clade were originally described and proposed by Thomas Cavalier-Smith in 2002.

<span class="mw-page-title-main">Bikont</span> Group of eukaryotes

A bikont is any of the eukaryotic organisms classified in the group Bikonta. Many single-celled and multi-celled organisms are members of the group, and these, as well as the presumed ancestor, have two flagella.

<span class="mw-page-title-main">Chromalveolata</span> Group of eukaryotic organisms

Chromalveolata was a eukaryote supergroup present in a major classification of 2005, then regarded as one of the six major groups within the eukaryotes. It was a refinement of the kingdom Chromista, first proposed by Thomas Cavalier-Smith in 1981. Chromalveolata was proposed to represent the organisms descended from a single secondary endosymbiosis involving a red alga and a bikont. The plastids in these organisms are those that contain chlorophyll c.

<span class="mw-page-title-main">Archaeplastida</span> Clade of eukaryotes containing land plants and some algae

The Archaeplastida are a major group of eukaryotes, comprising the photoautotrophic red algae (Rhodophyta), green algae, land plants, and the minor group glaucophytes. It also includes the non-photosynthetic lineage Rhodelphidia, a predatorial (eukaryotrophic) flagellate that is sister to the Rhodophyta, and probably the microscopic picozoans. The Archaeplastida have chloroplasts that are surrounded by two membranes, suggesting that they were acquired directly through a single endosymbiosis event by phagocytosis of a cyanobacterium. All other groups which have chloroplasts, besides the amoeboid genus Paulinella, have chloroplasts surrounded by three or four membranes, suggesting they were acquired secondarily from red or green algae. Unlike red and green algae, glaucophytes have never been involved in secondary endosymbiosis events.

<span class="mw-page-title-main">Cryptophyceae</span> Class of single-celled organisms

The cryptophyceae are a class of algae, most of which have plastids. About 220 species are known, and they are common in freshwater, and also occur in marine and brackish habitats. Each cell is around 10–50 μm in size and flattened in shape, with an anterior groove or pocket. At the edge of the pocket there are typically two slightly unequal flagella.

<span class="mw-page-title-main">Telonemia</span> Phylum of single-celled organisms

Telonemia is a phylum of microscopic eukaryote, single-celled organisms. They were formerly classified within kingdom Chromista. They are suggested to have evolutionary significance in being a possible transitional form between ecologically important heterotrophic and photosynthetic species among chromalveolates.

<span class="mw-page-title-main">SAR supergroup</span> Eukaryotes superphylum

The SAR supergroup, also just SAR or Harosa, is a clade of Eukaryotes that includes stramenopiles (heterokonts), alveolates, and Rhizaria. The name is an acronym derived from the first letters of each of these clades; it has been alternatively spelled "RAS". The term "Harosa" has also been used. The SAR supergroup is a node-based taxon. The TSAR clade also includes the Telonemids.

The katablepharids, a group of heterotrophic flagellates, have been considered as part of the Cryptista since katablepharids were described in 1939. Although they differ from other cryptophytes and have even been proposed to be alveolates, early 21st century research suggests they are related to cryptophytes.

Telonema is a genus of single-celled organisms.

<span class="mw-page-title-main">Diaphoretickes</span> Taxon of eukaryotes

Diaphoretickes is a major group of eukaryotic organisms, with over 400,000 species. The majority of the earth's biomass that carries out photosynthesis belongs to Diaphoretickes.

Plants+HC clade is a group of eukaryotes proposed by Burki et al. (2008).

<span class="mw-page-title-main">Picozoa</span> Phylum of marine unicellular heterotrophic eukaryotes

Picozoa, Picobiliphyta, Picobiliphytes, or Biliphytes are protists of a phylum of marine unicellular heterotrophic eukaryotes with a size of less than about 3 micrometers. They were formerly treated as eukaryotic algae and the smallest member of photosynthetic picoplankton before it was discovered they do not perform photosynthesis. The first species identified therein is Picomonas judraskeda. They probably belong in the Archaeplastida as sister of the Rhodophyta.

<span class="mw-page-title-main">Cryptista</span> Phylum of algae

Cryptista is a clade of alga-like eukaryotes. It is most likely related to Archaeplastida which includes plants and many algae, within the larger group Diaphoretickes.

<span class="mw-page-title-main">Haptista</span> Group of protists

Haptista is a proposed group of protists made up of centrohelids and haptophytes. Phylogenomic studies indicate that Haptista, together with Ancoracysta twista, forms a sister clade to the SAR+Telonemia supergroup, but it may also be sister to the Cryptista (+Archaeplastida). It is thus one of the earliest diverging Diaphoretickes.

Endohelea is a proposed clade of eukaryotes that are related to Archaeplastida and the SAR supergroup. They used to be considered heliozoans, but phylogenetically they belong to a group of microorganisms known as Cryptista.

Palpitea is a proposed clade of eukaryotes that are related to Archaeplastida and the SAR supergroup.

A supergroup, in evolutionary biology, is a large group of organisms that share one common ancestor and have important defining characteristics. It is an informal, mostly arbitrary rank in biological taxonomy that is often greater than phylum or kingdom, although some supergroups are also treated as phyla.

References

  1. Sakaguchi M, Takishita K, Matsumoto T, Hashimoto T, Inagaki Y (July 2009). "Tracing back EFL gene evolution in the cryptomonads-haptophytes assemblage: separate origins of EFL genes in haptophytes, photosynthetic cryptomonads, and goniomonads". Gene. 441 (1–2): 126–31. doi:10.1016/j.gene.2008.05.010. PMID   18585873.
  2. 1 2 Okamoto, N.; Chantangsi, C.; Horák, A.; Leander, B.; Keeling, P.; Stajich, J. E. (2009). Stajich, Jason E. (ed.). "Molecular Phylogeny and Description of the Novel Katablepharid Roombia truncata gen. et sp. nov., and Establishment of the Hacrobia Taxon nov". PLOS ONE. 4 (9): e7080. Bibcode:2009PLoSO...4.7080O. doi: 10.1371/journal.pone.0007080 . PMC   2741603 . PMID   19759916.
  3. 1 2 3 4 Zhao, Sen; Burki, Fabien; Bråte, Jon; Keeling, Patrick J.; Klaveness, Dag; Shalchian-Tabrizi, Kamran (2012). "Collodictyon—An Ancient Lineage in the Tree of Eukaryotes". Molecular Biology and Evolution. 29 (6): 1557–68. doi:10.1093/molbev/mss001. PMC   3351787 . PMID   22319147.
  4. "EUKARYOMONADAE" . Retrieved 2015-03-01.
  5. 1 2 Burki, F.; Okamoto, N.; Pombert, J.F. & Keeling, P.J. (2012). "The evolutionary history of haptophytes and cryptophytes: phylogenomic evidence for separate origins". Proc. Biol. Sci. 279 (1736): 2246–54. doi:10.1098/rspb.2011.2301. PMC   3321700 . PMID   22298847.
  6. Csurös M, Rogozin IB, Koonin EV (May 2008). "Extremely intron-rich genes in the alveolate ancestors inferred with a flexible maximum-likelihood approach". Mol. Biol. Evol. 25 (5): 903–11. doi:10.1093/molbev/msn039. PMID   18296415.
  7. Rice DW, Palmer JD (2006). "An exceptional horizontal gene transfer in plastids: gene replacement by a distant bacterial paralog and evidence that haptophyte and cryptophyte plastids are sisters". BMC Biol. 4: 31. doi: 10.1186/1741-7007-4-31 . PMC   1570145 . PMID   16956407.
  8. Aharon Oren; R. Thane Papke (1 July 2010). Molecular Phylogeny of Microorganisms. Horizon Scientific Press. pp. 190–. ISBN   978-1-904455-67-7 . Retrieved 21 January 2011.
  9. Reeb VC, Peglar MT, Yoon HS, et al. (May 2009). "Interrelationships of chromalveolates within a broadly sampled tree of photosynthetic protists". Mol. Phylogenet. Evol. 53 (1): 202–11. doi:10.1016/j.ympev.2009.04.012. PMID   19398025.
  10. Burki, F; Inagaki, Y; Bråte, J; Archibald, J; Keeling, P; Cavalier-Smith, T; Sakaguchi, M; Hashimoto, T; Horak, A; Kumar, S; Klaveness, D; Jakobsen, KS; Pawlowski, J; Shalchian-Tabrizi, K (2009). "Large-scale phylogenomic analyses reveal that two enigmatic protist lineages, Telonemia and Centroheliozoa, are related to photosynthetic chromalveolates" (Free full text). Genome Biology and Evolution. 1: 231–8. doi:10.1093/gbe/evp022. PMC   2817417 . PMID   20333193.
  11. Baurain, Denis; Brinkmann, Henner; Petersen, Jörn; Rodríguez-Ezpeleta, Naiara; Stechmann, Alexandra; Demoulin, Vincent; Roger, Andrew J.; Burger, Gertraud; Lang, B. Franz & Philippe, Hervé (2010), "Phylogenomic Evidence for Separate Acquisition of Plastids in Cryptophytes, Haptophytes, and Stramenopiles", Molecular Biology and Evolution, 27 (7): 1698–1709, doi: 10.1093/molbev/msq059 , PMID   20194427
  12. Burki, F; Kaplan, M; Tikhonenkov, DV; Zlatogursky, V; Minh, BQ; Radaykina, LV; Smirnov, A; Mylnikov, AP; Keeling, PJ (2016). "Untangling the early diversification of eukaryotes: a phylogenomic study of the evolutionary origins of Centrohelida, Haptophyta and Cryptista". Proc Biol Sci. 283 (1823): 20152802. doi:10.1098/rspb.2015.2802. PMC   4795036 . PMID   26817772.
  13. Silar, Philippe (2016), "Protistes Eucaryotes: Origine, Evolution et Biologie des Microbes Eucaryotes", HAL Archives-ouvertes: 1–462
  14. Ruggiero; et al. (2015), "Higher Level Classification of All Living Organisms", PLOS ONE, 10 (4): e0119248, Bibcode:2015PLoSO..1019248R, doi: 10.1371/journal.pone.0119248 , PMC   4418965 , PMID   25923521
  15. Cavalier-Smith, T.; Chao, E. E.; Lewis, R. (17 April 2018), "Multigene phylogeny and cell evolution of chromist infrakingdom Rhizaria: contrasting cell organisation of sister phyla Cercozoa and Retaria", Protoplasma, 255 (5): 1517–1574, doi:10.1007/s00709-018-1241-1, PMC   6133090 , PMID   29666938