Born Falmouth (Portland), Maine, USA, 9 September 1789

Died Cambridge, Massachusetts, USA, 29 January 1859

figure qfigure q

Bond, William Cranch. Reproduced by permission of the Mary Lea Shane Archives of the Lick Observatory, University of California at Santa Cruz

As the first director of the Harvard College Observatory, from 1839 to 1859, William Bond was one of the major figures in antebellum American astronomy. His work as an astronomer was more closely linked to institution building, his business, and to the needs of commerce than it was to the basic observational or theoretical astronomical work of his times. Biographies of his life have generally focused on his rise from humble beginnings, his remarkable mechanical abilities, and his role in establishing the Harvard College Observatory. Recent research has centered more on his work as a provider of precise time and position measurements to the developing nation and his role in the scientific network that developed around Cambridge during his lifetime.

Financial hardship soon caused his family to move to Boston, Massachusetts, where his father, William, started a watch and jewelry business. As a boy Bond showed great mechanical aptitude, building a weight-driven chronometer at age 10 and a fine wooden quadrant at age 16. In 1812, he completed what was reputed to be the first seagoing chronometer made in America. Under his direction the Bond firm expanded into the important marine chronometer trade and later provided precision astronomical regulators to American customers. The nature of both enterprises meant that the firm engaged in extensive trade with British suppliers and customers.

As a young man William showed an intense interest in astronomy, which he attributed to seeing the solar eclipse of 1806. Despite being largely self-taught and lacking proper instruments, he was the first American to observe and track the comet of 1811(C/1811 F1). This brought him to the attention of Harvard professor John Farrar and later the famed Nathaniel Bowditch , both of whom encouraged and assisted Bond. In 1815, upon learning that Bond was planning to travel to England, Farrar was instrumental in having the college ask Bond to visit Greenwich Observatory and the London instrument makers. For the college this was a preliminary step in the eventual construction of an observatory. For Bond, who met not only the Royal Astronomer John Pond and William Herschel , but also a host of other luminaries of British astronomy, it must have been a powerful formative experience.

Indeed, Bond’s passion for astronomy was so great that he converted the parlor of his home in Dorchester into a transit room, installing a massive granite pier in the center of the room and a meridian opening in the ceiling. With this and a growing collection of other instruments he used his private observatory to pursue a regular observing program, determining (among other things) his precise longitude. He also used his observatory to support his business. Beginning in 1834, he had a series of contracts with the United States Navy to rate and maintain ships’ chronometers, and in 1838 he received an appointment from the federal government to assist the Wilkes expedition, providing meteorological, magnetic, and astronomical observations.

Bond brought this practical approach to astronomy with him when in 1839 he accepted Harvard College president Josiah Quincy’s invitation to become the school’s astronomer. Harvard’s choice of Bond was a logical one; he already was known to be a first-rate observer, and his ongoing work on the Wilkes expedition was sure to bring prestige to the college. As a bonus, Bond brought all his instruments with him, and these were much superior to the few telescopes then owned by the college. Bond received no salary until 1846 but was provided living quarters and space for his instruments.

The great comet of 1843 (C/1843 D1) drew the attention of many Americans to the heavens. In Cambridge, reports that Bond’s instruments were inadequate to chart the orbit of the comet soon led to a spontaneous public campaign that raised $20,000 to purchase a proper telescope. On his own, businessman David Sears donated another $5,000 for a stone pier. By 1847, the great 15-in. Merz and Mahler refractor – the great equatorial – was in place and ready to use. In less than 7 years Bond had taken Harvard College from astronomical obscurity to possession of a telescope equal in size to any in the world.

The uses that Bond made of this new instrument and the other resources at his disposal reflect his background as a “mechanic” and his belief that science should be “useful.” While it is often difficult to separate his work from that of his son and collaborator, George Bond , certain broad statements can be made: First, that although he was a diligent and accomplished observer, his main contributions to astronomy were his technical innovations. Second, that while other astronomers, like Harvard’s professor of mathematics and astronomy Benjamin Peirce , may have advocated a program of theoretical research, William Bond chose to devote large amounts of the observatory’s resources to purely practical interests. Nonetheless, under his direction the Harvard College Observatory succeeded on many levels.

From 1847 to 1856 William Bond and his son made an extended study of Saturn. In 1848, they discovered Saturn’s moon Hyperion and later made detailed observations of the faint ring structures. The Bonds also made visual studies of other planets and, particularly, the nebulae in Andromeda and Orion. Between 1847 and 1849 they used a smaller refractor to make a series of nearly 250 sunspot drawings. In 1849, William was elected a Foreign Associate of the Royal Astronomical Society.

William Bond also made significant improvements to the large telescope itself: first with an ingenious observer’s chair and then in 1857 with a much improved clock drive, designed by the Bonds and manufactured by the Cambridge telescope maker Alvan Clark .

With much assistance from his son George and Boston photographer John Adams Whipple, William also pioneered the application of photography to astronomy. In July 1850 they took the first successful picture of a star, a daguerreotype of Vega (α Lyrae). After the new drive was installed, they experimented extensively with the newly developed wet-plate collodion process, eventually taking between 200 and 300 photographs of the heavens.

Concurrent with his work as an observer, William Bond also continued to accept assignments from federal agencies. In the mid-1840s, following the lead of other national observatories, he began to ship chronometers between Cambridge and Liverpool with the goal of precisely determining the longitude of the observatory. In 1849, Alexander Bache , head of the United States Coast Survey, gave formal sponsorship for this project, and the Bonds transported groups of chronometers across the Atlantic in a series of trials that finally ended in 1855. Eventually Cambridge’s position was so precisely determined that it became the reference point for the United States Topographical Engineers and the de facto American meridian.

Also in the 1840s, Bond and his sons George and Richard became key players in the American efforts to determine longitude telegraphically. They were instrumental in the development of a workable break-circuit device to automatically transmit time signals over the telegraph and also developed the drum chronograph, which was later widely used in American observatories. Despite priority disputes, the Bonds exhibited the “American Method” of determining longitude at the 1851 London Crystal Palace Exhibition. They received a Council Medal, the exhibition’s highest award.

Under Bond, work at the observatory overlapped with the activities of his business. In 1851, he installed the world’s first telegraphic time service in the observatory, providing astronomically derived signals to keep the railroads safely on time – and indirectly providing standardized time to large parts of the northeastern United States. The signals were supplied through the Bond & Sons firm, which also supplied timekeepers to the railroads. Although clearly serving a commercial purpose, under Bond the observatory provided this service without compensation. Bond saw it as part of the observatory’s mission to be “useful.” Later in the century, selling time became a significant source of revenue for many American observatories.

Bond’s last few years were characterized by delicate health, and many of his duties were assumed by his son George. Of his other assistants, Truman Safford , Asaph Hall , and William Rogers were later ranked among the country’s most talented astronomers. His son George, a talented astronomer in his own right, succeeded him as director of the Harvard College Observatory.