Practical acoustic propagation modeling is significantly affected by ocean dynamics, and then can be exploited in numerous oceanic applications, where “practical” refers to modeling acoustic propagation in simulations that mimic real-world ocean environments. Physics-based numerical models provide approximate solutions of wave equation and rely on accurate prior environmental knowledge while the environment of practical scenarios is largely unknown. In contrast, data-driven machine learning offers a promising avenue to estimate practical acoustic propagation by learning from dataset. However, collecting such a high-quality, noise-free, and dense dataset remains challenging. Under the practical hurdle posed by the above approaches, the emergence of physics-informed neural network (PINN) presents an alternative to integrate physics and data but with limited representation capacity. In this work, a framework, termed spatial domain decomposition-based physics-informed neural networks (SPINNs), is proposed to enhance the representation capacity in spatially dependent oceanic scenarios and effectively learn from incomplete and biased prior physics and noisy dataset. Experiments demonstrate SPINNs' advantages over PINN in practical acoustic propagation estimation. The learning capacity of SPINNs toward physics and dataset during training is further analyzed. This work holds promise for practical applications and future expansion.

1.
Y.
Jian
,
J.
Zhang
,
Q.
Liu
, and
Y.
Wang
, “
Effect of mesoscale eddies on underwater sound propagation
,”
Appl. Acoust.
70
(
3
),
432
440
(
2009
).
2.
F. B.
Jensen
,
W. A.
Kuperman
,
M. B.
Porter
, and
H.
Schmidt
,
Wave Propagation Theory
(
Springer
,
New York
,
2011
), pp.
65
153
.
3.
T. C.
Oliveira
,
Y.-T.
Lin
, and
M. B.
Porter
, “
Underwater sound propagation modeling in a complex shallow water environment
,”
Front. Mar. Sci.
8
,
751327
(
2021
).
4.
K.
Li
and
M.
Chitre
, “
Data-aided underwater acoustic ray propagation modeling
,”
IEEE J. Ocean. Eng.
48
,
1127
1148
(
2023
).
5.
L.
Wang
,
K.
Heaney
,
T.
Pangerc
,
P.
Theobald
,
S.
Robinson
, and
M.
Ainslie
, “
Review of underwater acoustic propagation models
,” NPL Report No. AC 12, National Physical Laboratory (2014), available at: http://eprintspublications.npl.co.uk/id/eprint/6340.
6.
L.
Kexin
and
M.
Chitre
, “
Physics-aided data-driven modal ocean acoustic propagation modeling
,” in
Proceedings of the 24th International Congress on Acoustics
, Gyeongju, Korea (24–28 October) (International Commission for Acoustics, Madrid, Spain,
2022
), pp.
1
22
.
7.
L.
Kexin
and
M.
Chitre
, “
Ocean acoustic propagation modeling using scientific machine learning
,” in
OCEANS 2021: San Diego–Porto
, San Diego, CA (20–23 September) (
IEEE
,
New York
,
2021
), pp.
1
5
.
8.
K. R.
James
and
D. R.
Dowling
, “
A method for approximating acoustic-field-amplitude uncertainty caused by environmental uncertainties
,”
J. Acoust. Soc. Am.
124
(
3
),
1465
1476
(
2008
).
9.
S.
Gul
,
S. S. H.
Zaidi
,
R.
Khan
, and
A. B.
Wala
, “
Underwater acoustic channel modeling using bellhop ray tracing method
,” in
2017 14th International Bhurban Conference on Applied Sciences and Technology (IBCAST)
, Islamabad, Pakistan (10–14 January) (
IEEE
,
New York
,
2017
), pp.
665
670
.
10.
J.
Llor
and
M. P.
Malumbres
, “
Underwater wireless sensor networks: How do acoustic propagation models impact the performance of higher-level protocols?
,”
Sensors
12
(
2
),
1312
1335
(
2012
).
11.
F. B.
Jensen
,
W. A.
Kuperman
,
M. B.
Porter
, and
H.
Schmidt
,
Ray Methods
(
Springer
,
New York
,
2011
), pp.
155
232
.
12.
F. B.
Jensen
,
W. A.
Kuperman
,
M. B.
Porter
, and
H.
Schmidt
,
Normal Modes
(
Springer
,
New York
,
2011
), pp.
337
455
.
13.
F. B.
Jensen
,
W. A.
Kuperman
,
M. B.
Porter
, and
H.
Schmidt
,
Parabolic Equations
(
Springer
,
New York
,
2011
), pp.
457
529
.
14.
F. B.
Jensen
,
W. A.
Kuperman
,
M. B.
Porter
, and
H.
Schmidt
,
Wavenumber Integration Techniques
(
Springer
,
New York
,
2011
), pp.
233
335
.
15.
M. D.
Collins
,
User's Guide for RAM Versions 1.0 and 1.0p
(
Naval Research Laboratory
,
Washington, DC
,
1995
), Vol.
20375
, p.
14
.
16.
M. I.
Jordan
and
T. M.
Mitchell
, “
Machine learning: Trends, perspectives, and prospects
,”
Science
349
(
6245
),
255
260
(
2015
).
17.
T.
Kurth
,
S.
Treichler
,
J.
Romero
,
M.
Mudigonda
,
N.
Luehr
,
E.
Phillips
,
A.
Mahesh
,
M.
Matheson
,
J.
Deslippe
,
M.
Fatica
,
P.
Prabhat
, and
M.
Houston
, “
Exascale deep learning for climate analytics
,” in
SC18: International Conference for High Performance Computing, Networking, Storage and Analysis
, Dallas, TX (11–16 November) (
IEEE
,
New York
,
2018
), pp.
649
660
.
18.
D. S.
Reddy
and
P. R. C.
Prasad
, “
Prediction of vegetation dynamics using NDVI time series data and LSTM
,”
Model. Earth Syst. Environ.
4
,
409
419
(
2018
).
19.
J.
Bernardo
,
J.
Berger
,
A.
Dawid
, and
A.
Smith
, “
Regression and classification using Gaussian process priors
,”
Bayesian Stat.
6
,
475
(
1998
).
20.
K.
Hornik
,
M.
Stinchcombe
, and
H.
White
, “
Multilayer feedforward networks are universal approximators
,”
Neural Networks
2
(
5
),
359
366
(
1989
).
21.
A.
Karpatne
,
G.
Atluri
,
J. H.
Faghmous
,
M.
Steinbach
,
A.
Banerjee
,
A.
Ganguly
,
S.
Shekhar
,
N.
Samatova
, and
V.
Kumar
, “
Theory-guided data science: A new paradigm for scientific discovery from data
,”
IEEE Trans. Knowl. Data Eng.
29
(
10
),
2318
2331
(
2017
).
22.
N.
Baker
,
F.
Alexander
,
T.
Bremer
,
A.
Hagberg
,
Y.
Kevrekidis
,
H.
Najm
,
M.
Parashar
,
A.
Patra
,
J.
Sethian
,
S.
Wild
,
K.
Willcox
, and
S.
Lee
, “
Workshop report on basic research needs for scientific machine learning: Core technologies for artificial intelligence
” (
USDOE Office of Science
,
Washington, DC
,
2019
).
23.
C.
Rackauckas
,
Y.
Ma
,
J.
Martensen
,
C.
Warner
,
K.
Zubov
,
R.
Supekar
,
D.
Skinner
,
A.
Ramadhan
, and
A.
Edelman
, “
Universal differential equations for scientific machine learning
,” arXiv:2001.04385 (
2020
).
24.
M.
Raissi
,
P.
Perdikaris
, and
G. E.
Karniadakis
, “
Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations
,”
J. Comput. Phys.
378
,
686
707
(
2019
).
25.
G. E.
Karniadakis
,
I. G.
Kevrekidis
,
L.
Lu
,
P.
Perdikaris
,
S.
Wang
, and
L.
Yang
, “
Physics-informed machine learning
,”
Nat. Rev. Phys.
3
(
6
),
422
440
(
2021
).
26.
G.
Kissas
,
Y.
Yang
,
E.
Hwuang
,
W. R.
Witschey
,
J. A.
Detre
, and
P.
Perdikaris
, “
Machine learning in cardiovascular flows modeling: Predicting arterial blood pressure from non-invasive 4D flow MRI data using physics-informed neural networks
,”
Comput. Methods Appl. Mech. Eng.
358
,
112623
(
2020
).
27.
W.
Zhu
,
K.
Xu
,
E.
Darve
, and
G. C.
Beroza
, “
A general approach to seismic inversion with automatic differentiation
,”
Comput. Geosci.
151
,
104751
(
2021
).
28.
X.
Jin
,
S.
Cai
,
H.
Li
, and
G. E.
Karniadakis
, “
NSFnets (Navier-Stokes flow nets): Physics-informed neural networks for the incompressible Navier-Stokes equations
,”
J. Comput. Phys.
426
,
109951
(
2021
).
29.
S.
Cai
,
Z.
Wang
,
F.
Fuest
,
Y. J.
Jeon
,
C.
Gray
, and
G. E.
Karniadakis
, “
Flow over an espresso cup: Inferring 3-D velocity and pressure fields from tomographic background oriented Schlieren via physics-informed neural networks
,”
J. Fluid Mech.
915
,
A102
(
2021
).
30.
C.
Song
,
T.
Alkhalifah
, and
U. B.
Waheed
, “
Solving the frequency-domain acoustic VTI wave equation using physics-informed neural networks
,”
Geophys. J. Int.
225
(
2
),
846
859
(
2021
).
31.
M.
Raissi
,
A.
Yazdani
, and
G. E.
Karniadakis
, “
Hidden fluid mechanics: Learning velocity and pressure fields from flow visualizations
,”
Science
367
(
6481
),
1026
1030
(
2020
).
32.
M.
Chitre
and
L.
Kexin
, “
Physics-informed data-driven communication performance prediction for underwater vehicles
,” in
2022 Sixth Underwater Communications and Networking Conference (UComms)
, Lerici, Italy (30 August-01 September) (
IEEE
,
New York
,
2022
), pp.
1
5
.
33.
T.
de Wolff
,
H.
Carrillo
,
L.
Martí
, and
N.
Sanchez-Pi
, “
Assessing physics informed neural networks in ocean modelling and climate change applications
,” in
AI: Modeling Oceans and Climate Change Workshop at ICLR 2021
, Santiago, Chile (7 May) (2021), available at https://inria.hal.science/hal-03262684.
34.
R.
Liu
and
P.
Gerstoft
, “
SD-PINN: Physics informed neural networks for spatially dependent PDES
,” in
ICASSP 2023—2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)
, Rhodes, Greece (4–10 June) (
IEEE
,
New York
,
2023
), pp.
1
5
.
35.
P.
Pilar
and
N.
Wahlström
, “
Physics-informed neural networks with unknown measurement noise
,” arXiv:2211.15498 (
2022
).
36.
N.
Borrel-Jensen
,
A. P.
Engsig-Karup
, and
C.-H.
Jeong
, “
Physics-informed neural networks for one-dimensional sound field predictions with parameterized sources and impedance boundaries
,”
JASA Express Lett.
1
(
12
),
122402
(
2021
).
37.
S.
Alkhadhr
,
X.
Liu
, and
M.
Almekkawy
, “
Modeling of the forward wave propagation using physics-informed neural networks
,” in
2021 IEEE International Ultrasonics Symposium (IUS)
, Xi'an, China (11–16 September) (
IEEE
,
New York
,
2021
), pp.
1
4
.
38.
B.
Moseley
,
A.
Markham
, and
T.
Nissen-Meyer
, “
Solving the wave equation with physics-informed deep learning
,” arXiv:2006.11894 (
2020
).
39.
T.
de Wolff
,
H.
Carrillo
,
L.
Martí
, and
N.
Sanchez-Pi
, “
Towards optimally weighted physics-informed neural networks in ocean modelling
,” arXiv:2106.08747 (
2021
).
40.
H.
Tang
,
H.
Yang
,
Y.
Liao
, and
L.
Xie
, “
A transfer learning enhanced the physics-informed neural network model for vortex-induced vibration
,” arXiv:2112.14448 (
2021
).
41.
E.
Kharazmi
,
Z.
Zhang
, and
G. E.
Karniadakis
, “
hp-VPINNs: Variational physics-informed neural networks with domain decomposition
,”
Comput. Methods Appl. Mech. Eng.
374
,
113547
(
2021
).
42.
A. D.
Jagtap
,
E.
Kharazmi
, and
G. E.
Karniadakis
, “
Conservative physics-informed neural networks on discrete domains for conservation laws: Applications to forward and inverse problems
,”
Comput. Methods Appl. Mech. Eng.
365
,
113028
(
2020
).
43.
A. D.
Jagtap
and
G. E.
Karniadakis
, “
Extended physics-informed neural networks (XPINNs): A generalized space-time domain decomposition based deep learning framework for nonlinear partial differential equations
,”
Commun. Comput. Phys.
28
(
5
),
2002
2041
(
2020
).
44.
G.
Raynaud
,
S.
Houde
, and
F. P.
Gosselin
, “
ModalPINN: An extension of physics-informed neural networks with enforced truncated Fourier decomposition for periodic flow reconstruction using a limited number of imperfect sensors
,”
J. Comput. Phys.
464
,
111271
(
2022
).
45.
R. N.
Baer
, “
Calculations of sound propagation through an eddy
,”
J. Acoust. Soc. Am.
67
(
4
),
1180
1185
(
1980
).
46.
R.
Henrick
,
W.
Siegmann
, and
M.
Jacobson
, “
General analysis of ocean eddy effects for sound transmission applications
,”
J. Acoust. Soc. Am.
62
(
4
),
860
870
(
1977
).
47.
L.
Lu
,
X.
Meng
,
Z.
Mao
, and
G. E.
Karniadakis
, “
DeepXDE: A deep learning library for solving differential equations
,”
SIAM Rev.
63
(
1
),
208
228
(
2021
).
48.
M.
Rasht-Behesht
,
C.
Huber
,
K.
Shukla
, and
G. E.
Karniadakis
, “
Physics-informed neural networks (PINNs) for wave propagation and full waveform inversions
,”
J. Geophys. Res., Solid Earth
127
(
5
),
e2021JB023120
, https://doi.org/10.1029/2021JB023120 (
2022
).
49.
W. A.
Kuperman
and
F.
Ingenito
, “
Spatial correlation of surface generated noise in a stratified ocean
,”
J. Acoust. Soc. Am.
67
(
6
),
1988
1996
(
1980
).
50.
Y.
Li
and
H.
Zhao
, “
A depth-correlation method for velocity inversion of internal soliton waves
,” in
OCEANS 2019 MTS/IEEE Seattle
, Seattle, WA (27–31 October) (
IEEE
,
New York
,
2019
), pp.
1
5
.
You do not currently have access to this content.