TMS320C6418 by Rochester Electronics, LLC Datasheet | DigiKey

TMS320C6418 Datasheet by Rochester Electronics, LLC

{5‘ TEXAS INSTRUMENTS
TMS320C6418 Fixed-Point Digital
Signal Processor
Data Manual
Literature Number: SPRS241D
August 2004 Revised January 2006
PRODUCTION DATA information is current as of publication date.
Products conform to specifications per the terms of Texas Instruments
standard warranty. Production processing does not necessarily include
testing of all parameters.
This page intentionally left blank
15 24 47 48 55 57 60 61 63 68 so 92 92 AEA[22.19], TOUTO/FI'P'IIN *9 TEXAS INSTRUMENTS
Revision History
3
August 2004 Revised January 2006 SPRS241D
Revision History
This data manual revision history highlights the technical changes made to the SPRS241C device-specific data
manual to make it a SPRS241D revision.
Scope: Applicable updates to the C64x device family, specifically relating to the TMS320C6418 device, have
been incorporated.
Added the device-specific information supporting the TMS320C6418 silicon revision 1.1 device, which is now in
the production data (PD) stage of development (see ADDS/CHANGES/DELETES).
PAGE(s)
NO. ADDS/CHANGES/DELETES
15 Features, 32Bit External Memory Interface (EMIF) section:
Changed “1024MByte Total Addressable Memory Space” to “512MByte Total Addressable Memory Space”
24 Functional Overview, Memory Map Summary, TMS320C6418 Memory Map Summary table:
Updated Table
47 Device Configurations, Device Configuration at Device Reset, section:
Added Note
48 Device Configurations, Device Configuration at Device Reset, C6418 Device Configuration Pins (TOUT1/LENDIAN,
AEA[22:19], TOUT0/HPI_EN, HD5, CLKINSEL, and OSC_DIS) table:
Updated AEA(22:21) Configuration Functional Description for 11 to “EMIFA 8bit ROM boot”
55 Device Configurations, Device Status Register Description, Device Status (DEVSTAT) Register Selection Bit Descriptions
table:
Updated BOOTMODE1 and BOOTMODE0 Description for 11 to “EMIFA 8bit ROM boot”
57 Device Configurations, Debugging Considerations section:
Deleted paragraphs and added Note
60 Device Configurations, Terminal Functions, Terminal Functions table, CLOCK/PLL CONFIGURATION section:
OSCVDD Signal Name:
Changed Description from “Power for crystal oscillator (1.2 V), Do not connect to board power 1.4 V; “ to “Power for crystal
oscillator (1.2 V), Do not connect to board power CVDD; “
61 Device Configurations, Terminal Functions, Terminal Functions table, RESETS, INTERRUPTS, AND GENERALPURPOSE
INPUT/OUTPUTS section, NMI Signal Name:
Updated Description
63 Terminal Functions table, EMIFA (32 BIT) ADDRESS section:
Description for AEA22 to AEA3:
Added Note
Updated AEA(22:3) Description for Boot mode (AEA[21:22]) 11 to “EMIFA 8bit ROM boot”
68 Terminal Functions table, Supply Voltage Pins section:
Updated Description for DVDD
90 Peripherals Detailed Description, IEEE 1149.1 JTAG Compatibility Statement section:
Updated paragraphs for clarity
92 Device Electrical Specifications, Absolute Maximum Ratings Over Operating Case Temperature Range section:
Updated Operating Case Temperature Rance, TC from40_C to 105_C” to “0_C to 90_C”
Updated Package Temperature Cycling Number of Cycles from “GTS and ZTS” to “GTS and GTSA”
92 Device Electrical Specifications, Recommended Operating Conditions table:
Updated VOS, Maximum voltage during overshoot row
Added VUS, Minimum voltage during undershoot row
95 100 100 He 121‘122 *9 TEXAS INSTRUMENTS
Revision History
4August 2004 Revised January 2006SPRS241D
PAGE(s)
NO. ADDS/CHANGES/DELETES
95 Parameter Measurement Information, AC transient rise/fall time specifications section:
Added AC Transient Specification Rise Time figure
Added AC Transient Specification Fall Time figure
100 Peripheral Electrical Specification, Switching Characteristics Over Recommended Operating Conditions for AECLKOUT2 for
the EMIFA Module table:
Updated Parameter No. 6 from “td(EKIH-EKO2L)” to “td(EKIL-EKO2L)”
Updated Parameter No. 6 from “Delay time, ECLKIN high to AECLKOUT2 low” to Delay time ECLKIN low to AECLKOUT2
low”
100 Peripheral Electrical Specification, AECLKOUT2 Timing for the EMIFA Module figure:
Updated Figure
116 Peripheral Electrical Specifications, Reset Timing section:
Added Note
121, 122 MULTICHANNEL AUDIO SERIAL PORT (McASP) TIMING section:
Updated McASP Input and Output drawings
*9 TEXAS INSTRUMENTS
Revision History
5
August 2004 Revised January 2006 SPRS241D
This page intentionally left blank
i" TEXAS INSTRUMENTS
Contents
6August 2004 Revised January 2006SPRS241D
Contents
Section Page
1 Features 15. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2 Functional Overview 16. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.1 GTS and ZTS BGA Packages (Bottom View) 16. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.2 Description 17. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.3 Device Characteristics 18. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.3.1 Functional Block Diagram 19. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.4 CPU (DSP Core) Description 20. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.5 Memory Map Summary 23. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.5.1 L2 Architecture Expanded 25. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.6 Peripheral Register Descriptions 26. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.7 EDMA Channel Synchronization Events 39. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.8 Interrupt Sources and Interrupt Selector 40. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.9 Signal Groups Description 42. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3 Device Configurations 47. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.1 Device Configuration at Device Reset 47. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.2 Peripheral Configuration at Device Reset 49. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.3 Peripheral Selection After Device Reset 50. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.4 Peripheral Configuration Lock 52. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.5 Device Status Register Description 54. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.6 JTAG ID Register Description 55. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.7 Multiplexed Pins 56. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.8 Debugging Considerations 57. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.9 Configuration Examples 57. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.10 Terminal Functions 59. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.11 Development Support 71. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.12 Device Support 72. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.12.1 Device and Development-Support Tool Nomenclature 72. . . . . . . . . . . . . . . . . . . . .
3.12.2 Documentation Support 74. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
*9 TEXAS INSTRUMENTS
Contents
7
August 2004 Revised January 2006 SPRS241D
Section Page
4 Peripherals Detailed Description (Device-Specific) 75. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.1 Clock PLL and Oscillator 75. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.2 Host-Port Interface (HPI) Peripheral 79. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.3 Multichannel Audio Serial Port (McASP) Peripheral 80. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.3.1 McASP Block Diagram 80. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.4 I2C 82. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.5 Viterbi-Decoder Coprocessor (VCP) 83. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.6 General-Purpose Input/Output (GPIO) 83. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.7 Power-Down Modes Logic 86. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.7.1 Triggering, Wake-up, and Effects 86. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.7.2 C64x Power-Down Mode with an Emulator 88. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.8 Power-Supply Sequencing 88. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.8.1 Power-Supply Design Considerations 88. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.9 Power-Supply Decoupling 89. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.10 Peripheral Power-Down Operation 89. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.11 IEEE 1149.1 JTAG Compatibility Statement 90. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.12 EMIF Device Speed 90. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.13 Bootmode 91. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.14 Reset 91. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5 Device Electrical Specifications 92. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.1 Absolute Maximum Ratings Over Operating Case Temperature Range 92. . . . . . . . . . . . . . . . . .
5.2 Recommended Operating Conditions 92. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.3 Electrical Characteristics Over Recommended Ranges of Supply Voltage and
Operating Case Temperature 93. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.4 Recommended Clock and Control Signal Transition Behavior 93. . . . . . . . . . . . . . . . . . . . . . . . . .
6 Parameter Information 94. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
6.1 Signal Transition Levels 94. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
6.2 Signal Transition Rates 94. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
6.3 AC transient rise/fall time specifications 95. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
6.4 Timing Parameters and Board Routing Analysis 96. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
HOLD HOLDA i" TEXAS INSTRUMENTS
Contents
8August 2004 Revised January 2006SPRS241D
Section Page
7 Peripheral Electrical Specifications 97. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
7.1 Input and Output Clocks 97. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
7.2 Asynchronous Memory Timing 101. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
7.3 Programmable Synchronous Interface Timing 104. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
7.4 Synchronous DRAM Timing 108. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
7.5 HOLD/HOLDA Timing 114. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
7.6 BUSREQ Timing 115. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
7.7 Reset Timing 116. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
7.8 External Interrupt Timing 119. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
7.9 Multichannel Audio Serial Port (McASP) Timing 120. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
7.10 Inter-Integrated Circuits (I2C) Timing 123. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
7.11 Host-Port Interface (HPI) Timing 125. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
7.12 Multichannel Buffered Serial Port (McBSP) Timing 130. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
7.13 Timer Timing 137. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
7.14 General-Purpose Input/Output (GPIO) Port Timing 138. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
7.15 JTAG Test-Port Timing 139. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
8 Mechanical Data 140. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
8.1 Thermal Data 140. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
8.2 Packaging Information 141. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
.100 102 103 us Interface Read Timing for EMIFA . 105 us lmerface Write Tlmmg for EMIFA . 106 us lmerface Write Tlmmg for EMIFA . 107 .109 *9 TEXAS INSTRUMENTS
Figures
9
August 2004 Revised January 2006 SPRS241D
List of Figures
Figure Page
21 GTS and ZTS BGA Packages (Bottom View) 16. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
22 Functional Block Diagram 19. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
23 TMS320C64xE CPU (DSP Core) Data Paths 22. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
24 TMS320C6418 L2 Architecture Memory Configuration 25. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
25 CPU and Peripheral Signals 42. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
26 Peripheral Signals 43. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31 Peripheral Configuration Register (PERCFG) [Address Location: 0x01B3F000] 50. . . . . . . . . . . . . . . . . .
32 Peripheral Enable/Disable Flow Diagram 52. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33 PCFGLOCK Register Diagram [Address Location: 0x01B3 F018] Read/Write Accesses 53. . . . . . . .
34 Device Status Register (DEVSTAT) Description 0x01B3 F004 54. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
35 JTAG ID Register Description TMS320C6418 Register Value 0x0007 902F 55. . . . . . . . . . . . . . . . . .
36 Configuration Example A
(HPI16 + 2 McASPs + 2 McBSPs +2 I2Cs + EMIF + 3 Timers + GPIO) 58. . . . . . . . . . . . . . . . . . . . . . . .
37 TMS320C6418 DSP Device Nomenclature 73. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
41 External PLL Circuitry for Either PLL Multiply Modes or x1 (Bypass) Mode 76. . . . . . . . . . . . . . . . . . . . . .
42 McASP0 and McASP1 Configuration 81. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
43 I2Cx Module Block Diagram 83. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
44 GPIO Enable Register (GPEN) [Hex Address: 01B0 0000] 84. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
45 GPIO Direction Register (GPDIR) [Hex Address: 01B0 0004] 85. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
46 Power-Down Mode Logic 86. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
47 PWRD Field of the CSR Register 87. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
48 Schottky Diode Diagram 88. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
61 Test Load Circuit for AC Timing Measurements 94. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
62 Input and Output Voltage Reference Levels for AC Timing Measurements 94. . . . . . . . . . . . . . . . . . . . . .
63 Rise and Fall Transition Time Voltage Reference Levels 94. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
66 Board-Level Input/Output Timings 96. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
71 CLKIN Timing 97. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
72 CLKOUT4 Timing 98. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
73 CLKOUT6 Timing 98. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
74 AECLKIN Timing for EMIFA 99. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
75 AECLKOUT1 Timing for the EMIFA Module 99. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
76 AECLKOUT2 Timing for the EMIFA Module 100. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
77 Asynchronous Memory Read Timing for EMIFA 102. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
78 Asynchronous Memory Write Timing for EMIFA 103. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
79 Programmable Synchronous Interface Read Timing for EMIFA
(With Read Latency = 2) 105. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
710 Programmable Synchronous Interface Write Timing for EMIFA
(With Write Latency = 0) 106. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
711 Programmable Synchronous Interface Write Timing for EMIFA
(With Write Latency = 1) 107. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
712 SDRAM Read Command (CAS Latency 3) for EMIFA 109. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
.. 110 .111 111 .. 112 .112 113 .. 113 .114 115 ..118 .. 119 .123 124 ..126 .126 127 ..127 ..128 .128 129 ..129 .132 132 ..133 .134 135 ..136 ..137 ..138 .139 i" TEXAS INSTRUMENTS
Figures
10 August 2004 Revised January 2006SPRS241D
Figure Page
713 SDRAM Write Command for EMIFA 110. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
714 SDRAM ACTV Command for EMIFA 111. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
715 SDRAM DCAB Command for EMIFA 111. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
716 SDRAM DEAC Command for EMIFA 112. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
717 SDRAM REFR Command for EMIFA 112. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
718 SDRAM MRS Command for EMIFA 113. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
719 SDRAM Self-Refresh Timing for EMIFA 113. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
720 HOLD/HOLDA Timing for EMIFA 114. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
721 BUSREQ Timing for EMIFA 115. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
722 Reset Timing† 118. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
723 External/NMI Interrupt Timing 119. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
728 I2C Receive Timings 123. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
729 I2C Transmit Timings 124. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
730 HPI16 Read Timing (HAS Not Used, Tied High) 126. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
731 HPI16 Read Timing (HAS Used) 126. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
732 HPI16 Write Timing (HAS Not Used, Tied High) 127. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
733 HPI16 Write Timing (HAS Used) 127. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
734 HPI32 Read Timing (HAS Not Used, Tied High) 128. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
735 HPI32 Read Timing (HAS Used) 128. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
736 HPI32 Write Timing (HAS Not Used, Tied High) 129. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
737 HPI32 Write Timing (HAS Used) 129. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
738 McBSP Timing 132. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
739 FSR Timing When GSYNC = 1 132
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
740 McBSP Timing as SPI Master or Slave: CLKSTP = 10b, CLKXP = 0 133. . . . . . . . . . . . . . . . . . . . . . . . . .
741 McBSP Timing as SPI Master or Slave: CLKSTP = 11b, CLKXP = 0 134. . . . . . . . . . . . . . . . . . . . . . . . . .
742 McBSP Timing as SPI Master or Slave: CLKSTP = 10b, CLKXP = 1 135. . . . . . . . . . . . . . . . . . . . . . . . . .
743 McBSP Timing as SPI Master or Slave: CLKSTP = 11b, CLKXP = 1 136. . . . . . . . . . . . . . . . . . . . . . . . . .
744 Timer Timing 137. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
745 GPIO Port Timing 138. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
746 JTAG Test-Port Timing 139. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
TOUT1/LENDIAN, AEA[22. 9], TOUTO/HP|_EN, n3, Clock Frequency Ranges, *9 TEXAS INSTRUMENTS
Tables
11
August 2004 Revised January 2006 SPRS241D
List of Tables
Table Page
21 Characteristics of the C6418 Processor 18. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
22 TMS320C6418 Memory Map Summary 23. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
23 EMIFA Registers 26. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
24 L2 Cache Registers (C64x) 26. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
25 Quick DMA (QDMA) and Pseudo Registers 29. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
26 EDMA Registers (C64x) 29. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
27 EDMA Parameter RAM (C64x)† 30. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
28 Interrupt Selector Registers (C64x) 31. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
29 Device Configuration Registers 31. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
210 McBSP 0 Registers 32. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
211 McBSP 1 Registers 32. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
212 Timer 0 Registers 33. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
213 Timer 1 Registers 33. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
214 Timer 2 Registers 33. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
215 HPI Registers 34. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
216 GP0 Registers 34. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
217 McASP0 and McASP1 Control Registers 35. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
218 McASP0 Data Registers 37. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
219 McASP1 Data Registers 37. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
220 I2C0 and I2C1 Registers 38. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
221 VCP Registers 38. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
222 TMS320C6418 EDMA Channel Synchronization Events 39. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
223 C6418 DSP Interrupts 41. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31 C6418 Device Configuration Pins (TOUT1/LENDIAN, AEA[22:19], TOUT0/HPI_EN,
HD5, CLKINSEL, and OSC_DIS) 48. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32 TOUT0/HPI_EN and HD5 Peripheral Selection (HPI or McASP1 and Select GP0 Pins) 49. . . . . . . . . . .
33 Peripheral Configuration (PERCFG) Register Selection Bit Descriptions 51. . . . . . . . . . . . . . . . . . . . . . .
34 PCFGLOCK Register Selection Bit Descriptions Read Accesses 53. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
35 PCFGLOCK Register Selection Bit Descriptions Write Accesses 53. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
36 Device Status (DEVSTAT) Register Selection Bit Descriptions 54. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
37 JTAG ID Register Selection Bit Descriptions 55. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
38 C6418 Device Multiplexed Pins 56. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
39 Terminal Functions 60. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
41 TMS320C6418 PLL Multiply Factor Options, Clock Frequency Ranges,
and Typical Lock Time for 600 Devices 77. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
42 TMS320C6418 PLL Multiply Factor Options, Clock Frequency Ranges,
and Typical Lock Time for 500 Devices 78. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
43 Crystal and Tank Circuit Recommendations 78. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
44 Characteristics of the Power-Down Modes 87. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
61 Board-Level Timing Example 96. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
71 Timing Requirements for External Crystal Oscillator Input (OSCIN and OSCOUT) 97. . . . . . . . . . . . . . .
72 Timing Requirements for CLKIN 97. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
73 Switching Characteristics Over Recommended Operating Conditions for CLKOUT4 98. . . . . . . . . . . . . .
74 Switching Characteristics Over Recommended Operating Conditions for CLKOUT6 98. . . . . . . . . . . . . .
75 Timing Requirements for AECLKIN for EMIFA 99. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
76 Switching Characteristics Over Recommended Operating Conditions for AECLKOUT1 for
the EMIFA Module 99. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5 Over Recommended Operating Conditions for AECLKOUT2 . 100 .101 mmended Operating Conditions for Asynchronous . . 101 .104 erating Conditions for Programmable . . 104 .108 ecommended Operating Conditions for Synchronous ..108 .114 HOLD HOLDA ver Recommended Operating Conditions for the HOL HOLDA . 114 Over Recommended Operating Conditions for the BUSREQ . 115 .. 116 ..117 .. 119 ..120 ..120 .123 124 .125 eristics Over Recommended Operating Conditions During Host-Port . 125 ..130 ..131 .132 133 133 134 134 135 .135 136 perating Conditions for McBSP as . . 136 137 ..137 ..138 ..138 ..139 .139 {3 TEXAS INSTRUMENTS
Tables
12 August 2004 Revised January 2006SPRS241D
Table Page
77 Switching Characteristics Over Recommended Operating Conditions for AECLKOUT2
for the EMIFA Module 100. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
78 Timing Requirements for Asynchronous Memory Cycles for EMIFA Module 101. . . . . . . . . . . . . . . . . . . .
79 Switching Characteristics Over Recommended Operating Conditions for Asynchronous
Memory Cycles for EMIFA Module 101. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
710 Timing Requirements for Programmable Synchronous Interface Cycles for EMIFA Module 104. . . . . . .
711 Switching Characteristics Over Recommended Operating Conditions for Programmable
Synchronous Interface Cycles for EMIFA Module 104. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
712 Timing Requirements for Synchronous DRAM Cycles for EMIFA Module 108. . . . . . . . . . . . . . . . . . . . . .
713 Switching Characteristics Over Recommended Operating Conditions for Synchronous
DRAM Cycles for EMIFA Module 108. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
714 Timing Requirements for the HOLD/HOLDA Cycles for EMIFA Module 114. . . . . . . . . . . . . . . . . . . . . . . .
715 Switching Characteristics Over Recommended Operating Conditions for the HOLD/HOLDA
Cycles for EMIFA Module 114. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
716 Switching Characteristics Over Recommended Operating Conditions for the BUSREQ
Cycles for EMIFA Module 115. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
717 Timing Requirements for Reset 116. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
718 Switching Characteristics Over Recommended Operating Conditions During Reset 117. . . . . . . . . . . . .
719 Timing Requirements for External Interrupts 119. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
720 Timing Requirements for McASP 120. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
721 Switching Characteristics Over Recommended Operating Conditions for McASP 120. . . . . . . . . . . . . . .
722 Timing Requirements for I2C Timings 123. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
723 Switching Characteristics for I2C Timings 124. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
724 Timing Requirements for Host-Port Interface Cycles 125. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
725 Switching Characteristics Over Recommended Operating Conditions During Host-Port
Interface Cycles 125. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
726 Timing Requirements for McBSP 130. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
727 Switching Characteristics Over Recommended Operating Conditions for McBSP 131. . . . . . . . . . . . . . .
728 Timing Requirements for FSR When GSYNC = 1 132. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
729 Timing Requirements for McBSP as SPI Master or Slave:
CLKSTP = 10b, CLKXP = 0 133. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
730 Switching Characteristics Over Recommended Operating Conditions for McBSP as
SPI Master or Slave: CLKSTP = 10b, CLKXP = 0 133. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
731 Timing Requirements for McBSP as SPI Master or Slave:
CLKSTP = 11b, CLKXP = 0 134. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
732 Switching Characteristics Over Recommended Operating Conditions for McBSP as
SPI Master or Slave: CLKSTP = 11b, CLKXP = 0 134. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
733 Timing Requirements for McBSP as SPI Master or Slave:
CLKSTP = 10b, CLKXP = 1 135. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
734 Switching Characteristics Over Recommended Operating Conditions for McBSP as
SPI Master or Slave: CLKSTP = 10b, CLKXP = 1 135. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
735 Timing Requirements for McBSP as SPI Master or Slave:
CLKSTP = 11b, CLKXP = 1 136. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
736 Switching Characteristics Over Recommended Operating Conditions for McBSP as
SPI Master or Slave: CLKSTP = 11b, CLKXP = 1 136. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
737 Timing Requirements for Timer Inputs 137. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
738 Switching Characteristics Over Recommended Operating Conditions for Timer Outputs 137. . . . . . . . .
739 Timing Requirements for GPIO Inputs 138. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
740 Switching Characteristics Over Recommended Operating Conditions for GPIO Outputs 138. . . . . . . . .
741 Timing Requirements for JTAG Test Port 139. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
742 Switching Characteristics Over Recommended Operating Conditions for JTAG Test Port 139. . . . . . . .
*9 TEXAS INSTRUMENTS
Tables
13
August 2004 Revised January 2006 SPRS241D
Table Page
81 Thermal Resistance Characteristics (S-PBGA Package) [GTS] 140. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
82 Thermal Resistance Characteristics (S-PBGA Package) [ZTS] 140. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
i" TEXAS INSTRUMENTS
Tables
14 August 2004 Revised January 2006SPRS241D
This page intentionally left blank
*9 TEXAS INSTRUMENTS
Features
15
August 2004 − Revised January 2006 SPRS241D
1 Features
DHigh-Performance Fixed-Point Digital
Signal Processor (TMS320C6418)
− Commercial Temperature Device
− 1.67-ns Instruction Cycle Time
− 600-MHz Clock Rate
− 4800 MIPS
− Extended Temperature Device
− 2-ns Instruction Cycle Time
− 500-MHz Clock Rate
− 4000 MIPS
− Eight 32-Bit Instructions/Cycle
− Fully Software-Compatible With C64x
DVelociTI.2 Extensions to VelociTI
Advanced Very-Long-Instruction-Word
(VLIW) TMS320C64x DSP Core
− Eight Highly Independent Functional
Units With VelociTI.2 Extensions:
− Six ALUs (32-/40-Bit), Each Supports
Single 32-Bit, Dual 16-Bit, or Quad
8-Bit Arithmetic per Clock Cycle
− Two Multipliers Support
Four 16 x 16-Bit Multiplies
(32-Bit Results) per Clock Cycle or
Eight 8 x 8-Bit Multiplies
(16-Bit Results) per Clock Cycle
− Load-Store Architecture With
Non-Aligned Support
− 64 32-Bit General-Purpose Registers
− Instruction Packing Reduces Code Size
− All Instructions Conditional
DInstruction Set Features
− Byte-Addressable (8-/16-/32-/64-Bit Data)
− 8-Bit Overflow Protection
− Bit-Field Extract, Set, Clear
− Normalization, Saturation, Bit-Counting
− VelociTI.2 Increased Orthogonality
DVelociTI.2 Extensions to VelociTI
Advanced Very-Long-Instruction-Word
(VLIW) TMS320C64x DSP Core
DViterbi Decoder Coprocessor (VCP)
− Supports Over 500 7.95-Kbps AMR Voice
Channels
− Programmable Code Parameters
DL1/L2 Memory Architecture
− 128K-Bit (16K-Byte) L1P Program Cache
(Direct Mapped)
− 128K-Bit (16K-Byte) L1D Data Cache
(2-Way Set-Associative)
− 4M-Bit (512K-Byte) L2 Unified Mapped
RAM/Cache
(Flexible RAM/Cache Allocation)
DEndianess: Little Endian, Big Endian
D32-Bit External Memory Interface (EMIF)
− Glueless Interface to Asynchronous
Memories (SRAM and EPROM) and
Synchronous Memories (SDRAM,
SBSRAM, ZBT SRAM, and FIFO)
− 512M-Byte Total Addressable External
Memory Space
DEnhanced Direct-Memory-Access (EDMA)
Controller (64 Independent Channels)
DHost-Port Interface (HPI) [32-/16-Bit]
DTwo Multichannel Audio Serial Ports
(McASPs) - with Six Serial Data Pins each
DTwo Inter-Integrated Circuit (I2C) Buses
− Additional GPIO Capability
DTwo Multichannel Buffered Serial Ports
DThree 32-Bit General-Purpose Timers
DSixteen General-Purpose I/O (GPIO) Pins
DFlexible PLL Clock Generator
DOn-Chip Fundamental Oscillator
DIEEE-1149.1 (JTAG)
Boundary-Scan-Compatible
D288-Pin Ball Grid Array (BGA) Package
(GTS and ZTS Suffixes), 1.0-mm Ball Pitch
D0.13-µm/6-Level Cu Metal Process (CMOS)
D3.3-V I/Os, 1.4-V Internal (-600)
D3.3-V I/Os, 1.2-V Internal (A-500)
VelociTI.2, VelociTI, and TMS320C64x are trademarks of Texas Instruments.
All trademarks are the property of their respective owners.
IEEE Standard 1149.1-1990 Standard-Test-Access Port and Boundary Scan Architecture.
0000000000000000000000 0000000000000000000000 0000000000000000000000 0000000000000000000000 0000 0000 0000 0000 0000 0000 0000 0000 0000 00000000000000 00000000000000 00000000000000 00000000000000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 000000 000000 0000000000000 0000000000000 0000000000000 *9 TEXAS INSTRUMENTS
Functional Overview
16 August 2004 − Revised January 2006SPRS241D
2 Functional Overview
2.1 GTS and ZTS BGA Packages (Bottom View)
GTS and ZTS 288-PIN BALL GRID ARRAY (BGA) PACKAGES
(BOTTOM VIEW)
AB AA
YW
VU
TR
PN
ML
KJ
HG
FE
DC
22
21
20
19
18
17
16
15
14
13
12
11
10
9
8
7
6
5
4
31
B
2
A
Figure 2−1. GTS and ZTS BGA Packages (Bottom View)
*9 TEXAS INSTRUMENTS
Description
17
August 2004 − Revised January 2006 SPRS241D
2.2 Description
The TMS320C64x DSPs (including the TMS320C6418 device) are the highest-performance fixed-point
DSP generation in the TMS320C6000 DSP platform. The TMS320C6418 (C6418) device is based on the
second-generation high-performance, advanced VelociTI very-long-instruction-word (VLIW) architecture
(VelociTI.2) developed by Texas Instruments (TI). The high-performance, lower-cost C6418 DSP enables
customers to reduce system costs for telecom, software radio, Digital Terrestrial Television Broadcasting
(DTTB), and digital Broadcast Satellite/Communication Satellite (BS/CS) applications. The C64x is a
code-compatible member of the C6000 DSP platform.
With performance of up to 4800 million instructions per second (MIPS) at a clock rate of 600 MHz, the C6418
device offers cost-effective solutions to high-performance DSP programming challenges. The C6418 DSP
possesses the operational flexibility of high-speed controllers and the numerical capability of array
processors. The C64x DSP core processor has 64 general-purpose registers of 32-bit word length and eight
highly independent functional units—two multipliers for a 32-bit result and six arithmetic logic units (ALUs)—
with VelociTI.2 extensions. The VelociTI.2 extensions in the eight functional units include new instructions
to accelerate the performance in video and imaging applications and extend the parallelism of the VelociTI
architecture. The C6418 can produce four 16-bit multiply-accumulates (MACs) per cycle for a total of
2400 million MACs per second (MMACS), or eight 8-bit MACs per cycle for a total of 4800 MMACS. The C6418
DSP also has application-specific hardware logic, on-chip memory, and additional on-chip peripherals similar
to the other C6000 DSP platform devices.
The C6418 device has a high-performance embedded coprocessor [Viterbi Decoder Coprocessor (VCP)] that
significantly speed up channel-decoding operations on-chip. The VCP operating at CPU clock divided-by-4
can decode over 500 7.95-Kbps adaptive multi-rate (AMR) [K = 9, R = 1/3] voice channels. The VCP supports
constraint lengths K = 5, 6, 7, 8, and 9, rates R = 1/2, 1/3, and 1/4, and flexible polynomials, while generating
hard decisions or soft decisions. Communications between the VCP and the CPU are carried out through the
EDMA controller.
The C6418 uses a two-level cache-based architecture and has a powerful and diverse set of peripherals. The
Level 1 program cache (L1P) is a 128-Kbit direct mapped cache and the Level 1 data cache (L1D) is a 128-Kbit
2-way set-associative cache. The Level 2 memory/cache (L2) consists of an 4-Mbit memory space that is
shared between program and data space. L2 memory can be configured as mapped memory, cache (up to
256K bytes), or combinations of the two. The peripheral set includes: two multichannel buffered audio serial
ports (McASPs); two inter-integrated circuit bus modules (I2Cs) ; two multichannel buffered serial ports
(McBSPs); three 32-bit general-purpose timers; a user-configurable 16-bit or 32-bit host-port interface
(HPI16/HPI32); a 16-pin general-purpose input/output port (GP0) with programmable interrupt/event
generation modes; and a 32-bit glueless external memory interface (EMIFA), which is capable of interfacing
to synchronous and asynchronous memories and peripherals.
Each McASP port supports one transmit and one receive clock zone, with six serial data pins which can be
individually allocated to any of the two zones. The serial port supports time-division multiplexing on each pin
from 2 to 32 time slots. The C6418 has sufficient bandwidth to support all six serial data pins transmitting a
192-kHz stereo signal. Serial data in each zone may be transmitted and received on multiple serial data pins
simultaneously and formatted in a multitude of variations on the Philips Inter-IC Sound (I2S) format.
In addition, the McASP transmitter may be programmed to output multiple S/PDIF, IEC60958, AES-3, CP-430
encoded data channels simultaneously, with a single RAM containing the full implementation of user data and
channel status fields.
McASP also provides extensive error-checking and recovery features, such as the bad clock detection circuit
for each high-frequency master clock which verifies that the master clock is within a programmed frequency
range.
The I2C ports on the TMS320C6418 allows the DSP to easily control peripheral devices and communicate
with a host processor. In addition, the standard multichannel buffered serial port (McBSP) may be used to
communicate with serial peripheral interface (SPI) mode peripheral devices.
TMS320C6000, and C6000 are trademarks of Texas Instruments.
Not a“ penpherals pms are aval‘ab‘e at the Conngurauon semmm VoHage {'5 TEXAS INSTRUMENTS
Device Characteristics
18 August 2004 − Revised January 2006SPRS241D
The C6418 has a complete set of development tools which includes: a new C compiler, an assembly optimizer
to simplify programming and scheduling, and a Windows debugger interface for visibility into source code
execution.
2.3 Device Characteristics
Table 2−1, provides an overview of the C6418 DSP. The tables show significant features of the C6418 device,
including the capacity of on-chip RAM, the peripherals, the CPU frequency, and the package type with pin
count.
Table 2−1. Characteristics of the C6418 Processor
HARDWARE FEATURES C6418
EMIFA (32-bit bus width)
(clock source = AECLKIN, CLKOUT4, or CLKOUT6) 1
Peripherals
EDMA (64 independent channels) 1
Peripherals McASPs (use Peripheral Clock and AUXCLK) 2
Not all peripherals pins
I2Cs (use Peripheral Clock) 2
Not all peripherals pins
are available at the
same time (For more
HPI (32- or 16-bit user selectable) 1 (HPI16 or HPI32)
are available at the
same time (For more
detail, see the Device
Configuration section).
McBSPs
(internal clock source = CPU/4 clock frequency) 2
Configuration section).
32-Bit Timers
(internal clock source = CPU/8 clock frequency) 3
General-Purpose Input/Output Port (GP0) 16
Decoder Coprocessor VCP (clock source = CPU/2 clock frequency) 1
Size (Bytes) 544K
On-Chip Memory Organization
16K-Byte (16KB) L1 Program (L1P) Cache
16KB L1 Data (L1D) Cache
512KB Unified Mapped RAM/Cache (L2)
CPU ID + CPU Rev ID Control Status Register (CSR.[31:16]) 0x0C01
JTAG BSDL_ID JTAGID register (address location: 0x01B3F008) 0x0007902F
Frequency MHz 600 (GTS, ZTS)
500 (GTSA, ZTSA)
Cycle Time ns
1.67 ns (GTS, ZTS)
[600 MHz CPU, 133 MHz EMIF]
2 ns (GTSA, ZTSA)
[500 MHz CPU, 100 MHz EMIF]
Voltage Core (V) 1.4 V (GTS, ZTS)
1.2v (GTSA, ZTSA)
Voltage
I/O (V) 3.3 V
PLL Options CLKIN frequency multiplier Bypass (x1), x5, x6, x7, x8, x9, x10, x11, x12, x16,
x18, x19, x20, x21, x22, and x24
BGA Package 23 x 23 mm 288-Pin Flip-Chip Plastic BGA (GTS and ZTS)
Process Technology µm0.13 µm
Product StatusProduct Preview (PP), Advance Information (AI),
or Production Data (PD) PD
On this C64x device, the rated EMIF speed affects only the SDRAM interface on the EMIF. For more detailed information, see the EMIF device
speed portion of this data sheet.
PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of Texas Instruments standard
warranty. Production processing does not necessarily include testing of all parameters.
All—AIS 531—515 {9 TEXAS INSTRUMENTS
Functional Block Diagram
19
August 2004 − Revised January 2006 SPRS241D
2.3.1 Functional Block Diagram
Figure 2−2 shows the functional block diagram of the C6418 device.
Test
C64x DSP Core
Data Path B
B Register File
B31−B16
B15−B0
Instruction Fetch
Instruction Dispatch
Advanced Instruction Packet
Instruction Decode
Data Path A
A Register File
A31−A16
A15−A0
Power-Down
Logic
.L1 .S1 .M1 .D1 .D2 .M2 .S2 .L2
32
SDRAM
FIFO
SBSRAM
SRAM
L1P Cache
Direct-Mapped
16K Bytes Total
Control
Registers
Control
Logic
L1D Cache 2-Way Set-Associative
16K Bytes Total
Advanced
In-Circuit
Emulation
Interrupt
Control
TMS320C6418
Enhanced
DMA
Controller
(edma)
L2
Cache
Memory
512kBytes
OSCILLATOR
and PLL
(x1, x5 − x12, x16,
x18, x19 − x22, x24)
Timer 2
EMIF A
ZBT SRAM
Timer 1
Boot Configuration
ROM/FLASH
I/O Devices
McBSP0
GP0
16
Timer 0
McBSP1
McASP0
GP0
16
VCP
and
or
HPI32
HPI16
McASP1
McBSPs: Framing Chips − H.100, MVIP, SCSA, T1, E1; AC97 Devices; SPI Devices; Codecs
GP0[15:8] pins are muxed with the HPI HD[15:8] pins and GP0[2:1] pins are muxed with CLKOUT6 and CLKOUT4,
respectively.
I2C0
I2C1
Figure 2−2. Functional Block Diagram
*9 TEXAS INSTRUMENTS
CPU (DSP Core) Description
20 August 2004 − Revised January 2006SPRS241D
2.4 CPU (DSP Core) Description
The CPU fetches VelociTI advanced very-long instruction words (VLIWs) (256 bits wide) to supply up to
eight 32-bit instructions to the eight functional units during every clock cycle. The VelociTI VLIW architecture
features controls by which all eight units do not have to be supplied with instructions if they are not ready to
execute. The first bit of every 32-bit instruction determines if the next instruction belongs to the same execute
packet as the previous instruction, or whether it should be executed in the following clock as a part of the next
execute packet. Fetch packets are always 256 bits wide; however, the execute packets can vary in size. The
variable-length execute packets are a key memory-saving feature, distinguishing the C64x CPUs from other
VLIW architectures. The C64x VelociTI.2 extensions add enhancements to the TMS320C62x DSP
VelociTI architecture. These enhancements include:
Register file enhancements
Data path extensions
Quad 8-bit and dual 16-bit extensions with data flow enhancements
Additional functional unit hardware
Increased orthogonality of the instruction set
Additional instructions that reduce code size and increase register flexibility
The CPU features two sets of functional units. Each set contains four units and a register file. One set contains
functional units .L1, .S1, .M1, and .D1; the other set contains units .D2, .M2, .S2, and .L2. The two register
files each contain 32 32-bit registers for a total of 64 general-purpose registers. In addition to supporting the
packed 16-bit and 32-/40-bit fixed-point data types found in the C62x VelociTI VLIW architecture, the
C64x register files also support packed 8-bit data and 64-bit fixed-point data types. The two sets of functional
units, along with two register files, compose sides A and B of the CPU [see the functional block and CPU (DSP
core) diagram, and Figure 2−3]. The four functional units on each side of the CPU can freely share the 32
registers belonging to that side. Additionally, each side features a “data cross path”—a single data bus
connected to all the registers on the other side, by which the two sets of functional units can access data from
the register files on the opposite side. The C64x CPU pipelines data-cross-path accesses over multiple clock
cycles. This allows the same register to be used as a data-cross-path operand by multiple functional units in
the same execute packet. All functional units in the C64x CPU can access operands via the data cross path.
Register access by functional units on the same side of the CPU as the register file can service all the units
in a single clock cycle. On the C64x CPU, a delay clock is introduced whenever an instruction attempts to read
a register via a data cross path if that register was updated in the previous clock cycle.
In addition to the C62x DSP fixed-point instructions, the C64x DSP includes a comprehensive collection
of quad 8-bit and dual 16-bit instruction set extensions. These VelociTI.2 extensions allow the C64x CPU
to operate directly on packed data to streamline data flow and increase instruction set efficiency.
Another key feature of the C64x CPU is the load/store architecture, where all instructions operate on registers
(as opposed to data in memory). Two sets of data-addressing units (.D1 and .D2) are responsible for all data
transfers between the register files and the memory. The data address driven by the .D units allows data
addresses generated from one register file to be used to load or store data to or from the other register file.
The C64x .D units can load and store bytes (8 bits), half-words (16 bits), and words (32 bits) with a single
instruction. And with the new data path extensions, the C64x .D unit can load and store doublewords (64 bits)
with a single instruction. Furthermore, the non-aligned load and store instructions allow the .D units to access
words and doublewords on any byte boundary. The C64x CPU supports a variety of indirect addressing modes
using either linear- or circular-addressing with 5- or 15-bit offsets. All instructions are conditional, and most
can access any one of the 64 registers. Some registers, however, are singled out to support specific
addressing modes or to hold the condition for conditional instructions (if the condition is not automatically
“true”).
TMS320C62x and C62x are trademarks of Texas Instruments.
*9 TEXAS INSTRUMENTS
CPU (DSP Core) Description
21
August 2004 − Revised January 2006 SPRS241D
The two .M functional units perform all multiplication operations. Each of the C64x .M units can perform two
16 × 16-bit multiplies or four 8 ×8-bit multiplies per clock cycle. The .M unit can also perform 16 ×32-bit multiply
operations, dual 16 ×16-bit multiplies with add/subtract operations, and quad 8 ×8-bit multiplies with add
operations. In addition to standard multiplies, the C64x .M units include bit-count, rotate, Galois field multiplies,
and bidirectional variable shift hardware.
The two .S and .L functional units perform a general set of arithmetic, logical, and branch functions with results
available every clock cycle. The arithmetic and logical functions on the C64x CPU include single 32-bit, dual
16-bit, and quad 8-bit operations.
The processing flow begins when a 256-bit-wide instruction fetch packet is fetched from a program memory.
The 32-bit instructions destined for the individual functional units are “linked” together by “1” bits in the least
significant bit (LSB) position of the instructions. The instructions that are “chained” together for simultaneous
execution (up to eight in total) compose an execute packet. A “0” in the LSB of an instruction breaks the chain,
effectively placing the instructions that follow it in the next execute packet. A C64x DSP device enhancement
now allows execute packets to cross fetch-packet boundaries. In the TMS320C62x/TMS320C67x DSP
devices, if an execute packet crosses the fetch-packet boundary (256 bits wide), the assembler places it in
the next fetch packet, while the remainder of the current fetch packet is padded with NOP instructions. In the
C64x DSP device, the execute boundary restrictions have been removed, thereby, eliminating all of the
NOPs added to pad the fetch packet, and thus, decreasing the overall code size. The number of execute
packets within a fetch packet can vary from one to eight. Execute packets are dispatched to their respective
functional units at the rate of one per clock cycle and the next 256-bit fetch packet is not fetched until all the
execute packets from the current fetch packet have been dispatched. After decoding, the instructions
simultaneously drive all active functional units for a maximum execution rate of eight instructions every clock
cycle. While most results are stored in 32-bit registers, they can be subsequently moved to memory as bytes,
half-words, or doublewords. All load and store instructions are byte-, half-word-, word-, or
doubleword-addressable.
For more details on the C64x CPU functional units enhancements, see the following documents:
TMS320C6000 CPU and Instruction Set Reference Guide (literature number SPRU189)
TMS320C64x Technical Overview (literature number SPRU395)
TMS320C67x is a trademark of Texas Instruments.
*9 TEXAS INSTRUMENTS
CPU (DSP Core) Description
22 August 2004 − Revised January 2006SPRS241D
.L1
.S1
.M1
.D1
.D2
.M2
.S2
.L2
src1
long dst
88
src2
DA1 (Address)
ST1b (Store Data)
ST2a (Store Data)
Register
File A
(A0−A31)
8
8
88
dst
Data Path A
DA2 (Address)
Register
File B
(B0− B31)
LD2a (Load Data)
Data Path B
Control Register
File
ST2b (Store Data)
LD1b (Load Data)
8
8
2X
1X
ST1a (Store Data)
See Note A
See Note A
LD1a (Load Data)
LD2b (Load Data)
See Note A
See Note A
32 MSBs
32 LSBs
32 MSBs
32 LSBs
32 MSBs
32 LSBs
32 MSBs
32 LSBs
src2
src1
dst
long dst
long src
long src
long dst
dst
src1
src2
src1
src2
src2
src1
dst
src2
src1
dst
src2
long dst
src2
src1
dst
long dst
long dst
long src
long src
long dst
dst
dst
src2
src1
dst
NOTE A: For the .M functional units, the long dst is 32 MSBs and the dst is 32 LSBs.
Figure 2−3. TMS320C64x CPU (DSP Core) Data Paths
{9 TEXAS INSTRUMENTS
Memory Map Summary
23
August 2004 − Revised January 2006 SPRS241D
2.5 Memory Map Summary
Table 2−2 shows the memory map address ranges of the C6418 device. Internal memory is always located
at address 0 and can be used as both program and data memory. The external memory address ranges in
the C6418 device begin at the hex address location 0x8000 0000 for EMIFA.
Table 2−2. TMS320C6418 Memory Map Summary
MEMORY BLOCK DESCRIPTION BLOCK SIZE
(BYTES) HEX ADDRESS RANGE
Internal RAM (L2) [C6418] 512K 0000 0000 – 0007 FFFF
Reserved [C6418] 512K 0008 0000 – 000F FFFF
Reserved 15M 0010 0000 – 00FF FFFF
Reserved 8M 0100 0000 – 017F FFFF
External Memory Interface A (EMIFA) Registers 256K 0180 0000 – 0183 FFFF
L2 Registers 256K 0184 0000 – 0187 FFFF
HPI Registers 256K 0188 0000 – 018B FFFF
McBSP 0 Registers 256K 018C 0000 – 018F FFFF
McBSP 1 Registers 256K 0190 0000 – 0193 FFFF
Timer 0 Registers 256K 0194 0000 – 0197 FFFF
Timer 1 Registers 256K 0198 0000 – 019B FFFF
Interrupt Selector Registers 256K 019C 0000 – 019F FFFF
EDMA RAM and EDMA Registers 256K 01A0 0000 – 01A3 FFFF
Reserved 512K 01A4 0000 – 01AB FFFF
Timer 2 Registers 256K 01AC 0000 – 01AF FFFF
GP0 Registers 256K minus 4K 01B0 0000 – 01B3 EFFF
Device Configuration Registers 4K 01B3 F000 – 01B3 FFFF
I2C0 Data and Control Registers 16K 01B4 0000 – 01B4 3FFF
I2C1 Data and Control Registers 16K 01B4 4000 – 01B4 7FFF
Reserved 16K 01B4 8000 – 01B4 BFFF
McASP0 Control Registers 16K 01B4 C000 – 01B4 FFFF
McASP1 Control Registers 16K 01B5 0000 – 01B5 3FFF
Reserved 176K 01B5 4000 – 01B7 FFFF
VCP Control Registers 128K 01B8 0000 – 01B9 FFFF
Reserved 128K 01BA 0000 – 01BB FFFF
Emulation 256K 01BC 0000 – 01BF FFFF
Reserved 528K 01C0 0000 – 01C8 3FFF
Reserved 3.5M 01C8 4000 – 01FF FFFF
QDMA Registers 52 0200 0000 – 0200 0033
Reserved 928M minus 52 0200 0034 – 2FFF FFFF
McBSP 0 Data 64M 3000 0000 – 33FF FFFF
McBSP 1 Data 64M 3400 0000 – 37FF FFFF
Reserved 64M 3800 0000 – 3BFF FFFF
McASP0 Data 1M 3C00 0000 – 3C0F FFFF
McASP1 Data 1M 3C10 0000 – 3C1F FFFF
Reserved 62M 3C20 0000 – 3FFF FFFF
{'5 TEXAS INSTRUMENTS
Memory Map Summary
24 August 2004 − Revised January 2006SPRS241D
Table 2−2. TMS320C6418 Memory Map Summary (Continued)
MEMORY BLOCK DESCRIPTION HEX ADDRESS RANGE
BLOCK SIZE
(BYTES)
Reserved 1G 4000 0000 – 7FFF FFFF
EMIFA CE0 128M 8000 0000 – 87FF FFFF
Reserved 128M 8800 0000 – 8FFF FFFF
EMIFA CE1 128M 9000 0000 – 97FF FFFF
Reserved 128M 9800 0000 – 9FFF FFFF
EMIFA CE2 128M A000 0000 – A7FF FFFF
Reserved 128M A800 0000 – AFFF FFFF
EMIFA CE3 128M B000 0000 – B7FF FFFF
Reserved 128M B800 0000 – BFFF FFFF
Reserved 1G C000 0000 – FFFF FFFF
(4w 125K MKC 32K Cache (4 Way) August 2004 , Rewsed January 2006 ‘4’ TEXAS INSTRUMENTS
Memory Map Summary
25
August 2004 − Revised January 2006 SPRS241D
2.5.1 L2 Architecture Expanded
Figure 2−4 shows the detail of the L2 architecture on the TMS320C6418 device. For more information on the
L2MODE bits, see the cache configuration (CCFG) register bit field descriptions in the TMS320C64x
Two-Level Internal Memory Reference Guide (literature number SPRU610).
0x0000 0000
011010001 111
0x0004 0000
000
L2MODE L2 Memory Block Base Address
0x0007 0000
0x0005 FFFF
32K Cache
(4 Way)
64K Cache
(4 Way)
128K Cache (4 Way)
256K SRAM
512K SRAM (All)
480K SRAM
448K SRAM
384K SRAM
256K-Byte SRAM
128K-Byte RAM
32K-Byte RAM 0x0007 FFFF
64K-Byte RAM
32K-Byte RAM
256K Cache (4 Way)
0x0003 FFFF
0x0006 0000
0x0006 FFFF
0x0007 7FFF
0x0007 8000
Figure 2−4. TMS320C6418 L2 Architecture Memory Configuration
{'5 TEXAS INSTRUMENTS
Peripheral Register Descriptions
26 August 2004 − Revised January 2006SPRS241D
2.6 Peripheral Register Descriptions
Table 2−3 through Table 2−21 identify the peripheral registers for the C6418 device by their register names,
acronyms, and hex address or hex address range. For more detailed information on the register contents, bit
names and their descriptions, see the specific peripheral reference guide listed in the TMS320C6000 DSP
Peripherals Overview Reference Guide (literature number SPRU190).
Table 2−3. EMIFA Registers
HEX ADDRESS RANGE ACRONYM REGISTER NAME COMMENTS
0180 0000 GBLCTL EMIFA global control
0180 0004 CECTL1 EMIFA CE1 space control
0180 0008 CECTL0 EMIFA CE0 space control
0180 000C − Reserved
0180 0010 CECTL2 EMIFA CE2 space control
0180 0014 CECTL3 EMIFA CE3 space control
0180 0018 SDCTL EMIFA SDRAM control
0180 001C SDTIM EMIFA SDRAM refresh control
0180 0020 SDEXT EMIFA SDRAM extension
0180 0024 − 0180 003C − Reserved
0180 0040 PDTCTL Peripheral device transfer (PDT) control
0180 0044 CESEC1 EMIFA CE1 space secondary control
0180 0048 CESEC0 EMIFA CE0 space secondary control
0180 004C − Reserved
0180 0050 CESEC2 EMIFA CE2 space secondary control
0180 0054 CESEC3 EMIFA CE3 space secondary control
0180 0058 − 0183 FFFF – Reserved
Table 2−4. L2 Cache Registers (C64x)
HEX ADDRESS RANGE ACRONYM REGISTER NAME COMMENTS
0184 0000 CCFG Cache configuration register
0184 0004 − 0184 0FFC − Reserved
0184 1000 EDMAWEIGHT L2 EDMA access control register
0184 1004 − 0184 1FFC − Reserved
0184 2000 L2ALLOC0 L2 allocation register 0
0184 2004 L2ALLOC1 L2 allocation register 1
0184 2008 L2ALLOC2 L2 allocation register 2
0184 200C L2ALLOC3 L2 allocation register 3
0184 2010 − 0184 3FFC − Reserved
0184 4000 L2WBAR L2 writeback base address register
0184 4004 L2WWC L2 writeback word count register
0184 4010 L2WIBAR L2 writeback invalidate base address register
0184 4014 L2WIWC L2 writeback invalidate word count register
0184 4018 L2IBAR L2 invalidate base address register
0184 401C L2IWC L2 invalidate word count register
0184 4020 L1PIBAR L1P invalidate base address register
0184 4024 L1PIWC L1P invalidate word count register
0184 4030 L1DWIBAR L1D writeback invalidate base address register
{9 TEXAS INSTRUMENTS
Peripheral Register Descriptions
27
August 2004 − Revised January 2006 SPRS241D
Table 2−4. L2 Cache Registers (C64x) (Continued)
HEX ADDRESS RANGE COMMENTSREGISTER NAMEACRONYM
0184 4034 L1DWIWC L1D writeback invalidate word count register
0184 4038 − 0184 4044 − Reserved
0184 4048 L1DIBAR L1D invalidate base address register
0184 404C L1DIWC L1D invalidate word count register
0184 4050 − 0184 4FFC − Reserved
0184 5000 L2WB L2 writeback all register
0184 5004 L2WBINV L2 writeback invalidate all register
0184 5008 − 0184 7FFC Reserved
0184 8000 −0184 81FC MAR0 to
MAR127 Reserved
0184 8200 MAR128 Controls EMIFA CE0 range 8000 0000 − 80FF FFFF
0184 8204 MAR129 Controls EMIFA CE0 range 8100 0000 − 81FF FFFF
0184 8208 MAR130 Controls EMIFA CE0 range 8200 0000 − 82FF FFFF
0184 820C MAR131 Controls EMIFA CE0 range 8300 0000 − 83FF FFFF
0184 8210 MAR132 Controls EMIFA CE0 range 8400 0000 − 84FF FFFF
0184 8214 MAR133 Controls EMIFA CE0 range 8500 0000 − 85FF FFFF
0184 8218 MAR134 Controls EMIFA CE0 range 8600 0000 − 86FF FFFF
0184 821C MAR135 Controls EMIFA CE0 range 8700 0000 − 87FF FFFF
0184 8220 MAR136 Controls EMIFA CE0 range 8800 0000 − 88FF FFFF
0184 8224 MAR137 Controls EMIFA CE0 range 8900 0000 − 89FF FFFF
0184 8228 MAR138 Controls EMIFA CE0 range 8A00 0000 − 8AFF FFFF
0184 822C MAR139 Controls EMIFA CE0 range 8B00 0000 − 8BFF FFFF
0184 8230 MAR140 Controls EMIFA CE0 range 8C00 0000 − 8CFF FFFF
0184 8234 MAR141 Controls EMIFA CE0 range 8D00 0000 − 8DFF FFFF
0184 8238 MAR142 Controls EMIFA CE0 range 8E00 0000 − 8EFF FFFF
0184 823C MAR143 Controls EMIFA CE0 range 8F00 0000 − 8FFF FFFF
0184 8240 MAR144 Controls EMIFA CE1 range 9000 0000 − 90FF FFFF
0184 8244 MAR145 Controls EMIFA CE1 range 9100 0000 − 91FF FFFF
0184 8248 MAR146 Controls EMIFA CE1 range 9200 0000 − 92FF FFFF
0184 824C MAR147 Controls EMIFA CE1 range 9300 0000 − 93FF FFFF
0184 8250 MAR148 Controls EMIFA CE1 range 9400 0000 − 94FF FFFF
0184 8254 MAR149 Controls EMIFA CE1 range 9500 0000 − 95FF FFFF
0184 8258 MAR150 Controls EMIFA CE1 range 9600 0000 − 96FF FFFF
0184 825C MAR151 Controls EMIFA CE1 range 9700 0000 − 97FF FFFF
0184 8260 MAR152 Controls EMIFA CE1 range 9800 0000 − 98FF FFFF
0184 8264 MAR153 Controls EMIFA CE1 range 9900 0000 − 99FF FFFF
0184 8268 MAR154 Controls EMIFA CE1 range 9A00 0000 − 9AFF FFFF
0184 826C MAR155 Controls EMIFA CE1 range 9B00 0000 − 9BFF FFFF
0184 8270 MAR156 Controls EMIFA CE1 range 9C00 0000 − 9CFF FFFF
0184 8274 MAR157 Controls EMIFA CE1 range 9D00 0000 − 9DFF FFFF
0184 8278 MAR158 Controls EMIFA CE1 range 9E00 0000 − 9EFF FFFF
0184 827C MAR159 Controls EMIFA CE1 range 9F00 0000 − 9FFF FFFF
0184 8280 MAR160 Controls EMIFA CE2 range A000 0000 − A0FF FFFF
{'5 TEXAS INSTRUMENTS
Peripheral Register Descriptions
28 August 2004 − Revised January 2006SPRS241D
Table 2−4. L2 Cache Registers (C64x) (Continued)
HEX ADDRESS RANGE COMMENTSREGISTER NAMEACRONYM
0184 8284 MAR161 Controls EMIFA CE2 range A100 0000 − A1FF FFFF
0184 8288 MAR162 Controls EMIFA CE2 range A200 0000 − A2FF FFFF
0184 828C MAR163 Controls EMIFA CE2 range A300 0000 − A3FF FFFF
0184 8290 MAR164 Controls EMIFA CE2 range A400 0000 − A4FF FFFF
0184 8294 MAR165 Controls EMIFA CE2 range A500 0000 − A5FF FFFF
0184 8298 MAR166 Controls EMIFA CE2 range A600 0000 − A6FF FFFF
0184 829C MAR167 Controls EMIFA CE2 range A700 0000 − A7FF FFFF
0184 82A0 MAR168 Controls EMIFA CE2 range A800 0000 − A8FF FFFF
0184 82A4 MAR169 Controls EMIFA CE2 range A900 0000 − A9FF FFFF
0184 82A8 MAR170 Controls EMIFA CE2 range AA00 0000 − AAFF FFFF
0184 82AC MAR171 Controls EMIFA CE2 range AB00 0000 − ABFF FFFF
0184 82B0 MAR172 Controls EMIFA CE2 range AC00 0000 − ACFF FFFF
0184 82B4 MAR173 Controls EMIFA CE2 range AD00 0000 − ADFF FFFF
0184 82B8 MAR174 Controls EMIFA CE2 range AE00 0000 − AEFF FFFF
0184 82BC MAR175 Controls EMIFA CE2 range AF00 0000 − AFFF FFFF
0184 82C0 MAR176 Controls EMIFA CE3 range B000 0000 − B0FF FFFF
0184 82C4 MAR177 Controls EMIFA CE3 range B100 0000 − B1FF FFFF
0184 82C8 MAR178 Controls EMIFA CE3 range B200 0000 − B2FF FFFF
0184 82CC MAR179 Controls EMIFA CE3 range B300 0000 − B3FF FFFF
0184 82D0 MAR180 Controls EMIFA CE3 range B400 0000 − B4FF FFFF
0184 82D4 MAR181 Controls EMIFA CE3 range B500 0000 − B5FF FFFF
0184 82D8 MAR182 Controls EMIFA CE3 range B600 0000 − B6FF FFFF
0184 82DC MAR183 Controls EMIFA CE3 range B700 0000 − B7FF FFFF
0184 82E0 MAR184 Controls EMIFA CE3 range B800 0000 − B8FF FFFF
0184 82E4 MAR185 Controls EMIFA CE3 range B900 0000 − B9FF FFFF
0184 82E8 MAR186 Controls EMIFA CE3 range BA00 0000 − BAFF FFFF
0184 82EC MAR187 Controls EMIFA CE3 range BB00 0000 − BBFF FFFF
0184 82F0 MAR188 Controls EMIFA CE3 range BC00 0000 − BCFF FFFF
0184 82F4 MAR189 Controls EMIFA CE3 range BD00 0000 − BDFF FFFF
0184 82F8 MAR190 Controls EMIFA CE3 range BE00 0000 − BEFF FFFF
0184 82FC MAR191 Controls EMIFA CE3 range BF00 0000 − BFFF FFFF
0184 8300 −0184 83FC MAR192 to
MAR255 Reserved
0184 8400 −0187 FFFF − Reserved
{9 TEXAS INSTRUMENTS
Peripheral Register Descriptions
29
August 2004 − Revised January 2006 SPRS241D
Table 2−5. Quick DMA (QDMA) and Pseudo Registers
HEX ADDRESS RANGE ACRONYM REGISTER NAME
0200 0000 QOPT QDMA options parameter register
0200 0004 QSRC QDMA source address register
0200 0008 QCNT QDMA frame count register
0200 000C QDST QDMA destination address register
0200 0010 QIDX QDMA index register
0200 0014 − 0200 001C Reserved
0200 0020 QSOPT QDMA pseudo options register
0200 0024 QSSRC QDMA psuedo source address register
0200 0028 QSCNT QDMA psuedo frame count register
0200 002C QSDST QDMA destination address register
0200 0030 QSIDX QDMA psuedo index register
Table 2−6. EDMA Registers (C64x)
HEX ADDRESS RANGE ACRONYM REGISTER NAME
01A0 0800 − 01A0 FF98 − Reserved
01A0 FF9C EPRH Event polarity high register
01A0 FFA4 CIPRH Channel interrupt pending high register
01A0 FFA8 CIERH Channel interrupt enable high register
01A0 FFAC CCERH Channel chain enable high register
01A0 FFB0 ERH Event high register
01A0 FFB4 EERH Event enable high register
01A0 FFB8 ECRH Event clear high register
01A0 FFBC ESRH Event set high register
01A0 FFC0 PQAR0 Priority queue allocation register 0
01A0 FFC4 PQAR1 Priority queue allocation register 1
01A0 FFC8 PQAR2 Priority queue allocation register 2
01A0 FFCC PQAR3 Priority queue allocation register 3
01A0 FFDC EPRL Event polarity low register
01A0 FFE0 PQSR Priority queue status register
01A0 FFE4 CIPRL Channel interrupt pending low register
01A0 FFE8 CIERL Channel interrupt enable low register
01A0 FFEC CCERL Channel chain enable low register
01A0 FFF0 ERL Event low register
01A0 FFF4 EERL Event enable low register
01A0 FFF8 ECRL Event clear low register
01A0 FFFC ESRL Event set low register
01A1 0000 − 01A3 FFFF – Reserved
{'5 TEXAS INSTRUMENTS
Peripheral Register Descriptions
30 August 2004 − Revised January 2006SPRS241D
Table 2−7. EDMA Parameter RAM (C64x)
HEX ADDRESS RANGE ACRONYM REGISTER NAME COMMENTS
01A0 0000 − 01A0 0017 Parameters for Event 0 (6 words) Parameters for Event 0
(6 words) or Reload/Link
Parameters for other Event
01A0 0018 − 01A0 002F Parameters for Event 1 (6 words)
01A0 0030 − 01A0 0047 Parameters for Event 2 (6 words)
01A0 0048 − 01A0 005F Parameters for Event 3 (6 words)
01A0 0060 − 01A0 0077 Parameters for Event 4 (6 words)
01A0 0078 − 01A0 008F Parameters for Event 5 (6 words)
01A0 0090 − 01A0 00A7 Parameters for Event 6 (6 words)
01A0 00A8 − 01A0 00BF Parameters for Event 7 (6 words)
01A0 00C0 − 01A0 00D7 Parameters for Event 8 (6 words)
01A0 00D8 − 01A0 00EF Parameters for Event 9 (6 words)
01A0 00F0 − 01A0 00107 Parameters for Event 10 (6 words)
01A0 0108 − 01A0 011F Parameters for Event 11 (6 words)
01A0 0120 − 01A0 0137 Parameters for Event 12 (6 words)
01A0 0138 − 01A0 014F Parameters for Event 13 (6 words)
01A0 0150 − 01A0 0167 Parameters for Event 14 (6 words)
01A0 0168 − 01A0 017F Parameters for Event 15 (6 words)
01A0 0150 − 01A0 0197 Parameters for Event 16 (6 words)
01A0 0168 − 01A0 01AF Parameters for Event 17 (6 words)
... ...
01A0 05D0 − 01A0 05E7 Parameters for Event 62 (6 words)
01A0 05E8 − 01A0 05FF Parameters for Event 63 (6 words)
01A0 0600 − 01A0 0617 Reload/link parameters for Event 0 (6 words) Reload/Link Parameters for
other Event 0−15
01A0 0618 − 01A0 062F Reload/link parameters for Event 1 (6 words)
... ...
01A0 07E0 − 01A0 07F7 Reload/link parameters for Event 20 (6 words)
01A0 07F8 − 01A0 080F Reload/link parameters for Event 21 (6 words)
01A0 0810 − 01A0 0827 Reload/link parameters for Event 22 (6 words)
... ...
01A0 13C8 − 01A0 13DF Reload/link parameters for Event 147 (6 words)
01A0 13E0 − 01A0 13F7 Reload/link parameters for Event 148 (6 words)
01A0 13F8 − 01A0 13FF Scratch pad area (2 words)
01A0 1400 − 01A3 FFFF − Reserved
The C6418 device has 213 EDMA parameters total: 64-Event/Reload channels and 149-Reload only parameter sets [six (6) words each] that
can be used to reload/link EDMA transfers.
{9 TEXAS INSTRUMENTS
Peripheral Register Descriptions
31
August 2004 − Revised January 2006 SPRS241D
Table 2−8. Interrupt Selector Registers (C64x)
HEX ADDRESS RANGE ACRONYM REGISTER NAME COMMENTS
019C 0000 MUXH Interrupt multiplexer high Selects which interrupts drive CPU
interrupts 10−15 (INT10−INT15)
019C 0004 MUXL Interrupt multiplexer low Selects which interrupts drive CPU
interrupts 4−9 (INT04−INT09)
019C 0008 EXTPOL External interrupt polarity Sets the polarity of the external
interrupts (EXT_INT4−EXT_INT7)
019C 000C − 019F FFFF − Reserved
Table 2−9. Device Configuration Registers
HEX ADDRESS RANGE ACRONYM REGISTER NAME COMMENTS
01B3 F000 PERCFG Peripheral Configuration Register
Enables or disables specific
peripherals. This register is also
used for power-down of disabled
peripherals.
01B3 F004 DEVSTAT Device Status Register Read-only. Provides status of
the User’s device configuration
on reset.
01B3 F008 JTAGID JTAG Identification Register Read-only. Provides 32-bit
JTAG ID of the device.
01B3 F00C − 01B3 F014 − Reserved
01B3 F018 PCFGLOCK Peripheral Configuration Lock Register
01B3 F01C − 01B3 FFFF − Reserved
{'5 TEXAS INSTRUMENTS
Peripheral Register Descriptions
32 August 2004 − Revised January 2006SPRS241D
Table 2−10. McBSP 0 Registers
HEX ADDRESS RANGE ACRONYM REGISTER NAME COMMENTS
018C 0000 DRR0 McBSP0 data receive register via Configuration Bus The CPU and EDMA controller
can only read this register; they
cannot write to it.
0x3000 0000 − 0x33FF FFFF DRR0 McBSP0 data receive register via Peripheral Bus
018C 0004 DXR0 McBSP0 data transmit register via Configuration Bus
0x3000 0000 − 0x33FF FFFF DXR0 McBSP0 data transmit register via Peripheral Bus
018C 0008 SPCR0 McBSP0 serial port control register
018C 000C RCR0 McBSP0 receive control register
018C 0010 XCR0 McBSP0 transmit control register
018C 0014 SRGR0 McBSP0 sample rate generator register
018C 0018 MCR0 McBSP0 multichannel control register
018C 001C RCERE00 McBSP0 enhanced receive channel enable register 0
018C 0020 XCERE00 McBSP0 enhanced transmit channel enable register 0
018C 0024 PCR0 McBSP0 pin control register
018C 0028 RCERE10 McBSP0 enhanced receive channel enable register 1
018C 002C XCERE10 McBSP0 enhanced transmit channel enable register 1
018C 0030 RCERE20 McBSP0 enhanced receive channel enable register 2
018C 0034 XCERE20 McBSP0 enhanced transmit channel enable register 2
018C 0038 RCERE30 McBSP0 enhanced receive channel enable register 3
018C 003C XCERE30 McBSP0 enhanced transmit channel enable register 3
018C 0040 − 018F FFFF – Reserved
Table 2−11. McBSP 1 Registers
HEX ADDRESS RANGE ACRONYM REGISTER NAME COMMENTS
0190 0000 DRR1 McBSP1 data receive register via Configuration Bus The CPU and EDMA controller
can only read this register; they
cannot write to it.
0x3400 0000 − 0x37FF FFFF DRR1 McBSP1 data receive register via peripheral bus
0190 0004 DXR1 McBSP1 data transmit register via configuration bus
0x3400 0000 − 0x37FF FFFF DXR1 McBSP1 data transmit register via peripheral bus
0190 0008 SPCR1 McBSP1 serial port control register
0190 000C RCR1 McBSP1 receive control register
0190 0010 XCR1 McBSP1 transmit control register
0190 0014 SRGR1 McBSP1 sample rate generator register
0190 0018 MCR1 McBSP1 multichannel control register
0190 001C RCERE01 McBSP1 enhanced receive channel enable register 0
0190 0020 XCERE01 McBSP1 enhanced transmit channel enable register 0
0190 0024 PCR1 McBSP1 pin control register
0190 0028 RCERE11 McBSP1 enhanced receive channel enable register 1
0190 002C XCERE11 McBSP1 enhanced transmit channel enable register 1
0190 0030 RCERE21 McBSP1 enhanced receive channel enable register 2
0190 0034 XCERE21 McBSP1 enhanced transmit channel enable register 2
0190 0038 RCERE31 McBSP1 enhanced receive channel enable register 3
0190 003C XCERE31 McBSP1 enhanced transmit channel enable register 3
0190 0040 − 0193 FFFF – Reserved
{9 TEXAS INSTRUMENTS
Peripheral Register Descriptions
33
August 2004 − Revised January 2006 SPRS241D
Table 2−12. Timer 0 Registers
HEX ADDRESS RANGE ACRONYM REGISTER NAME COMMENTS
0194 0000 CTL0 Timer 0 control register Determines the operating mode of the timer, monitors the
timer status, and controls the function of the TOUT pin.
0194 0004 PRD0 Timer 0 period register Contains the number of timer input clock cycles to count.
This number controls the TSTAT signal frequency.
0194 0008 CNT0 Timer 0 counter register Contains the current value of the incrementing counter.
0194 000C − 0197 FFFF − Reserved
Table 2−13. Timer 1 Registers
HEX ADDRESS RANGE ACRONYM REGISTER NAME COMMENTS
0198 0000 CTL1 Timer 1 control register Determines the operating mode of the timer, monitors the
timer status, and controls the function of the TOUT pin.
0198 0004 PRD1 Timer 1 period register Contains the number of timer input clock cycles to count.
This number controls the TSTAT signal frequency.
0198 0008 CNT1 Timer 1 counter register Contains the current value of the incrementing counter.
0198 000C − 019B FFFF − Reserved
Table 2−14. Timer 2 Registers
HEX ADDRESS RANGE ACRONYM REGISTER NAME COMMENTS
01AC 0000 CTL2 Timer 2 control register Determines the operating mode of the timer, monitors the
timer status.
01AC 0004 PRD2 Timer 2 period register Contains the number of timer input clock cycles to count.
This number controls the TSTAT signal frequency.
01AC 0008 CNT2 Timer 2 counter register Contains the current value of the incrementing counter.
01AC 000C − 01AF FFFF − Reserved
{'5 TEXAS INSTRUMENTS
Peripheral Register Descriptions
34 August 2004 − Revised January 2006SPRS241D
Table 2−15. HPI Registers
HEX ADDRESS RANGE ACRONYM REGISTER NAME COMMENTS
HPID HPI data register Host read/write access only
0188 0000 HPIC HPI control register HPIC has both Host/CPU read/write access
0188 0004 HPIA
(HPIAW)HPI address register
(Write)
HPIA has both Host/CPU read/write access
0188 0008 HPIA
(HPIAR)HPI address register
(Read)
HPIA has both Host/CPU read/write access
0188 000C − 0189 FFFF − Reserved
018A 0000 HPI_TRCTL HPI transfer request control
register
018A 0004 − 018B FFFF − Reserved
Host access to the HPIA register updates both the HPIAW and HPIAR registers. The CPU can access HPIAW and HPIAR independently.
Table 2−16. GP0 Registers
HEX ADDRESS RANGE ACRONYM REGISTER NAME
01B0 0000 GPEN GP0 enable register
01B0 0004 GPDIR GP0 direction register
01B0 0008 GPVAL GP0 value register
01B0 000C − Reserved
01B0 0010 GPDH GP0 delta high register
01B0 0014 GPHM GP0 high mask register
01B0 0018 GPDL GP0 delta low register
01B0 001C GPLM GP0 low mask register
01B0 0020 GPGC GP0 global control register
01B0 0024 GPPOL GP0 interrupt polarity register
01B0 0028 − 01B3 EFFF − Reserved
{9 TEXAS INSTRUMENTS
Peripheral Register Descriptions
35
August 2004 − Revised January 2006 SPRS241D
Table 2−17. McASP0 and McASP1 Control Registers
HEX ADDRESS RANGE
ACRONYM
REGISTER NAME
McASP0 McASP1
ACRONYM
REGISTER NAME
01B4 C000 01B5 0000 PID Peripheral Identification register
[Register value: 0x0010 0101]
01B4 C004 01B5 0004 PWRDEMU Power down and emulation management register
01B4 C008 01B5 0008 − Reserved
01B4 C00C 01B5 000C − Reserved
01B4 C010 01B5 0010 PFUNC Pin function register
01B4 C014 01B5 0014 PDIR Pin direction register
01B4 C018 01B5 0018 PDOUT Pin data out register
01B4 C01C 01B5 001C PDIN/PDSET Pin data in / data set register
Read returns: PDIN
Writes affect: PDSET
01B4 C020 01B5 0020 PDCLR Pin data clear register
01B4 C024 − 01B4 C040 01B5 0024 − 01B5 0040 − Reserved
01B4 C044 01B5 0044 GBLCTL Global control register
01B4 C048 01B5 0048 AMUTE Mute control register
01B4 C04C 01B5 004C DLBCTL Digital Loop-back control register
01B4 C050 01B5 0050 DITCTL DIT mode control register
01B4 C054 − 01B4 C05C 01B5 0054 − 01B5 005C − Reserved
01B4 C060 01B5 0060 RGBLCTL Alias of GBLCTL containing only Receiver Reset bits,
allows transmit to be reset independently from receive.
01B4 C064 01B5 0064 RMASK Receiver format unit bit mask register
01B4 C068 01B5 0068 RFMT Receive bit stream format register
01B4 C06C 01B5 006C AFSRCTL Receive frame sync control register
01B4 C070 01B5 0070 ACLKRCTL Receive clock control register
01B4 C074 01B5 0074 AHCLKRCTL High-frequency receive clock control register
01B4 C078 01B5 0078 RTDM Receive TDM slot 0−31 register
01B4 C07C 01B5 007C RINTCTL Receiver interrupt control register
01B4 C080 01B5 0080 RSTAT Status register − Receiver
01B4 C084 01B5 0084 RSLOT Current receive TDM slot register
01B4 C088 01B5 0088 RCLKCHK Receiver clock check control register
01B4 C08C − 01B4 C09C 01B5 008C − 01B5 009C − Reserved
01B4 C0A0 01B5 00A0 XGBLCTL Alias of GBLCTL containing only Transmitter Reset bits,
allows transmit to be reset independently from receive.
01B4 C0A4 01B5 00A4 XMASK Transmit format unit bit mask register
01B4 C0A8 01B5 00A8 XFMT Transmit bit stream format register
01B4 C0AC 01B5 00AC AFSXCTL Transmit frame sync control register
01B4 C0B0 01B5 00B0 ACLKXCTL Transmit clock control register
01B4 C0B4 01B5 00B4 AHCLKXCTL High-frequency Transmit clock control register
01B4 C0B8 01B5 00B8 XTDM Transmit TDM slot 0−31 register
01B4 C0BC 01B5 00BC XINTCTL Transmit interrupt control register
01B4 C0C0 01B5 00C0 XSTAT Status register − Transmitter
01B4 C0C4 01B5 00C4 XSLOT Current transmit TDM slot
01B4 C0C8 01B5 00C8 XCLKCHK Transmit clock check control register
{'5 TEXAS INSTRUMENTS
Peripheral Register Descriptions
36 August 2004 − Revised January 2006SPRS241D
Table 2−17. McASP0 and McASP1 Control Registers (Continued)
HEX ADDRESS RANGE REGISTER NAMEACRONYM
McASP0 REGISTER NAMEACRONYM
McASP1
01B4 C0CC − 01B4 C0FC 01B5 00CC − 01B5 00FC Reserved
01B4 C100 01B5 0100 DITCSRA0 Left (even TDM slot) channel status register file
01B4 C104 01B5 0104 DITCSRA1 Left (even TDM slot) channel status register file
01B4 C108 01B5 0108 DITCSRA2 Left (even TDM slot) channel status register file
01B4 C10C 01B5 010C DITCSRA3 Left (even TDM slot) channel status register file
01B4 C110 01B5 0110 DITCSRA4 Left (even TDM slot) channel status register file
01B4 C114 01B5 0114 DITCSRA5 Left (even TDM slot) channel status register file
01B4 C118 01B5 0118 DITCSRB0 Right (odd TDM slot) channel status register file
01B4 C11C 01B5 011C DITCSRB1 Right (odd TDM slot) channel status register file
01B4 C120 01B5 0120 DITCSRB2 Right (odd TDM slot) channel status register file
01B4 C124 01B5 0124 DITCSRB3 Right (odd TDM slot) channel status register file
01B4 C128 01B5 0128 DITCSRB4 Right (odd TDM slot) channel status register file
01B4 C12C 01B5 012C DITCSRB5 Right (odd TDM slot) channel status register file
01B4 C130 01B5 0130 DITUDRA0 Left (even TDM slot) user data register file
01B4 C134 01B5 0134 DITUDRA1 Left (even TDM slot) user data register file
01B4 C138 01B5 0138 DITUDRA2 Left (even TDM slot) user data register file
01B4 C13C 01B5 013C DITUDRA3 Left (even TDM slot) user data register file
01B4 C140 01B5 0140 DITUDRA4 Left (even TDM slot) user data register file
01B4 C144 01B5 0144 DITUDRA5 Left (even TDM slot) user data register file
01B4 C148 01B5 0148 DITUDRB0 Right (odd TDM slot) user data register file
01B4 C14C 01B5 014C DITUDRB1 Right (odd TDM slot) user data register file
01B4 C150 01B5 0150 DITUDRB2 Right (odd TDM slot) user data register file
01B4 C154 01B5 0154 DITUDRB3 Right (odd TDM slot) user data register file
01B4 C158 01B5 0158 DITUDRB4 Right (odd TDM slot) user data register file
01B4 C15C 01B5 015C DITUDRB5 Right (odd TDM slot) user data register file
01B4 C160 − 01B4 C17C 01B5 0160 − 01B5 017C − Reserved
01B4 C180 01B5 0180 SRCTL0 Serializer 0 control register
01B4 C184 01B5 0184 SRCTL1 Serializer 1 control register
01B4 C188 01B5 0188 SRCTL2 Serializer 2 control register
01B4 C18C 01B5 018C SRCTL3 Serializer 3 control register
01B4 C190 01B5 0190 SRCTL4 Serializer 4 control register
01B4 C194 01B5 0194 SRCTL5 Serializer 5 control register
01B4 C198 01B5 0198 − Reserved
01B4 C19C 01B5 019C − Reserved
01B4 C1A0 − 01B4 C1FC 01B5 01A0 − 01B5 01FC − Reserved
01B4 C200 01B5 0200 XBUF0 Transmit Buffer for Serializer 0
01B4 C204 01B5 0204 XBUF1 Transmit Buffer for Serializer 1
01B4 C208 01B5 0208 XBUF2 Transmit Buffer for Serializer 2
01B4 C20C 01B5 020C XBUF3 Transmit Buffer for Serializer 3
01B4 C210 01B5 0210 XBUF4 Transmit Buffer for Serializer 4
01B4 C214 01B5 0214 XBUF5 Transmit Buffer for Serializer 5
{9 TEXAS INSTRUMENTS
Peripheral Register Descriptions
37
August 2004 − Revised January 2006 SPRS241D
Table 2−17. McASP0 and McASP1 Control Registers (Continued)
HEX ADDRESS RANGE REGISTER NAMEACRONYM
McASP0 REGISTER NAMEACRONYM
McASP1
01B4 C218 01B5 0218 − Reserved
01B4 C21C 01B5 021C − Reserved
01B4 C220 − 01B4 C27C 01B5 0220 − 01B5 027C − Reserved
01B4 C280 01B5 0280 RBUF0 Receive Buffer for Serializer 0
01B4 C284 01B5 0284 RBUF1 Receive Buffer for Serializer 1
01B4 C288 01B5 0288 RBUF2 Receive Buffer for Serializer 2
01B4 C28C 01B5 028C RBUF3 Receive Buffer for Serializer 3
01B4 C290 01B5 0290 RBUF4 Receive Buffer for Serializer 4
01B4 C294 01B5 0294 RBUF5 Receive Buffer for Serializer 5
01B4 C298 01B5 0298 − Reserved
01B4 C29C 01B5 029C − Reserved
01B4 C2A0 − 01B4 FFFF 01B5 02A0 − 01B5 3FFF − Reserved
Table 2−18. McASP0 Data Registers
HEX ADDRESS RANGE ACRONYM REGISTER NAME COMMENTS
3C00 0000 − 3C0F FFFF RBUF/XBUFx McASPx receive buffers or McASPx transmit buffers via
the Peripheral Data Bus.
(Used when RSEL or XSEL
bits = 0 [these bits are located
in the RFMT or XFMT
registers, respectively].)
Table 2−19. McASP1 Data Registers
HEX ADDRESS RANGE ACRONYM REGISTER NAME COMMENTS
3C10 0000 − 3C1F FFFF RBUF/XBUFx McASPx receive buffers or McASPx transmit buffers via
the Peripheral Data Bus.
(Used when RSEL or XSEL
bits = 0 [these bits are located
in the RFMT or XFMT
registers, respectively].)
{'5 TEXAS INSTRUMENTS
Peripheral Register Descriptions
38 August 2004 − Revised January 2006SPRS241D
Table 2−20. I2C0 and I2C1 Registers
HEX ADDRESS RANGE
ACRONYM
REGISTER NAME
I2C0 I2C1
ACRONYM
REGISTER NAME
01B4 0000 01B4 4000 I2COARx I2Cx own address register
01B4 0004 01B4 4004 I2CIERx I2Cx interrupt enable register
01B4 0008 01B4 4008 I2CSTRx I2Cx interrupt status register
01B4 000C 01B4 400C I2CCLKLx I2Cx clock low-time divider register
01B4 0010 01B4 4010 I2CCLKHx I2Cx clock high-time divider register
01B4 0014 01B4 4014 I2CCNTx I2Cx data count register
01B4 0018 01B4 4018 I2CDRRx I2Cx data receive register
01B4 001C 01B4 401C I2CSARx I2Cx slave address register
01B4 0020 01B4 4020 I2CDXRx I2Cx data transmit register
01B4 0024 01B4 4024 I2CMDRx I2Cx mode register
01B4 0028 01B4 4028 I2CISRCx I2Cx interrupt source register
01B4 002C 01B4 402C I2CEMDRx I2Cx Extended mode register
01B4 0030 01B4 4030 I2CPSCx I2Cx prescaler register
01B4 0034 01B4 4034 I2CPID1x I2Cx Peripheral Identification register 1
[Value: 0x0000 0105]
01B4 0038 01B4 4038 I2CPID2x I2Cx Peripheral Identification register 2
[Value: 0x0000 0005]
01B4 003C − 01B4 0044 01B4 403C − 01B4 4044 − Reserved
01B4 0048 01B4 4048 I2CPFUNCx I2Cx pin function register
01B4 004C 01B4 404C I2CPDIRx I2Cx pin direction register
01B4 0050 01B4 4050 I2CPDINx I2Cx pin data in register
01B4 0054 01B4 4054 I2CPDOUTx I2Cx pin data out register
01B4 0058 01B4 4058 I2CPDSETx I2Cx pin data set register
01B4 005C 01B4 405C I2CPDCLRx I2Cx pin data clear register
01B4 0060 − 01B4 3FFF 01B4 4060 − 01B4 7FFF − Reserved
Table 2−21. VCP Registers
EDMA BUS
HEX ADDRESS RANGE PERIPHERAL BUS
HEX ADDRESS RANGE ACRONYM REGISTER NAME
5000 0000 01B8 0000 VCPIC0 VCP input configuration register 0
5000 0004 01B8 0004 VCPIC1 VCP input configuration register 1
5000 0008 01B8 0008 VCPIC2 VCP input configuration register 2
5000 000C 01B8 000C VCPIC3 VCP input configuration register 3
5000 0010 01B8 0010 VCPIC4 VCP input configuration register 4
5000 0014 01B8 0014 VCPIC5 VCP input configuration register 5
5000 0040 01B8 0024 VCPOUT0 VCP output register 0
5000 0044 01B8 0028 VCPOUT1 VCP output register 1
5000 0080 VCPWBM VCP branch metrics write register
5000 0088 VCPRDECS VCP decisions read register
01B8 0018 VCPEXE VCP execution register
01B8 0020 VCPEND VCP endian register
01B8 0040 VCPSTAT0 VCP status register 0
01B8 0044 VCPSTAT1 VCP status register 1
01B8 0050 VCPERR VCP error register
{9 TEXAS INSTRUMENTS
EDMA Channel Synchronization Events
39
August 2004 − Revised January 2006 SPRS241D
2.7 EDMA Channel Synchronization Events
The C64x EDMA supports up to 64 EDMA channels which service peripheral devices and external memory.
Table 2−22 lists the source of C64x EDMA synchronization events associated with each of the programmable
EDMA channels. For the C6418 device, the association of an event to a channel is fixed; each of the EDMA
channels has one specific event associated with it. These specific events are captured in the EDMA event
registers (ERL, ERH) even if the events are disabled by the EDMA event enable registers (EERL, EERH). The
priority of each event can be specified independently in the transfer parameters stored in the EDMA parameter
RAM. For more detailed information on the EDMA module and how EDMA events are enabled, captured,
processed, linked, chained, and cleared, etc., see the TMS320C6000 DSP Enhanced Direct Memory Access
(EDMA) Controller Reference Guide (literature number SPRU234).
Table 2−22. TMS320C6418 EDMA Channel Synchronization Events
EDMA
CHANNEL EVENT NAME EVENT DESCRIPTION
0 DSP_INT HPI-to-DSP interrupt
1 TINT0 Timer 0 interrupt
2 TINT1 Timer 1 interrupt
3 SD_INTA EMIFA SDRAM timer interrupt
4 GPINT4/EXT_INT4 GP0 event 4/External interrupt pin 4
5 GPINT5/EXT_INT5 GP0 event 5/External interrupt pin 5
6 GPINT6/EXT_INT6 GP0 event 6/External interrupt pin 6
7 GPINT7/EXT_INT7 GP0 event 7/External interrupt pin 7
8 GPINT0 GP0 event 0
9 GPINT1 GP0 event 1
10 GPINT2 GP0 event 2
11 GPINT3 GP0 event 3
12 XEVT0 McBSP0 transmit event
13 REVT0 McBSP0 receive event
14 XEVT1 McBSP1 transmit event
15 REVT1 McBSP1 receive event
16−18 – None
19 TINT2 Timer 2 interrupt
20−27 – None
28 VCPREVT VCP receive event
29 VCPXEVT VCP transmit event
30−31 – None
32 AXEVTE0 McASP0 transmit even event
33 AXEVTO0 McASP0 transmit odd event
34 AXEVT0 McASP0 transmit event
35 AREVTE0 McASP0 receive even event
36 AREVTO0 McASP0 receive odd event
37 AREVT0 McASP0 receive event
38 AXEVTE1 McASP1 transmit even event
39 AXEVTO1 McASP1 transmit odd event
40 AXEVT1 McASP1 transmit event
In addition to the events shown in this table, each of the 64 channels can also be synchronized with the transfer completion or alternate transfer
completion events. For more detailed information on EDMA event-transfer chaining, see the TMS320C6000 DSP Enhanced Direct Memory
Access (EDMA) Controller Reference Guide (literature number SPRU234).
{'5 TEXAS INSTRUMENTS
Interrupt Sources and Interrupt Selector
40 August 2004 − Revised January 2006SPRS241D
Table 2−22. TMS320C6418 EDMA Channel Synchronization Events (Continued)
EDMA
CHANNEL EVENT DESCRIPTIONEVENT NAME
41 AREVTE1 McASP1 receive even event
42 AREVTO1 McASP1 receive odd event
43 AREVT1 McASP1 receive event
44 ICREVT0 I2C0 receive event
45 ICXEVT0 I2C0 transmit event
46 ICREVT1 I2C1 receive event
47 ICXEVT1 I2C1 transmit event
48 GPINT8 GP0 event 8
49 GPINT9 GP0 event 9
50 GPINT10 GP0 event 10
51 GPINT11 GP0 event 11
52 GPINT12 GP0 event 12
53 GPINT13 GP0 event 13
54 GPINT14 GP0 event 14
55 GPINT15 GP0 event 15
56−63 – None
In addition to the events shown in this table, each of the 64 channels can also be synchronized with the transfer completion or alternate transfer
completion events. For more detailed information on EDMA event-transfer chaining, see the TMS320C6000 DSP Enhanced Direct Memory
Access (EDMA) Controller Reference Guide (literature number SPRU234).
2.8 Interrupt Sources and Interrupt Selector
The C64x DSP core supports 16 prioritized interrupts, which are listed in Table 2−23. The highest-priority
interrupt is INT_00 (dedicated to RESET) while the lowest-priority interrupt is INT_15. The first four interrupts
(INT_00−INT_03) are non-maskable and fixed. The remaining interrupts (INT_04−INT_15) are maskable and
default to the interrupt source specified in Table 2−23. The interrupt source for interrupts 4−15 can be
programmed by modifying the selector value (binary value) in the corresponding fields of the Interrupt Selector
Control registers: MUXH (address 0x019C0000) and MUXL (address 0x019C0004).
{9 TEXAS INSTRUMENTS
Interrupt Sources and Interrupt Selector
41
August 2004 − Revised January 2006 SPRS241D
Table 2−23. C6418 DSP Interrupts
CPU
INTERRUPT
NUMBER
INTERRUPT
SELECTOR
CONTROL
REGISTER
SELECTOR
VALUE
(BINARY)
INTERRUPT
EVENT INTERRUPT SOURCE
INT_00 − RESET
INT_01 − NMI
INT_02 Reserved Reserved. Do not use.
INT_03 Reserved Reserved. Do not use.
INT_04MUXL[4:0] 00100 GPINT4/EXT_INT4 GP0 interrupt 4/External interrupt pin 4
INT_05MUXL[9:5] 00101 GPINT5/EXT_INT5 GP0 interrupt 5/External interrupt pin 5
INT_06MUXL[14:10] 00110 GPINT6/EXT_INT6 GP0 interrupt 6/External interrupt pin 6
INT_07MUXL[20:16] 00111 GPINT7/EXT_INT7 GP0 interrupt 7/External interrupt pin 7
INT_08MUXL[25:21] 01000 EDMA_INT EDMA channel (0 through 63) interrupt
INT_09MUXL[30:26] 01001 EMU_DTDMA EMU DTDMA
INT_10MUXH[4:0] 00011 SD_INTA EMIFA SDRAM timer interrupt
INT_11MUXH[9:5] 01010 EMU_RTDXRX EMU real-time data exchange (RTDX) receive
INT_12MUXH[14:10] 01011 EMU_RTDXTX EMU RTDX transmit
INT_13MUXH[20:16] 00000 DSP_INT HPI-to-DSP interrupt
INT_14MUXH[25:21] 00001 TINT0 Timer 0 interrupt
INT_15MUXH[30:26] 00010 TINT1 Timer 1 interrupt
01100 XINT0 McBSP0 transmit interrupt
01101 RINT0 McBSP0 receive interrupt
01110 XINT1 McBSP1 transmit interrupt
01111 RINT1 McBSP1 receive interrupt
10000 GPINT0 GP0 interrupt 0
10001 Reserved Reserved. Do not use.
10010 Reserved Reserved. Do not use.
10011 TINT2 Timer 2 interrupt
10100 Reserved Reserved. Do not use.
10101 Reserved Reserved. Do not use.
10110 ICINT0 I2C0 interrupt
10111 ICINT1 I2C1 interrupt
11000 AXINT1 McASP1 transmit interrupt
11001 ARINT1 McASP1 receive interrupt
11010 Reserved Reserved. Do not use.
11011 Reserved Reserved. Do not use.
11100 AXINT0 McASP0 transmit interrupt
11101 ARINT0 McASP0 receive interrupt
11110 VCPINT VCP interrupt
11111 Reserved Reserved. Do not use.
Interrupts INT_00 through INT_03 are non-maskable and fixed.
Interrupts INT_04 through INT_15 are programmable by modifying the binary selector values in the Interrupt Selector Control registers fields.
Table 2−23 shows the default interrupt sources for Interrupts INT_04 through INT_15. For more detailed information on interrupt sources and
selection, see the TMS320C6000 DSP Interrupt Selector Reference Guide (literature number SPRU646).
*9 TEXAS INSTRUMENTS
Signal Groups Description
42 August 2004 − Revised January 2006SPRS241D
2.9 Signal Groups Description
TRST
GP0[7]/EXT_INT7
IEEE Standard
1149.1
(JTAG)
Emulation
Reserved
Reset and
Interrupts
Control/Status
TDI
TDO
TMS
TCK
EMU0
EMU1
NMI
GP0[6]/EXT_INT6
GP0[5]/EXT_INT5
GP0[4]/EXT_INT4
RESET
RSV
RSV
Clock/PLL
and
Oscillator
CLKIN
CLKMODE3
CLKMODE2
PLLV
EMU2
EMU3
EMU4
EMU5
GP0
General-Purpose Input/Output 0 (GP0) Port
GP0[7]/EXT_INT7
GP0[6]/EXT_INT6
GP0[5]/EXT_INT5
GP0[4]/EXT_INT4
GP0[3]
CLKOUT6/GP0[2]
CLKOUT4/GP0[1]
GP0[0]
CLKOUT6/GP0[2]
CLKOUT4/GP0[1]
EMU6
EMU7
EMU8
EMU9
EMU10
HD15/GP0[15]§
HD14/GP0[14]§
HD13/GP0[13]§
HD12/GP0[12]§
HD11/GP0[11]§
HD10/GP0[10]§
HD9/GP0[9]§
HD8/GP0[8]§
These pins are muxed with the GP0 pins and by default these signals function as clocks (CLKOUT4 or CLKOUT6). To use these muxed
pins as GPIO signals, the appropriate GPIO register bits (GPxEN and GPxDIR) must be properly enabled and configured. For more
details, see the Device Configurations section of this data sheet.
These pins are GP0 pins that can also function as external interrupt sources (EXT_INT[7:4]). Default after reset is EXT_INTx or GPIO
as input-only.
§These pins are muxed with the HPI peripheral pins and by default these signals function as HPI. For more details on these muxed pins,
see the Device Configurations section of this data sheet.
RSV
EMU11
RSV
RSV
RSV
RSV
RSV
RSV
OSCIN
OSCOUT
OSCVDD
OSCVSS
CLKMODE1
CLKMODE0
CLKINSEL
OSC_DIS
Figure 2−5. CPU and Peripheral Signals
II I I a 11 .L’.’ 2| *9 TEXAS INSTRUMENTS
Signal Groups Description
43
August 2004 − Revised January 2006 SPRS241D
ACE3
AECLKOUT1
AED[31:0]
ACE2
ACE1
ACE0
AEA[22:3] AARDY
Data
Memory Map
Space Select
Address
Byte Enables
32
20
External
Memory I/F
Control
EMIFA (32-bit)
AECLKIN
AHOLD
AHOLDA
ABUSREQ
Bus
Arbitration
AARE/ASDCAS/ASADS/ASR
ASDCKE
AECLKOUT2
ASOE3
ABE3
ABE2
ABE1
ABE0
AAOE/ASDRAS/ASOE
AAWE/ASDWE/ASWE
APDT
HHWIL/AFSR1[2]
HCNTL0/AFSR1[1]
HCNTL1
Data
Register Select
Half-Word
Select
Control
HPI
(Host-Port Interface)
32
HD[29:16]/McASP1
HAS/ACLKR1[1]
HR/W/AFSR1[3]
HCS/ACLKR1[2]
HDS1/ACLKR1[3]
HDS2
HRDY
HINT
(HPI16 ONLY)
HD[7:0]
HD[15:8]/GP0[15:8]
HD[31,30]
These HPI pins are muxed with the McASP1 or GP0 peripherals. By default, these signals function as HPI and no function,
respectively. For more details on these muxed pins, see the Device Configurations section of this data sheet.
Figure 2−6. Peripheral Signals
Al v v A H yv A *9 TEXAS INSTRUMENTS
Signal Groups Description
44 August 2004 − Revised January 2006SPRS241D
McBSPs
(Multichannel Buffered
Serial Ports)
CLKX0
FSX0
DX0
CLKR0
FSR0
DR0
CLKS0
Transmit
McBSP0
Receive
Clock
CLKX1
FSX1
DX1
CLKR1
FSR1
DR1
CLKS1
Transmit
McBSP1
Receive
Clock
TOUT0
Timers
TINP0
TOUT1/LENDIAN Timer 1
TINP1
Timer 2
Timer 0
SCL0
I2C0
I2Cs
SDA0
SCL1 I2C1
SDA1
Figure 2−6. Peripheral Signals (Continued)
4 > 47+ ‘ > 47+ ‘ > ‘ r r +4» ~ : . A . A . d ' *9 TEXAS INSTRUMENTS
Signal Groups Description
45
August 2004 − Revised January 2006 SPRS241D
McASP0
(Multichannel Audio Serial Port 0)
ACLKX0
AHCLKX0
Transmit
Clock
Generator
AMUTEIN0
Auto Mute
Logic
AMUTE0
AFSX0
Transmit
Frame Sync
AFSR0 Receive
Frame Sync
AXR0[5]
AXR0[4]
ACLKR0
AHCLKR0 Receive Clock
Generator
AXR0[3]
AXR0[2]
AXR0[1]
AXR0[0] 6-Serial Ports
Flexible
Partitioning
Tx, Rx, OFF
Transmit
Clock Check
Circuit
Receive Clock
Check Circuit
Error Detect
(see Note A)
(Transmit/Receive Data Pins)(Transmit/Receive Data Pins)
(Receive Bit Clock) (Transmit Bit Clock)
(Receive Master Clock) (Transmit Master Clock)
(Receive Frame Sync or
Left/Right Clock) (Transmit Frame Sync or
Left/Right Clock)
NOTES: A. The McASPs’ Error Detect function detects underruns, overruns, early/late frame syncs, DMA errors, and external mute input.
B. Bolded and italicized text within parentheses denotes the function of the pins in an audio system.
Figure 2−6. Peripheral Signals (Continued)
|||= U 4 > 47+ ‘ > 47+ < t="" ‘="" 7="" %%="" +4=""> . 4 A - A . *9 TEXAS INSTRUMENTS
Signal Groups Description
46 August 2004 − Revised January 2006SPRS241D
McASP1
(Multichannel Audio Serial Port 1)
HD24/ACLKX1
HD27/AHCLKX1
Transmit
Clock
Generator
HD29/AMUTEIN1
Auto Mute
Logic
HD28/AMUTE1
HD22/AFSX1
Transmit
Frame Sync
HD23/AFSR1 Receive
Frame Sync
HD21/AXR1[5]
HD20/AXR1[4]
HD25/ACLKR1
HD26/AHCLKR1
Receive Clock
Generator
HD19/AXR1[3]
HD18/AXR1[2]
HD17/AXR1[1]
HD16/AXR1[0] 6-Serial Ports
Flexible
Partitioning
Tx, Rx, OFF
Transmit
Clock Check
Circuit
Receive Clock
Check Circuit
Error Detect
(see Note A)
(Transmit/Receive Data Pins)(Transmit/Receive Data Pins)
(Receive Bit Clock)
(Transmit Bit Clock)
(Receive Master Clock)
(Transmit Master Clock)
(Receive Frame Sync or
Left/Right Clock)
(Transmit Frame Sync or
Left/Right Clock)
NOTES: A. The McASPs’ Error Detect function detects underruns, overruns, early/late frame syncs, DMA errors, and external mute input.
B. Bolded and italicized text within parentheses denotes the function of the pins in an audio system.
HCNTL0/AFSR1[1]
HHWIL/AFSR1[2]
HR/W/AFSR1[3]
HAS/ACLKR1[1]
HCS/ACLKR1[2]
HDS1/ACLKR1[3]
AFCMUX[1:0]
(PERCFG[10:9])
AFCMUX[1:0]
(PERCFG[10:9])
Figure 2−6. Peripheral Signals (Continued)
*9 TEXAS INSTRUMENTS
Device Configurations
47
August 2004 − Revised January 2006 SPRS241D
3 Device Configurations
On the C6418 device, bootmode and certain device configurations/peripheral selections are determined at
device reset, while other device configurations/peripheral selections are software-configurable via the
peripheral configurations register (PERCFG) [address location 0x01B3F000] after device reset.
3.1 Device Configuration at Device Reset
Table 3−1 describes the C6418 device configuration pins. The logic level of the AEA[22:19],
TOUT1/LENDIAN, TOUT0/HPI_EN, and HD5 pins is latched at reset to determine the device configuration.
The logic level on the device configuration pins can be set by using external pullup/pulldown resistors or by
using some control device (e.g., FPGA/CPLD) to intelligently drive these pins. When using a control device,
care should be taken to ensure there is no contention on the lines when the device is out of reset. The
CLKINSEL and OSC_DIS configuration pins should remain driven to the correct levels during device operation
and must only be changed when RESET is low. The device configuration pins are sampled during reset and
are driven after the reset is removed. At this time, the control device should ensure it has stopped driving the
device configuration pins of the DSP to again avoid contention.
Note: If a configuration pin must be routed out from the device, the internal pullup/pulldown (IPU/IPD) resistor
should not be relied upon. TI recommends the use of an external pullup/pulldown resistor.
{'5 TEXAS INSTRUMENTS
Device Configurations
48 August 2004 − Revised January 2006SPRS241D
Table 3−1. C6418 Device Configuration Pins (TOUT1/LENDIAN, AEA[22:19], TOUT0/HPI_EN,
HD5, CLKINSEL, and OSC_DIS)
CONFIGURATION
PIN NO. IPD/IPUFUNCTIONAL DESCRIPTION
TOUT1/LENDIAN AA1 IPU Device Endian mode (LEND)
0 System operates in Big Endian mode
1 System operates in Little Endian mode (default)
AEA[22:21] [M21,
N21] IPD
Bootmode [1:0]
00 No boot (default mode)
01 HPI boot (based on HPI_EN pin)
10 − Reserved
11 EMIFA 8-bit ROM boot
AEA[20:19] [P22,
N22] IPD
EMIFA input clock select
Clock mode select for EMIFA (AECLKIN_SEL[1:0])
00 AECLKIN (default mode)
01 CPU/4 Clock Rate
10 CPU/6 Clock Rate
11 − Reserved
TOUT0/HPI_EN AA2 IPD
HPI, McASP1, GP0[15:8] select
Selects whether the HPI peripheral or McASP1 peripheral, and GP0[15:8] pins are
functionally enabled
0 HPI is enabled and the McASP1 peripheral and GP0 [15:8] pins are disabled
(default mode);
[HPI32, if HD5 = 1; HPI16 if HD5 = 0]
1 HPI I is disabled and the McASP1 peripheral and GP0 [15:8] pins are enabled
For more detail on the peripherals (McASP1 and GP0[15:8] pins) muxed with HPI, see the
Table 3−2.
HD5 Y13 IPU
HPI peripheral bus width (HPI_WIDTH) select
0 HPI operates as an HPI16.
(HPI bus is 16 bits wide. HD[15:0] pins are used for HPI and the remaining
HD[31:16] muxed
pins function as McASP1 peripheral pins or are reserved pins in the Hi-Z state.)
1 HPI operates as an HPI32.
(HPI bus is 32 bits wide. All HD[31:0] pins are used for host-port operations.)
For more detail on the peripherals (McASP1 and GP0[15:8] pins) muxed with HPI, see the
Table 3−2.
CLKINSEL A11 IPU
PLL input clock source select
Selects whether the PLL input clock is CLKIN [pin high] or directly from the crystal oscillator
(OSCIN and OSCOUT) [pin low]. For proper device operation, this pin must be used in
conjunction with the OSC_DIS pin.
0 Oscillator pads (OSCIN, OSCOUT directly from the crystal oscillator)
For proper device operation, OSC_DIS must be 0
1 CLKIN square wave (default)
For proper device operation, OSC_DIS must be 1
This pin must be pulled to the correct level even after reset.
OSC_DIS B7 IPU
Oscillator disable
Selects whether the Oscillator is enabled or disabled. For proper device operation, this pin
must follow the CLKINSEL pin operation.
0 OSC enabled
1 OSC disabled (default)
This pin must be pulled to the correct level even after reset.
IPD = Internal pulldown, IPU = Internal pullup. (These IPD/IPU signal pins feature a 30-k IPD or IPU resistor. To pull up a signal to the opposite
supply rail, a 1-kresistor should be used.)
{9 TEXAS INSTRUMENTS
Device Configurations
49
August 2004 − Revised January 2006 SPRS241D
3.2 Peripheral Configuration at Device Reset
Some C6418 peripherals share the same pins (internally muxed) and are mutually exclusive (i.e., HPI,
general-purpose input/output 0 pins GP0[15:8], and McASP1).
HPI, McASP1, and GP0 peripherals
The TOUT0/HPI_EN (AA2 pin) is latched at reset. This pin selects whether the HPI peripheral or McASP1
peripheral, and GP0[15:8] pins are functionally enabled (see Table 3−2).
Table 3−2. TOUT0/HPI_EN and HD5 Peripheral Selection (HPI or McASP1 and Select GP0 Pins)
PERIPHERAL SELECTION PERIPHERALS SELECTED
HPI_EN
(AA2)
HD5
[HPI_WIDTH]
(Y13) HPI McASP1 GP0 [15:8] DESCRIPTION
0 0 16-bit HPI Available N/A
HPI_EN = 0, HD5 =
HPI16 is enabled and McASP1 peripheral is enabled
and GP0 [15:8] pins are disabled. All multiplexed
HPI/McASP1 pins function as McASP1 pins. All
multiplexed HPI/GP0 are reserved pins in the Hi-Z state.
0 1 32-bit HPI N/AN/A
HPI_EN = 0, HD5 =
HPI32 is enabled and McASP1 peripheral and GP0
[15:8] pins are disabled. All multiplexed HPI/McASP1
and HPI/GP0 pins function as HPI pins.
1 x N/AAvailable Available
HPI_EN =    "
HPI is disabled and the McASP1 peripheral and GP0
[15:8] pins are enabled. All multiplexed HPI/McASP1
and HPI/GP0 pins function as McASP1 and GP0 pins,
respectively. To use the GP0 pins, the appropriate bits
in the GP0EN and GP0DIR registers need to be set. All
standalone HPI pins are reserved pins in the Hi-Z state
The TOUT0/HPI_EN pin has an internal pulldown that enables the HPI by default. The TOUT0/HPI_EN pin can disable the HPI via an external
pullup resistor or be driven high during reset. The TOUT0/HPI_EN pin is not software-controllable.
N/A = Not available
{'5 TEXAS INSTRUMENTS
Device Configurations
50 August 2004 − Revised January 2006SPRS241D
3.3 Peripheral Selection After Device Reset
HPI, McBSP1, McBSP0, McASP1, McASP0, I2C1, and I2C0
The C6418 device has designated registers for peripheral configuration (PERCFG), device status
(DEVSTAT), and JTAG identification (JTAGID). These registers are part of the Device Configuration module
and are mapped to a 4K block memory starting at 0x01B3F000. The CPU accesses these registers via the
CFGBUS.
The peripheral configuration register (PERCFG), allows the user to control the peripheral selection of the
McASP1, McASP0, I2C1, and I2C0 peripherals. For more detailed information on the PERCFG register
control bits, see Figure 3−1 and Table 3−3.
31 28 27 24
ReservedReserved
R-0 R-0
23 16
Reserved
R-0
15 11 10 9 8
ReservedAFCMUX[1:0] MCASP1EN
R-0 R/W-0 R/W-0
76543
21 0
I2C1EN ReservedReservedReservedI2C0EN MCBSP1EN MCBSP0EN MCASP0EN
R/W-0 R-0 R-0 R-0 R/W-0 R-1 R-1 R/W-0
Legend: R = Read only; R/W = Read/Write; -n = value after reset
For proper device operation, all reserved bits have to be written with “0”.
Figure 3−1. Peripheral Configuration Register (PERCFG) [Address Location: 0x01B3F000]
{9 TEXAS INSTRUMENTS
Device Configurations
51
August 2004 − Revised January 2006 SPRS241D
Table 3−3. Peripheral Configuration (PERCFG) Register Selection Bit Descriptions
BIT NAME DESCRIPTION
31:11 Reserved Reserved. Read-only, for proper device operation, all reserved bits have to be written with “0”.
10:9 AFCMUX[1:0]
Clocks and frame syncs select bits.
Determines which of the clock and frame sync pairs are input to McASP1.
00 = ACLKR1, AFSR1 pins (default).
01 = ACLKR1[1], AFSR1[1] pins
10 = ACLKR1[2], AFSR1[2] pins
11 = ACLKR1[3], AFSR1[3] pins
[designed for multiple non-simultaneous I2S sources with different clock sources].
Note: The AFCMUX bits can only be changed when the McASP receiver is in reset.
8 MCASP1EN
McASP1 select bit.
Selects whether the McASP1 peripheral is enabled or disabled (default).
(This feature allows power savings by disabling the peripheral when not in use.)
0 = McASP1 is disabled and the module is powered down [default].
1 = McASP1 is enabled.
7 I2C1EN
Inter-integrated circuit 1 (I2C1) enable bit.
Selects whether I2C1 peripheral is enabled or disabled (default).
(This feature allows power savings by disabling the peripheral when not in use.)
0 = I2C1 is disabled, and the module is powered down (default).
1 = I2C1 is enabled.
6:4 Reserved Reserved. Read-only, for proper device operation, all reserved bits have to be written with “0”.
3 I2C0EN
Inter-integrated circuit 0 (I2C0) enable bit.
Selects whether I2C0 peripheral is enabled or disabled (default).
(This feature allows power savings by disabling the peripheral when not in use.)
0 = I2C0 is disabled, and the module is powered down (default).
1 = I2C0 is enabled.
2 MCBSP1EN McBSP1 enable bit.
This bit is read-only as a “1” (McBSP1 always enabled).
1 MCBSP0EN McBSP0 enable bit .
This bit is read-only as a “1” (McBSP0 always enabled).
0 MCASP0EN
McASP0 select bit.
Selects whether the McASP0 peripheral is enabled or disabled.
(This feature allows power savings by disabling the peripheral when not in use.)
0 = McASP0 is disabled.
1 = McASP0 is enabled.
Using the PCFGLOCK Register to Enable/Disable Peripherals Accessing Enabled Peripherals *9 TEXAS INSTRUMENTS
Device Configurations
52 August 2004 − Revised January 2006SPRS241D
3.4 Peripheral Configuration Lock
By default, the McASP1, McASP0, I2C1, and I2C0 peripherals are disabled on power up. In order to use these
peripherals on the C6418 device, the peripheral must first be enabled in the Peripheral Configuration register
(PERCFG). Software muxed pins should not be programmed to switch functionalities during run-time.
Care should also be taken to ensure that no accesses are being performed before disabling the
peripherals. To help minimize power consumption in the C6418 device, unused peripherals may be disabled.
Figure 3−2 shows the flow needed to enable (or disable) a given peripheral on the C6418 device.
Unlock the PERCFG Register
Using the PCFGLOCK Register
Write to
PERCFG Register
to Enable/Disable Peripherals
Read from
PERCFG Register
Wait 128 CPU Cycles Before
Accessing Enabled Peripherals
Figure 3−2. Peripheral Enable/Disable Flow Diagram
A 32-bit key (value = 0x10C0010C) must be written to the Peripheral Configuration Lock register
(PCFGLOCK) in order to unlock access to the PERCFG register. Reading the PCFGLOCK register
determines whether the PERCFG register is currently locked (LOCKSTAT bit = 1) or unlocked (LOCKSTAT
bit = 0), see Figure 3−3. A peripheral can only be enabled when the PERCFG register is “unlocked”
(LOCKSTAT bit = 0).
{9 TEXAS INSTRUMENTS
Device Configurations
53
August 2004 − Revised January 2006 SPRS241D
Read Accesses
31 10
Reserved PWRSAVSTAT LOCKSTAT
R-0 R-0 R-1
Write Accesses
31 0
LOCK
W-0
Legend: R = Read only; R/W = Read/Write; -n = value after reset
Figure 3−3. PCFGLOCK Register Diagram [Address Location: 0x01B3 F018] − Read/Write Accesses
Table 3−4. PCFGLOCK Register Selection Bit Descriptions − Read Accesses
BIT NAME DESCRIPTION
31:2 Reserved Reserved. Read-only, writes have no effect.
1 PWRSAVSTAT
Power-saver status bit.
Determines whether the power saver function is enabled or disabled.
0 = Power-saver is enabled [default].
1 = Power-saver is disabled
0 LOCKSTAT
Lock status bit.
Determines whether the PERCFG register is locked or unlocked.
0 = Unlocked, read accesses to the PERCFG register allowed.
1 = Locked, write accesses to the PERCFG register do not modify the register state [default].
Reads are unaffected by Lock Status.
Table 3−5. PCFGLOCK Register Selection Bit Descriptions − Write Accesses
BIT NAME DESCRIPTION
31:0 LOCK Lock bits.
0x10C0010C = Unlocks PERCFG register accesses.
Any write to the PERCFG register will automatically relock the register. In order to avoid the unnecessary
overhead of multiple unlock/enable sequences, all peripherals should be enabled with a single write to the
PERCFG register with the necessary enable bits set.
Prior to waiting 128 CPU cycles, the PERCFG register should be read. There is no direct correlation between
the CPU issuing a write to the PERCFG register and the write actually occurring. Reading the PERCFG
register after the write is issued forces the CPU to wait for the write to the PERCFG register to occur.
Once a peripheral is enabled, the DSP (or other peripherals such as the HPI) must wait a minimum of 128 CPU
cycles before accessing the enabled peripheral. The user must ensure that no accesses are performed to a
peripheral while it is disabled.
In addition to the normal usage, the PCFGLOCK register can be used to override the power saver settings
specified in the PERCFG register. When the power saver feature is disabled (PCFGLOCK written with
0xC0100C01), all peripherals controlled by PERCFG are enabled. If the power saver is returned to normal
operation (PCFGLOCK written with 0x0C01C010), then the peripherals return to the operating condition
specified by PERCFG. Turning off the power saver settings will add a worst-case 50 mW of power to the overall
DSP power consumption.
Note: overriding the settings of the PERCFG register will not cause a conflict on the multiplexed pins. For
example, with the HPI and McASP1 peripherals, the HPI will still have control over the multiplexed pins
provided the TOUT0/HPI_EN pin was “0” at reset.
{'5 TEXAS INSTRUMENTS
Device Configurations
54 August 2004 − Revised January 2006SPRS241D
3.5 Device Status Register Description
The device status register depicts the status of the device peripheral selection. Once set, these bits will remain
set until a device reset; therefore, these bits should be masked when reading the DEVSTAT register since their
values can change. For the actual register bit names and their associated bit field descriptions, see Figure 3−4
and Table 3−6.
31 24
Reserved
R-100x0111
23 19 18 17 16
PLLM Reserved OSC EXT RES CLKINSEL
R-xxxxx R-1R-x R-x
15 14 13 12 11 10 9 8
Reserved CLKMODE3 Reserved HPI-WIDTH Reserved HPI_EN
R-000 R-x R-0 R-x R-0 R-x
76543210
CLKMODE2 CLKMODE1 CLKMODE0 LENDIAN BOOTMODE1 BOOTMODE0 AECLKINSEL1 AECLKINSEL0
R-x R-x R-x R-x R-x R-x R-x R-x
Legend: R = Read only; R/W = Read/Write; -n = value after reset
Figure 3−4. Device Status Register (DEVSTAT) Description − 0x01B3 F004
Table 3−6. Device Status (DEVSTAT) Register Selection Bit Descriptions
BIT NAME DESCRIPTION
31:24 Reserved Reserved. Read-only, writes have no effect.
23:19 PLLM
PLL multiply factor status bits.
Shows the status of the PLL multiply mode selected; whether the CPU clock frequency equals the input
clock frequency x1 (Bypass), x5, x6, x7, x8, x9, x10, x11, x12, x16, x18, x19, x20, x21, x22, or x24.
For more detailed information on the PLL multiply factors, see the Clock PLL section of this data sheet.
18 Reserved Reserved. Read-only, writes have no effect.
17 OSC EXT RES
Oscillator external resistor status bit.
Shows the status internal or external of the OSC bias resistor.
0 = Normal functional mode with internal bias resistor.
1 = Normal functional mode with external bias resistor [default; internally tied high].
16 CLKINSEL
PLL input clock select status bit.
Shows the status of whether the PLL input clock is CLKIN [pin high] or directly from the crystal oscillator
(OSCIN and OSCOUT) [pin low]
0 = Crystal oscillator (OSCIN and OSCOUT).
1 = CLKIN (default).
15:13 Reserved Reserved. Read-only, writes have no effect.
11 Reserved Reserved. Read-only, writes have no effect.
10 HPI_WIDTH
HPI bus width control bit.
Shows the status of whether the HPI bus operates in 32-bit mode or in 16-bit mode (default).
0 = HPI operates in 16-bit mode. (default).
1 = HPI operates in 32-bit mode.
9 Reserved Reserved. Read-only, writes have no effect.
8 HPI_EN
HPI_EN pin status bit.
Shows the status at device reset of the HPI_EN pin, which controls the HPI peripheral as enabled [default]
or disabled.
0 = HPI_EN pin is low, meaning the HPI peripheral is enabled. (default).
1 = HPI_EN pin is high, meaning the HPI peripheral is disabled.
Shows the status 01 or 0") or the CLKMODE[3:0] select bus: (“bu-I1 "W“ ”W. m, mm I AM» (WWW. w umnnma nh (A, “a...“ *9 TEXAS INSTRUMENTS
Device Configurations
55
August 2004 − Revised January 2006 SPRS241D
Table 3−6. Device Status (DEVSTAT) Register Selection Bit Descriptions (Continued)
DESCRIPTIONNAMEBIT
12 CLKMODE3 Clock mode select status bits
Shows the status (”1 or 0”) of the CLKMODE[3:0] select bits:
7 CLKMODE2
Shows the status (”1 or 0”) of the CLKMODE[3:0] select bits:
Clock mode select for CPU clock frequency (CLKMODE[3:0]), for example:
6 CLKMODE1
Clock mode select for CPU clock frequency (CLKMODE[3:0]), for example:
0000 Bypass (x1) (default mode)
For more details on the CLKMODE pins and the PLL multiply factors, see the Clock PLL and Oscillator
5 CLKMODE0
0000 Bypass (x1) (default mode)
For more details on the CLKMODE pins and the PLL multiply factors, see the Clock PLL and Oscillator
section of this data sheet.
4 LENDIAN
Device Endian mode (LENDIAN)
Shows the status of whether the system is operating in Big Endian mode or Little Endian mode (default).
0 System is operating in Big Endian mode
1 System is operating in Little Endian mode (default)
3 BOOTMODE1
Bootmode configuration bits (AEA[22:21] pins)
Shows the status of what device bootmode configuration is operational.
Bootmode [1:0]
00 No boot (default mode)
2 BOOTMODE0
00 No boot (default mode)
01 HPI boot (based on HPI_EN pin)
10 − Reserved
11 EMIFA 8-bit ROM boot
1 AECLKINSEL1
EMIFA input clock select (AEA[20:19] pins)
Shows the status of what clock mode is enabled or disabled for the EMIF.
Clock mode select for EMIFA (AECLKIN_SEL[1:0])
00 AECLKIN (default mode)
0 AECLKINSEL0
00 AECLKIN (default mode)
01 CPU/4 Clock Rate
10 CPU/6 Clock Rate
11 − Reserved
3.6 JTAG ID Register Description
The JTAG ID register is a read-only register that identifies to the customer the JTAG/Device ID. For the C6418
device, the JTAG ID register resides at address location 0x01B3 F008. The register hex value for the C6418
device is: 0x0007 902F. For the actual register bit names and their associated bit field descriptions, see
Figure 3−5 and Table 3−7.
31−28 27−12 11−1 0
VARIANT (4-Bit) PART NUMBER (16-Bit) MANUFACTURER (11-Bit) LSB
R-0000 R-0000 0000 1000 0100 R-0000 0010 111 R-1
Legend: R = Read only; -n = value after reset
Figure 3−5. JTAG ID Register Description − TMS320C6418 Register Value − 0x0007 902F
Table 3−7. JTAG ID Register Selection Bit Descriptions
BIT NAME DESCRIPTION
31:28 VARIANT Variant (4-Bit) value. C6418 value: 0000.
27:12 PART NUMBER Part Number (16-Bit) value. C6418 value: 0000 0000 1000 0100.
11−1 MANUFACTURER Manufacturer (11-Bit) value. C6418 value: 0000 0010 111.
0 LSB LSB. This bit is read as a “1” for C6418.
lPD/IPUT DEFAULT DEFAULT "MANN, me GPIO Direction Register must be proper‘y 1McASP1 \s msamed), To enable me McASPI penpheral, me driven by a mum device (dlsabhng [he HPI). HPI pm TOUTOJ—HPLEN : , .h.‘ m mm “A, .W “S _ ,w. "W .A. A HHWIL pln HD5 = n] (HFHB only) McASP1 pms msamea, detevmme which at me dock and name sync paws are Input «3 McASPi. For more detafled M...“ .. W M. WM (McASP1 ‘s msamed), _ ,n Mm”. mum [m n mm. m m M .h.‘ W W" w. n ‘ mm “W.“ McASPi pms disabled. .W .3 McASPl pm durecuon .s comrauea by me i ‘3 TEXAS INSTRUMENTS
Device Configurations
56 August 2004 − Revised January 2006SPRS241D
3.7 Multiplexed Pins
Multiplexed pins are pins that are shared by more than one peripheral and are internally multiplexed. Some
of these pins are configured by software, and the others are configured by external pullup/pulldown resistors
only at reset. Those muxed pins that are configured by software should not be programmed to switch
functionalities during run-time. Those muxed pins that are configured by external pullup/pulldown resistors
are mutually exclusive; only one peripheral has primary control of the function of these pins after reset.
Table 3−8 identifies the multiplexed pins on the C6418 device; shows the default (primary) function and the
default settings after reset; and describes the pins, registers, etc. necessary to configure specific multiplexed
functions.
Table 3−8. C6418 Device Multiplexed Pins
MULTIPLEXED PINS
IPD/IPU
DEFAULT
DEFAULT
DESCRIPTION
NAME NO.
IPD/IPU
DEFAULT
FUNCTION
DEFAULT
SETTING
DESCRIPTION
CLKOUT4/GP0[1] A2 IPU CLKOUT4 GP1EN = 0 (disabled)
These pins are software-configurable. To use
these pins as GPIO pins, the GPxEN bits in the
GPIO Enable Register and the GPxDIR bits in
the GPIO Direction Register must be properly
CLKOUT6/GP0[2] B3 IPU CLKOUT6 GP2EN = 0 (disabled)
the GPIO Direction Register must be properly
configured.
GPxEN = 1: GPx pin enabled
GPxDIR = 0: GPx pin is an input
GPxDIR = 1: GPx pin is an output
HCNTL0/AFSR1[1] Y6
By default, HPI32 is enabled upon reset
HHWIL/AFSR1[2] Y7 By default, HPI32 is enabled upon rese
t
(McASP1 is disabled).
HR/W/AFSR1[3] AA5
(McASP1 is disabled).
To enable the McASP1 peripheral, the
HAS/ACLKR1[1] Y5
To enable the McASP1 peripheral, the
TOUT0/HPI_EN pin must be high at reset eithe
r
via an external pullup (PU) resistor (1 k) or
HCS/ACLKR1[2] AA11 via an external pullup (PU) resistor (1 k) o
r
driven by a control device (disabling the HPI).
HDS1/ACLKR1[3] AB11 HPI pin
function
TOUT0/HPI_EN = 0
driven by a control device (disabling the HPI).
HD29/AMUTEIN1 W11
IPU
HPI pin
function
TOUT0/HPI_EN = 0

32-Bit HPI enabled)
or the McASP1 peripheral pins can be used if the
HPI is used as a 16-bit width [HPI_EN = 0,
HD28/AMUTE1 W10 IPU
HHWIL pin
32-Bit HPI enabled)
HPI is used as a 16-bit width [HPI_EN = 0
,
HD5 = 
HD27/AHCLKX1 Y4
HHWIL pin
(HPI16 only) McASP1 pins disabled.
HD5 = 
The clocks and frame syncs select bits
HD26/AHCLKR1 AB4
(HPI16 only)
McASP1 pins disabled.
The clocks and frame syncs select bit
s
(AFCMUX[1:0]) located in the PERCFG register
HD25/ACLKR1 AA9
(AFCMUX[1:0]) located in the PERCFG register
determine which of the clock and frame sync
HD24/ACLKX1 AA4
determine which of the clock and frame sync
pairs are input to McASP1. For more detailed
information, see the Device Configuration
HD23/AFSR1 AB9
pairs are input to McASP1. For more detailed
information, see the Device Configuration
section of this data sheet.
HD22/AFSX1 AB5
section of this data sheet.
HD21/AXR1[5] Y9 By default, HPI32 is enabled upon rese
t
(McASP1 is disabled).
To enable the McASP1 peripheral, the
HD20/AXR1[4] AB8
(McASP1 is disabled).
To enable the McASP1 peripheral, the
TOUT0/HPI_EN pin must be high at reset eithe
r
via an external pullup (PU) resistor (1 k) or
HD19/AXR1[3] AA6
IPU
HPI pin
TOUT0/HPI_EN = 0

32-Bit HPI enabled)
via an external pullup (PU) resistor (1 k
) or
driven by a control device (disabling the HPI).
HD18/AXR1[2] AB7
IPU
HPI pin
function
32-Bit HPI enabled)
McASP1 pins disabled.
or the McASP1 peripheral pins can be used if the
HPI is used as a 16-bit width [HPI_EN = 0
,
HD5 = 
HD17/AXR1[1] AA7
McASP1 pins disabled.
HD5 = 
McASP1 pin direction is controlled by the
HD16/AXR1[0] AB6
McASP1 pin direction is controlled by the
PDIR[x] bits in the McASP1PDIR register.
McASP1PDIR = 0 input, = 1 output
mm... .+ DEFAULT DEFAULT h--.\-...v.m. By delault. HPI ls enabled upon reset men 5.9] pms are msablea). TD use GPO[15.S]as GP‘O pins, the HF‘ need HPLE_N = a HD5 7 1 m be dwsabled (HPL—EN =1 H05 7 v (can't raven W ‘ HPI pm (32er HP] enameap me GPxEN bus m the GPIO Enab‘e Register and the GPXD‘R bl‘s m the GPIO Dxrecmn Regxsler GPXEN GPX pm enab‘ed GFXDIR am pm Is an Input ‘3' TEXAS INSTRUMENTS
Configuration Examples
57
August 2004 − Revised January 2006 SPRS241D
Table 3−8. C6418 Device Multiplexed Pins (Continued)
DESCRIPTION
DEFAULT
SETTING
DEFAULT
FUNCTION
IPD/IPU
MULTIPLEXED PINS DESCRIPTION
DEFAULT
SETTING
DEFAULT
FUNCTION
IPD/IPU
NO.NAME
HD15/GP0[15] Y12
By default, HPI is enabled upon reset (GP0[15:9]
HD14/GP0[14] AA12
By default, HPI is enabled upon reset (GP0[15:9]
pins are disabled).
To use GP0[15:9] as GPIO pins, the HPI needs
HD13/GP0[13]AB13
HPI_EN = 0 
pins are disabled).
To use GP0[15:9] as GPIO pins, the HPI need
s
to be disabled (HPI_EN = 1  
"),
HD12/GP0[12] Y14
IPU
HPI pin
HPI_EN = 0

32-Bit HPI enabled)
to be disabled (HPI_EN = 1




"),
the GPxEN bits in the GPIO Enable Register and
HD11/GP0[11] AB14 IPU
HPI pin
function
32-Bit HPI enabled)
GPIO pins disabled.
the GPxEN bits in the GPIO Enable Register and
the GPxDIR bits in the GPIO Direction Registe
r
must be properly configured.
HD10/GP0[10] AA15
function
GPIO pins disabled.
the GPxDIR bits in the GPIO Direction Register
must be properly configured.
GPxEN = 1: GPx pin enabled
HD9/GP0[9] Y16
GPxEN = 1: GPx pin enabled
GPxDIR = 0: GPx pin is an input
HD8/GP0[8] AB16
GPxDIR = 0: GPx pin is an input
GPxDIR = 1: GPx pin is an output
IPD = Internal pulldown, IPU = Internal pullup. (These IPD/IPU signal pins feature a 30-k IPD or IPU resistor. To pull up a signal to the opposite
supply rail, a 1-kresistor should be used.)
3.8 Debugging Considerations
It is recommended that external connections be provided to device configuration pins, including
TOUT1/LENDIAN, AEA[22:19], TOUT0/HPI_EN, CLKINSEL, and OSC_DIS. Although internal
pullup/pulldown resistors exist on these pins, providing external connectivity adds convenience to the user
in debugging and flexibility in switching operating modes.
Note: If a configuration pin must be routed out from the device, the internal pullup/pulldown (IPU/IPD) resistor
should not be relied upon. TI recommends the use of an external pullup/pulldown resistor.
3.9 Configuration Examples
Figure 3−6 illustrates an example of peripheral selections/options that are configurable on the C6418 device.
*9 TEXAS INSTRUMENTS
Configuration Examples
58 August 2004 − Revised January 2006SPRS241D
CLKOUT4, CLKOUT6,
PLLV, CLKIN,
CLKMODE[3:0], OSC_DIS,
CLKINSEL, OSCIN,
OSCOUT, OSCVDD,
OSCVSS
PERCFG Register Value: 0x0000_018F [CPU/4 option [default] and AFSR1, ACLKR1 pins selected]
External Pins: TOUT0/HPI_EN = 0; HD5 = 0 (IPU)
McASP0
McASP1
HPI
(16-Bit)
McBSP0
McBSP1
EMIFA
Clock and
System
GP0
and
EXT_INT
I2C0
I2C1
TIMER0
TIMER1
TIMER2
AED[31:0]
32
AECLKIN, AARDY, AHOLD
AEA[22:3], ACE[3:0], ABE[3:0]
AECLKOUT1, AECLKOUT2,
ASDCKE, ASOE3, APDT,
AHOLDA, ABUSREQ,
AARE/ASDCAS/ASADS/ASRE
AAOE/ASDRAS/ASOE,
AAWE/ASDWE/ASWE
SCL0
SDA0
TINP0
TOUT0
TINP1
TOUT1/LENDIAN
GP0[ 3:0]
GP0[7:4]
HD[15:0]
SCL1
SDA1
AHCLKX0, AFSX0,
ACLKX0, AMUTE0,
AMUTEIN0,
AHCLKR0, AFSR0,
ACLKR0
AXR0[5:0]
AHCLKX1, AFSX1,
ACLKX1, AMUTE1,
AMUTEIN1, AHCLKR1,
AFSR1, AFSR1[1],
AFSR1[2], AFSR1[3],
ACLKR1, ACLKR1[1],
ACLKR1[2], ACLKR1[3]
AXR1[5:0]
CLKR1, FSR1, DR1,
CLKS1, DX1, FSX1,
CLKX1
CLKR0, FSR0, DR0,
CLKS0, DX0, FSX0,
CLKX0
16
HCNTL0, HCNTL1,
HHWIL, HAS, HR/W,
HCS, HDS1, HDS2
Figure 3−6. Configuration Example A
(HPI16 + 2 McASPs + 2 McBSPs +2 I2Cs + EMIF + 3 Timers + GPIO)
*9 TEXAS INSTRUMENTS
Terminal Functions
59
August 2004 − Revised January 2006 SPRS241D
3.10 Terminal Functions
The terminal functions table (Table 3−9) identifies the external signal names, the associated pin (ball) numbers
along with the mechanical package designator, the pin type (I, O/Z, or I/O/Z), whether the pin has any internal
pullup/pulldown resistors and a functional pin description. For more detailed information on device
configuration, peripheral selection, multiplexed/shared pins, and debugging considerations, see the Device
Configurations section of this data sheet.
DESCRIPTION Clock mode selects For more detafls on the CLKMODE pins and the PLL multiply tamors‘ see the C‘ock *9 TEXAS INSTRUMENTS
Terminal Functions
60 August 2004 − Revised January 2006SPRS241D
Table 3−9. Terminal Functions
SIGNAL
TYPE
IPD/
IPU
DESCRIPTION
NAME NO.
TYPE
IPD/
IPU
DESCRIPTION
CLOCK/PLL CONFIGURATION
CLKIN A12 I IPD Clock Input. This clock is the input to the on-chip PLL.
CLKOUT4/GP0[1]§A2 I/O/Z IPU Clock output at 1/4 of the device speed (O/Z) [default] or this pin can be programmed as
a GP0 1 pin (I/O/Z).
CLKOUT6/GP0[2]§B3 I/O/Z IPU Clock output at 1/6 of the device speed (O/Z) [default] or this pin can be programmed as
a GP0 2 pin (I/O/Z).
CLKINSEL A11 I IPU
CLKIN select. Selects whether the PLL input clock is CLKIN [pin high] or directly from
the crystal oscillator (OSCIN and OSCOUT) [pin low].
For proper device operation, this pin must be used in conjunction with the OSC_DIS
pin.
CLKMODE3 C11 I IPD Clock mode selects
Selects whether the CPU clock frequency = input clock frequency x1 (Bypass), x5,
CLKMODE2 B10 I IPD
Clock mode selects
Selects whether the CPU clock frequency = input clock frequency x1 (Bypass), x5,
x6, x7, x8, x9, x10, x11, x12, x16, x18, x19, x20, x21, x22, or x24.
CLKMODE1 A13 I IPD
x6, x7, x8, x9, x10, x11, x12, x16, x18, x19, x20, x21, x22, or x24.
For more details on the CLKMODE pins and the PLL multiply factors, see the Clock
CLKMODE0 C13 I IPD
For more details on the CLKMODE pins and the PLL multiply factors, see the Clock
PLL section of this data sheet.
PLLVC12 A PLL voltage supply
OSCIN A6 I Crystal oscillator Input (XI)
OSCOUT A7 O Crystal oscillator output (XO)
OSCVDD B6 S Power for crystal oscillator (1.2 V), Do not connect to board power CVDD; for optimum
performance, connected internally. If CLKIN is used instead of the oscillator, then this
pin can be left open or connected to CVDD.
OSCVSS C6 GND Ground for crystal oscillator, Do not connect to board ground; for optimum
performance, connected internally. If CLKIN is used instead of the oscillator, then this
pin can be left open or connected to VSS.
OSC_DIS B7 I IPU
Oscillator disable select.
For proper device operation, this pin must follow the CLKINSEL pin operation.
0 OSC enabled; CLKINSEL must be 0
1 OSC disabled (default); CLKINSEL must be 1
JTAG EMULATION
TMS U3 I IPU JTAG test-port mode select
TDO T4 O/Z IPU JTAG test-port data out
TDI T1 I IPU JTAG test-port data in
TCK T2 I IPU JTAG test-port clock
TRST U1 I IPD JTAG test-port reset. For IEEE 1149.1 JTAG compatibility, see the IEEE 1149.1 JTAG
compatibility statement portion of this data sheet.
EMU0 R1 I/O/Z IPU Emulation pin 0#
EMU1 T3 I/O/Z IPU Emulation pin 1#
I = Input, O = Output, Z = High impedance, S = Supply voltage, GND = Ground, A = Analog Signal
IPD = Internal pulldown, IPU = Internal pullup. (These IPD/IPU signal pins feature a 30-k IPD or IPU resistor. To pull up a signal to the opposite
supply rail, a 1-kresistor should be used.)
§These pins are multiplexed pins. For more details, see the Device Configurations section of this data sheet.
PLLV is not part of external voltage supply. See the Clock PLL and Oscillator section for information on how to connect this pin.
#The EMU0 and EMU1 pins are internally pulled up with 30-k resistors; therefore, for emulation and normal operation, no external
pullup/pulldown resistors are necessary. However, for boundary scan operation, pull down the EMU1 and EMU0 pins with a dedicated 1-k
resistor.
Generakpurposemput/autpul1GP‘O) pms (l/O/Z) or externa‘ mtermpts (input onlyp. - When mese puns luncuon as External lnterrupts [by se‘eclmg the corresponding mdanandnnfiu mm.“ M ”\a cm”. Wm“. Dam.” Damefier m. Hosrpan data pms (llO/Z) [delauh] 0r Generakpurpose mput/Dulput (GPO) [15.3] pms GPO [3.0] pms (llO/Z) Clack Output at 1/5 cu me devwce speed 10/2) [delauH] or «ms pm can be programmed as Clock output at V4 01 (he dame speed 10m [delaun] or (hrs pm can be programmed as a spa 1 pm (llO/Z). *9 TEXAS INSTRUMENTS
Terminal Functions
61
August 2004 − Revised January 2006 SPRS241D
Table 3−9. Terminal Functions (Continued)
NAME NO. TYPEIPD/
IPUDESCRIPTION
JTAG EMULATION (CONTINUED)
EMU2 R2 I/O/Z IPU Emulation pin 2. Reserved for future use, leave unconnected.
EMU3 U2 I/O/Z IPU Emulation pin 3. Reserved for future use, leave unconnected.
EMU4 R3 I/O/Z IPU Emulation pin 4. Reserved for future use, leave unconnected.
EMU5 P2 I/O/Z IPU Emulation pin 5. Reserved for future use, leave unconnected.
EMU6 R4 I/O/Z IPU Emulation pin 6. Reserved for future use, leave unconnected.
EMU7 V2 I/O/Z IPU Emulation pin 7. Reserved for future use, leave unconnected.
EMU8 V1 I/O/Z IPU Emulation pin 8. Reserved for future use, leave unconnected.
EMU9 V3 I/O/Z IPU Emulation pin 9. Reserved for future use, leave unconnected.
EMU10 W3 I/O/Z IPU Emulation pin 10. Reserved for future use, leave unconnected.
EMU11 W2 I/O/Z IPU Emulation pin 11. Reserved for future use, leave unconnected.
RESETS, INTERRUPTS, AND GENERAL-PURPOSE INPUT/OUTPUTS
RESET C9 I Device reset
NMI B9 I IPD Nonmaskable interrupt, edge-driven (rising edge). Any noise on the NMI pin may
trigger an NMI interrupt; therefore, if the NMI pin is not used, it is recommended that the
NMI pin be grounded versus relying on the IPD.
GP0[7]/EXT_INT7 Y1 I/O/Z IPU General-purpose input/output (GPIO) pins (I/O/Z) or external interrupts (input only)
.
The default after reset setting is GPIO enabled as input-only.
GP0[6]/EXT_INT6 C4 I/O/Z IPU
General-purpose input/output (GPIO) pins (I/O/Z) or external interrupts (input only).
The default after reset setting is GPIO enabled as input-only.
When these pins function as External Interrupts [by selecting the corresponding
GP0[5]/EXT_INT5 B4 I/O/Z IPU
When these pins function as External Interrupts [by selecting the corresponding
interrupt enable register bit (IER.[7:4])], they are edge-driven and the polarity can be
independently selected via the External Interrupt Polarity Register bits
GP0[4]/EXT_INT4 A4 I/O/Z IPU
independently selected via the External Interrupt Polarity Register bits
(EXTPOL.[3:0]).
HD15/GP0[15] Y12
HD14/GP0[14] AA12
HD13/GP0[13]AB13
HD12/GP0[12] Y14
I/O/Z
IPU
Host-port data pins (I/O/Z) [default] or General-purpose input/output (GP0) [15:8] pin
s
(I/O/Z)
HD11/GP0[11] AB14 I/O/Z IPU
Host-port data pins (I/O/Z) [default] or General-purpose input/output (GP0) [15:8] pins
(I/O/Z)
HD10/GP0[10] AA15
GP0 [3:0] pins (I/O/Z)
HD9/GP0[9] Y16
GP0 [3:0] pins (I/O/Z)
Clock output at 1/6 of the device speed (O/Z) [default] or this pin can be programmed a
s
a GP0 2 pin (I/O/Z).
HD8/GP0[8] AB16
Clock output at 1/6 of the device speed (O/Z) [default] or this pin can be programmed as
a GP0 2 pin (I/O/Z).
Clock output at 1/4 of the device speed (O/Z) [default] or this pin can be programmed as
GP0[3] B13 I/O/Z IPD
Clock output at 1/4 of the device speed (O/Z) [default] or this pin can be programmed as
a GP0 1 pin (I/O/Z).
CLKOUT6/GP0[2]§B3 I/O/Z IPU
a GP0 1 pin (I/O/Z).
CLKOUT4/GP0[1]§A2 I/O/Z IPU
GP0[0] D13 I/O/Z IPD
I = Input, O = Output, Z = High impedance, S = Supply voltage, GND = Ground, A = Analog Signal
IPD = Internal pulldown, IPU = Internal pullup. (These IPD/IPU signal pins feature a 30-k IPD or IPU resistor. To pull up a signal to the opposite
supply rail, a 1-kresistor should be used.)
§These pins are multiplexed pins. For more details, see the Device Configurations section of this data sheet.
Only one pm ‘5 assened dunng any external data access EMIFA byterenable control Byterwnle enables my most types cl memory *9 TEXAS INSTRUMENTS
Terminal Functions
62 August 2004 − Revised January 2006SPRS241D
Table 3−9. Terminal Functions (Continued)
NAME DESCRIPTION
IPD/
IPU
TYPE
NO.
EMIFA (32-BIT) − CONTROL SIGNALS COMMON TO ALL TYPES OF MEMORY
ACE3 H19 O/Z IPU
EMIFA memory space enables
ACE2 N20 O/Z IPU EMIFA memory space enables
Enabled by bits 28 through 31 of the word address
ACE1 R20 O/Z IPU
Enabled by bits 28 through 31 of the word address
Only one pin is asserted during any external data access
ACE0 F20 O/Z IPU
Only one pin is asserted during any external data access
ABE3 AB21 O/Z IPU EMIFA byte-enable control
Decoded from the low-order address bits. The number of address bits or byte
ABE2 P21 O/Z IPU
EMIFA byte-enable control
Decoded from the low-order address bits. The number of address bits or byte
enables used depends on the width of external memory.
ABE1 A22 O/Z IPU
enables used depends on the width of external memory.
Byte-write enables for most types of memory
ABE0 D16 O/Z IPU
Byte-write enables for most types of memory
Can be directly connected to SDRAM read and write mask signal (SDQM)
APDT T19 O/Z IPU EMIFA peripheral data transfer, allows direct transfer between external peripherals
EMIFA (32-BIT) − BUS ARBITRATION
AHOLDA J21 O IPU EMIFA hold-request-acknowledge to the host
AHOLD J22 I IPU EMIFA hold request from the host
ABUSREQ R19 O IPU EMIFA bus request output
EMIFA (32-BIT) − ASYNCHRONOUS/SYNCHRONOUS MEMORY CONTROL
AECLKIN K22 I IPD EMIFA external input clock. The EMIFA input clock (AECLKIN, CPU/4 clock, or CPU/6
clock) is selected at reset via the pullup/pulldown resistors on the AEA[20:19] pins.
AECLKIN is the default for the EMIFA input clock.
AECLKOUT2 U22 O/Z IPD EMIFA output clock 2. Programmable to be EMIFA input clock (AECLKIN, CPU/4 clock,
or CPU/6 clock) frequency divided-by-1, -2, or -4.
AECLKOUT1 F22 O/Z IPD EMIFA output clock 1 [at EMIFA input clock (AECLKIN, CPU/4 clock, or CPU/6 clock)
frequency].
AARE/
ASDCAS/
ASADS/ASRE D20 O/Z IPU
EMIFA asynchronous memory read-enable/SDRAM column-address
strobe/programmable synchronous interface-address strobe or read-enable
For programmable synchronous interface, the RENEN field in the CE Space
Secondary Control Register (CExSEC) selects between ASADS and ASRE:
If RENEN = 0, then the ASADS/ASRE signal functions as the ASADS signal.
If RENEN = 1, then the ASADS/ASRE signal functions as the ASRE signal.
AAOE/
ASDRAS/
ASOE E20 O/Z IPU EMIFA asynchronous memory output-enable/SDRAM row-address
strobe/programmable synchronous interface output-enable
AAWE/
ASDWE/
ASWE C20 O/Z IPU EMIFA asynchronous memory write-enable/SDRAM write-enable/programmable
synchronous interface write-enable
ASDCKE K21 O/Z IPU EMIFA SDRAM clock-enable (used for self-refresh mode).
If SDRAM is not in system, ASDCKE can be used as a general-purpose output.
ASOE3 P19 O/Z IPU EMIFA synchronous memory output-enable for ACE3 (for glueless FIFO interface)
AARDY L21 I IPU Asynchronous memory ready input
I = Input, O = Output, Z = High impedance, S = Supply voltage, GND = Ground, A = Analog Signal
IPD = Internal pulldown, IPU = Internal pullup. (These IPD/IPU signal pins feature a 30-k IPD or IPU resistor. To pull up a signal to the opposite
supply rail, a 1-kresistor should be used.)
§These pins are multiplexed pins. For more details, see the Device Configurations section of this data sheet.
EMIFA exlemal address (word addressp Note. EMIF address numbering mr the 55413 device stans wmh AEA3 1o malnlaln Memory Inter/ace (EM/F) Reference Guide (meralure number SPRUZGGH‘ mummmfimn up: Mam raeuehnr “Wm m h, mm mm m mmmn“ fiha ”a M an ex‘ernal puuum'puuaawn res:s|or. 7 Boot mode (AEA[22'21]): 007 No me: (decauu mode) 01 7 HPI mm (based an HPLEN pm) H 7 EMIFA 57m ROM boot 7 AEA[20:1S]' Clock mode select my EMIFA (AECLKINisELU :01) oo7 AECLKIN metaun mode) 11 7 Reserved *9 TEXAS INSTRUMENTS
Terminal Functions
63
August 2004 − Revised January 2006 SPRS241D
Table 3−9. Terminal Functions (Continued)
NAME DESCRIPTION
IPD/
IPU
TYPE
NO.
EMIFA (32-BIT) − ADDRESS
AEA22 M21
EMIFA external address (word address)
AEA21 N21
I/O/Z
IPD
EMIFA external address (word address)
Note: EMIF address numbering for the C6418 device starts with AEA3 to maintain
signal name compatibility with other C64x devices (e.g., C6411, C6414, C6415, and
AEA20 P22 I/O/Z IPD
Note: EMIF address numbering for the C6418 device starts with AEA3 to maintain
signal name compatibility with other C64x devices (e.g., C6411, C6414, C6415, and
C6416) [see the 64-bit EMIF adressing scheme in the TMS320C6000 DSP External
AEA19 N22
C6416) [see the 64-bit EMIF adressing scheme in the TMS320C6000 DSP External
Memory Interface (EMIF) Reference Guide (literature number SPRU266)].
AEA18 H22
Memory Interface (EMIF) Reference Guide (literature number SPRU266)].
Note: If a configuration pin must be routed out from the device, the internal
AEA17 H21 Note: If a configuration pin must be routed out from the device, the interna
l
pullup/pulldown (IPU/IPD) resistor should not be relied upon. TI recommends the use of
AEA16 J20
pullup/pulldown (IPU/IPD) resistor should not be relied upon. TI recommends the use of
an external pullup/pulldown resistor.
AEA15 H20
an external pullup/pulldown resistor.
Also controls initialization of DSP modes at reset (I) via pullup/pulldown resistors
AEA14 G20 Also controls initialization of DSP modes at reset (I) via pullup/pulldown resistors
− Boot mode (AEA[22:21]):
AEA13 K20
− Boot mode (AEA[22:21]):
00 No boot (default mode)
AEA12 B21
00 No boot (default mode)
01 HPI boot (based on HPI_EN pin)
10 Reserved
AEA11 B22
O/Z
IPD
01 HPI boot (based on HPI_EN pin)
10 − Reserved
11 EMIFA 8-bit ROM boot
AEA10 D21 O/Z IPD
11 EMIFA 8-bit ROM boot
AEA9 D22 − EMIF clock select
AEA8 E21
− EMIF clock select
− AEA[20:19]: Clock mode select for EMIFA (AECLKIN_SEL[1:0])
AEA7 E22
− AEA[20:19]: Clock mode select for EMIFA (AECLKIN_SEL[1:0])
00 AECLKIN (default mode)
AEA6 F21
00 AECLKIN (default mode)
01 − CPU/4 Clock Rate
10 CPU/6 Clock Rate
AEA5 M20 10 − CPU/6 Clock Rate
11 Reserved
AEA4 J19
11 Reserved
For more details, see the Device Configurations section of this data sheet.
AEA3 L20 For more details, see the Device Configurations section of this data sheet.
EMIFA (32-BIT) − DATA
AED31 W21
AED30 W22
AED29 V20
AED28 W20
AED27 AA22
AED26 Y20
AED25 AA21
AED24 AB22
AED23 P20
I/O/Z
IPU
EMIFA external data
AED22 R22 I/O/Z IPU EMIFA external data
AED21 R21
AED20 U21
AED19 V21
AED18 T20
AED17 V22
AED16 U20
AED15 A18
AED14 D17
I = Input, O = Output, Z = High impedance, S = Supply voltage, GND = Ground, A = Analog Signal
IPD = Internal pulldown, IPU = Internal pullup. (These IPD/IPU signal pins feature a 30-k IPD or IPU resistor. To pull up a signal to the opposite
supply rail, a 1-kresistor should be used.)
§These pins are multiplexed pins. For more details, see the Device Configurations section of this data sheet.
{'5 TEXAS INSTRUMENTS
Terminal Functions
64 August 2004 − Revised January 2006SPRS241D
Table 3−9. Terminal Functions (Continued)
NAME DESCRIPTION
IPD/
IPU
TYPE
NO.
EMIFA (32-BIT) − DATA (CONTINUED)
AED13 B18
AED12 C18
AED11 A19
AED10 C19
AED9 B19
AED8 A21
AED7 D15
I/O/Z
IPU
EMIFA external data
AED6 A15 I/O/Z IPU EMIFA external data
AED5 B15
AED4 C15
AED3 A16
AED2 C16
AED1 B16
AED0 C17
TIMER 2
No external pins. The timer 2 peripheral pins are not pinned out as external pins.
TIMER 1
TOUT1/LENDIAN AA1 I/O/Z IPU
Timer 1 output (O/Z) or device endian mode (I).
Also controls initialization of DSP modes at reset via pullup/pulldown resistors
− Device Endian mode
0 Big Endian
1 Little Endian (default)
For more details on LENDIAN, see the Device Configurations section of this data sheet.
TINP1 AB1 I IPD Timer 1 or general-purpose input
TIMER 0
TOUT0/HPI_EN AA2 I/O/Z IPD
Timer 0 output pin and HPI enable HPI_EN pin function
The HPI_EN pin function selects whether the HPI peripheral or McASP1 peripheral,
and GP0[15:8] pins are functionally enabled
0 HPI is enabled and the McASP1 peripheral and GP0 [15:8] pins are disabled
(default mode); [HPI32, if HD5 = 1; HPI16 if HD5 = 0]
1 HPI I is disabled and the McASP1 peripheral and GP0 [15:8] pins are
enabled
For more details, see the Device Configurations section of this data sheet.
TINP0 AB2 I IPD Timer 0 or general-purpose input
INTER-INTEGRATED CIRCUIT 1 (I2C1)
SCL1 AA18 I/O/Z I2C1 clock. When the I2C module is used, use an external pullup resistor on this pin.
SDA1 AA19 I/O/Z I2C1 data. When I2C is used, ensure there is an external pullup resistors on this pin.
INTER-INTEGRATED CIRCUIT 0 (I2C0)
SCL0 AB18 I/O/Z I2C0 clock. When I2C is used, ensure there is an external pullup resistors on this pin.
SDA0 AB19 I/O/Z I2C0 data. When I2C is used, ensure there is an external pullup resistors on this pin.
I = Input, O = Output, Z = High impedance, S = Supply voltage, GND = Ground, A = Analog Signal
IPD = Internal pulldown, IPU = Internal pullup. (These IPD/IPU signal pins feature a 30-k IPD or IPU resistor. To pull up a signal to the opposite
supply rail, a 1-kresistor should be used.)
§These pins are multiplexed pins. For more details, see the Device Configurations section of this data sheet.
{9 TEXAS INSTRUMENTS
Terminal Functions
65
August 2004 − Revised January 2006 SPRS241D
Table 3−9. Terminal Functions (Continued)
NAME DESCRIPTION
IPD/
IPU
TYPE
NO.
MULTICHANNEL BUFFERED SERIAL PORT 1 (McBSP1)
CLKR1 G3 I/O/Z IPD McBSP1 receive clock
FSR1 G2 I/O/Z IPD McBSP1 receive frame sync
DR1 F1 I IPD McBSP1 receive data
CLKS1 G1 I IPD McBSP1 external clock source (as opposed to internal)
DX1 H2 O/Z IPD McBSP1 transmit data
FSX1 H3 I/O/Z IPD McBSP1 transmit frame sync
CLKX1 H1 I/O/Z IPD McBSP1 transmit clock
MULTICHANNEL BUFFERED SERIAL PORT 0 (McBSP0)
CLKR0 C2 I/O/Z IPD McBSP0 receive clock
FSR0 D1 I/O/Z IPD McBSP0 receive frame sync
DR0 D2 I IPD McBSP0 receive data
CLKS0 D3 I IPD McBSP0 external clock source (as opposed to internal)
DX0 E2 O/Z IPD McBSP0 transmit data
FSX0 E4 I/O/Z IPD McBSP0 transmit frame sync
CLKX0 E3 I/O/Z IPD McBSP0 transmit clock
MULTICHANNEL AUDIO SERIAL PORT 0 (McASP0)
AHCLKX0 N1 I/O/Z IPD McASP0 transmit high-frequency master clock.
AFSX0 M2 I/O/Z IPD McASP0 transmit frame sync or left/right clock (LRCLK).
ACLKX0 M1 I/O/Z IPD McASP0 transmit bit clock.
AMUTE0 K4 I/O/Z IPD McASP0 mute output.
AMUTEIN0 J4 I IPD McASP0 mute input.
AHCLKR0 L1 I/O/Z IPD McASP0 receive high-frequency master clock.
AFSR0 K2 I/O/Z IPD McASP0 receive frame sync or left/right clock (LRCLK).
ACLKR0 K1 I/O/Z IPD McASP0 receive bit clock.
AXR0[5] P3 McASP0 TX/RX data pin [5].
AXR0[4] N3 McASP0 TX/RX data pin [4].
AXR0[3] M3
I/O/Z
IPD
McASP0 TX/RX data pins [3].
AXR0[2] L3 I/O/Z IPD McASP0 TX/RX data pin [2].
AXR0[1] K3 McASP0 TX/RX data pin [1].
AXR0[0] L2 McASP0 TX/RX data pins[0].
I = Input, O = Output, Z = High impedance, S = Supply voltage, GND = Ground, A = Analog Signal
IPD = Internal pulldown, IPU = Internal pullup. (These IPD/IPU signal pins feature a 30-k IPD or IPU resistor. To pull up a signal to the opposite
supply rail, a 1-kresistor should be used.)
§These pins are multiplexed pins. For more details, see the Device Configurations section of this data sheet.
{'5 TEXAS INSTRUMENTS
Terminal Functions
66 August 2004 − Revised January 2006SPRS241D
Table 3−9. Terminal Functions (Continued)
NAME DESCRIPTION
IPD/
IPU
TYPE
NO.
MCASP1
HCNTL0/AFSR1[1] Y6 Host control − selects between control, address, or data registers (I) [default] or
McASP1 receive frame sync input 1 (I).
HHWIL/AFSR1[2] Y7
I
IPU
Host half-word select − first or second half-word (not necessarily high or low order)
[For HPI16 bus width selection only] (I) [default] oror McASP1 receive frame sync
input 2 (I) .
HR/W/AFSR1[3] AA5
I
IPU
Host read or write select (I) [default] or McASP1 receive frame sync input 3 (I).
HAS/ACLKR1[1] Y5 Host address strobe (I) [default] or McASP1 receive clock input 1 (I).
HCS/ACLKR1[2] AA11 Host chip select (I) [default] or McASP1 receive clock input 2 (I).
HDS1/ACLKR1[3] AB11 Host data strobe 1 (I) [default] or McASP1 receive clock input 3 (I).
HD27/AHCLKX1 Y4 I/O/Z IPU Host-port data pin 27 (I/O/Z) [default] or McASP1 transmit high-frequency master clock
(I/O/Z).
HD22/AFSX1 AB5 I/O/Z IPU Host-port data pin 22 (I/O/Z) [default] or McASP1 transmit frame sync or left/right clock
(LRCLK) (I/O/Z) .
HD24/ACLKX1 AA4 I/O/Z IPU Host-port data pin 24 (I/O/Z) [default] or McASP1 transmit bit clock (I/O/Z).
HD28/AMUTE1 W10 I/O/Z IPU Host-port data pin 28 (I/O/Z) [default] or McASP1 mute output (I/O/Z).
HD29/AMUTEIN1 W11 I IPU Host-port data pin 29 (I/O/Z) [default] or McASP1 mute input (I).
HD26/AHCLKR1 AB4 I/O/Z IPU Host-port data pin 26 (I/O/Z) [default] or McASP1 receive high-frequency master clock
(I/O/Z).
HD23/AFSR1 AB9 I/O/Z IPU Host-port data pin 23 (I/O/Z) [default] or McASP1 receive frame sync or left/right clock
(LRCLK) (I/O/Z).
HD25/ACLKR1 AA9 I/O/Z IPU Host-port data pin 25 (I/O/Z) [default] or McASP1 receive bit clock (I/O/Z).
HD21/AXR1[5] Y9
HD20/AXR1[4] AB8
HD19/AXR1[3] AA6
I/O/Z
IPU
Host-port data pins [21:16] (I/O/Z) [default] or McASP1 TX/RX data pins [5:0] (I/O/Z).
HD18/AXR1[2] AB7 I/O/Z IPU Host-port data pins [21:16] (
I/O/Z
) [default] or McASP1 TX/RX data pins [5:0] (
I/O/Z
)
.
HD17/AXR1[1] AA7
HD16/AXR1[0] AB6
HOST-PORT INTERFACE (HPI)
HINT AA8 O/Z IPU Host interrupt from DSP to host (O)
HCNTL1 W7 I IPU Host control − selects between control, address, or data registers (I)
HCNTL0/AFSR1[1] Y6 Host control − selects between control, address, or data registers (I) [default] or
McASP1 receive frame sync input 1 (I).
HHWIL/AFSR1[2] Y7
I
IPU
Host half-word select − first or second half-word (not necessarily high or low order)
[For HPI16 bus width selection only] (I) [default] or McASP1 receive frame sync
input 2 (I).
HR/W/AFSR1[3] AA5
I
IPU
Host read or write select (I) [default] or McASP1 receive frame sync input 3 (I).
HAS/ACLKR1[1] Y5 Host address strobe (I) [default] or McASP1 receive clock input 1 (I).
HCS/ACLKR1[2] AA11 Host chip select (I) [default] or McASP1 receive clock input 2 (I).
HDS1/ACLKR1[3] AB11 Host data strobe 1 (I) [default] or McASP1 receive clock input 3 (I).
HDS2 AB12 I IPU Host data strobe 2 (I)
HRDY Y10 O/Z IPU Host ready from DSP to host (O)
I = Input, O = Output, Z = High impedance, S = Supply voltage, GND = Ground, A = Analog Signal
IPD = Internal pulldown, IPU = Internal pullup. (These IPD/IPU signal pins feature a 30-k IPD or IPU resistor. To pull up a signal to the opposite
supply rail, a 1-kresistor should be used.)
§These pins are multiplexed pins. For more details, see the Device Configurations section of this data sheet.
m, ‘ Hoslrporl data [15.8] pms mom [decauu] or Generalrpurpase Inpul/oulput 1am) [15.3] Hosrpon data [7.0] pms (l/O/Z) um. an» Wm WM .M, ”Mmm.“ 4. MW. MM. .... a 4 m mum pundown {eSIsmr on me HD5 pm ( ). (HPl bus Is ‘5 bus wwde. HD[t5.0] pins are used and me remammg HD[31.16] pms are reserved pms m we mghrwmpedance state.) HDS pln = 1.le operates as an HPI32. *9 TEXAS INSTRUMENTS
Terminal Functions
67
August 2004 − Revised January 2006 SPRS241D
Table 3−9. Terminal Functions (Continued)
NAME DESCRIPTION
IPD/
IPU
TYPE
NO.
HOST-PORT INTERFACE (HPI) (CONTINUED)
HD31 Y8 I/O/Z IPU Host-port data pin 31 (I/O/Z)
HD30 Y11 I/O/Z IPU Host-port data pin 30 (I/O/Z)
HD29/AMUTEIN1 W11 I IPU Host-port data pin 29 (I/O/Z) [default] or McASP1 mute input (I).
HD28/AMUTE1 W10 I/O/Z IPU Host-port data pin 28 (I/O/Z) [default] or McASP1 mute output (I/O/Z).
HD27/AHCLKX1 Y4 I/O/Z IPU Host-port data pin 27 (I/O/Z) [default] or McASP1 transmit high-frequency master clock
(I/O/Z).
HD26/AHCLKR1 AB4 I/O/Z IPU Host-port data pin 26 (I/O/Z) [default] or McASP1 receive high-frequency master clock
(I/O/Z).
HD25/ACLKR1 AA9 I/O/Z IPU Host-port data pin 25 (I/O/Z) [default] or McASP1 receive bit clock (I/O/Z).
HD24/ACLKX1 AA4 I/O/Z IPU Host-port data pin 24 (I/O/Z) [default] or McASP1 transmit bit clock (I/O/Z).
HD23/AFSR1 AB9 I/O/Z IPU Host-port data pin 23 (I/O/Z) [default] or McASP1 receive frame sync or left/right clock
(LRCLK) (I/O/Z).
HD22/AFSX1 AB5 I/O/Z IPU Host-port data pin 22 (I/O/Z) [default] or McASP1 transmit frame sync or left/right clock
(LRCLK) (I/O/Z).
HD21/AXR1[5] Y9
HD20/AXR1[4] AB8
HD19/AXR1[3] AA6
I/O/Z
IPU
Host-port data [21:16] pin (I/O/Z) [default] or McASP1 TX/RX data pins [5:0] (I/O/Z).
HD18/AXR1[2] AB7 I/O/Z IPU Host-port data [21:16] pin (
I/O/Z
) [default] or McASP1 TX/RX data pins [5:0] (
I/O/Z
).
HD17/AXR1[1] AA7
HD16/AXR1[0] AB6
HD15/GP0[15] Y12
HD14/GP0[14] AA12
HD13/GP0[13]AB13
HD12/GP0[12] Y14
I/O/Z
IPU
Host-port data [15:8] pins (I/O/Z) [default] or General-purpose input/output (GP0) [15:8]
HD11/GP0[11] AB14 I/O/Z IPU
Host-port data [15:8] pins (I/O/Z) [default] or General-purpose input/output (GP0) [15:8]
pins (I/O/Z).
HD10/GP0[10] AA15
pins (I/O/Z).
HD9/GP0[9] Y16
HD8/GP0[8] AB16
HD7 W12 Host-port data [7:0] pins (I/O/Z)
HD6 AA13
Host-port data [7:0] pins (I/O/Z)
Host-Port bus width user-configurable at device reset via a 1-kpullup/
HD5 Y13
Host-Port bus width user-configurable at device reset via a 1-k
pullup/
pulldown resistor on the HD5 pin (I):
HD4 AA14
I/O/Z
IPU
pulldown resistor on the HD5 pin (I):
HD5 pin = 0: HPI operates as an HPI16.
HD3 AB15 I/O/Z IPU
HD5 pin = 0: HPI operates as an HPI16.
(HPI bus is 16 bits wide. HD[15:0] pins are used and the remaining HD[31:16] pins
HD2 AA16
(HPI bus is 16 bits wide. HD[15:0] pins are used and the remaining HD[31:16] pins
are reserved pins in the high-impedance state.)
HD1 Y15
are reserved pins in the high-impedance state.)
HD5 pin = 1: HPI operates as an HPI32.
HD0 W15
HD5 pin = 1: HPI operates as an HPI32.
(HPI bus is 32 bits wide. All HD[31:0] pins are used for host-port operations.)
I = Input, O = Output, Z = High impedance, S = Supply voltage, GND = Ground, A = Analog Signal
IPD = Internal pulldown, IPU = Internal pullup. (These IPD/IPU signal pins feature a 30-k IPD or IPU resistor. To pull up a signal to the opposite
supply rail, a 1-kresistor should be used.)
§These pins are multiplexed pins. For more details, see the Device Configurations section of this data sheet.
'rvnEf IPD/ DESCRIPTION Reserved. Ttns pm most be connected drrecttv to chD Reserved. Ttns pm most be connected drrecttv to DVDD Reserved. Ttns pm most be connected drrecttv to Vss RSV Reserved (\eave unconnected, do notoonnect to power or groondt. u «re srgnat must be routed trorn the device. the rntemat pulleup/down restslance shou‘d not be named DVDD (see (he PowerrSupply Decouplmg seetron ons data manua‘) *9 TEXAS INSTRUMENTS
Terminal Functions
68 August 2004 − Revised January 2006SPRS241D
Table 3−9. Terminal Functions (Continued)
SIGNAL
TYPE
IPD/
IPU
DESCRIPTION
NAME NO.
TYPE
IPD/
IPU
DESCRIPTION
RESERVED FOR TEST
RSV U4 A Reserved. This pin must be connected directly to CVDD for proper device operation.
RSV F3 A Reserved. This pin must be connected directly to DVDD for proper device operation.
RSV C8 I IPD Reserved. This pin must be connected directly to VSS for proper device operation.
B11 A
B12 I
Reserved (leave unconnected, do not connect to power or ground). If the signal must
RSV C10 O IPU
Reserved (leave unconnected, do not connect to power or ground). If the signal must
be routed from the device, the internal pull−up/down resistance should not be relied
upon and an external pull−up/down should be used.
RSV
D7 O/Z
be routed from the device, the internal pull−up/down resistance should not be relied
upon and an external pull−up/down should be used.
D8 O/Z
SUPPLY VOLTAGE PINS
A3
A5
A8
A9
A14
A17
A20
B1
C22
E1
G22
3.3-V supply voltage
DV
DD
J1 S3.3-V supply voltage
(see the Power-Supply Decoupling section of this data manual)
DVDD
M22
S
(see the Power-Supply Decoupling section of this data manual)
P1
T22
W1
Y2
Y17
Y19
Y22
AB3
AB10
AB17
AB20
I = Input, O = Output, Z = High impedance, S = Supply voltage, GND = Ground, A = Analog Signal
IPD = Internal pulldown, IPU = Internal pullup. (These IPD/IPU signal pins feature a 30-k IPD or IPU resistor. To pull up a signal to the opposite
supply rail, a 1-kresistor should be used.)
(see me PowerrSupply Decouphng secuon at xms data manua‘) *9 TEXAS INSTRUMENTS
Terminal Functions
69
August 2004 − Revised January 2006 SPRS241D
Table 3−9. Terminal Functions (Continued)
SIGNAL DESCRIPTION
IPD/
IPU
TYPE
NAME DESCRIPTION
IPD/
IPU
TYPE
NO.
SUPPLY VOLTAGE PINS (CONTINUED)
D5
D6
D9
D11
D12
D14
D18
E19
F19
G4
CVDD
H4
S
1.2-V supply voltage (A-500 device)
1.4-V supply voltage (-600 device)
CVDD L19 S
1.4-V supply voltage (-600 device)
(see the Power-Supply Decoupling section of this data manual)
M4
(see the Power-Supply Decoupling section of this data manual)
M19
N4
V4
V19
W5
W9
W13
W16
W18
GROUND PINS
A1
A10
B2
B5
B8
VSS
B14
GND
Ground pins
VSS B17 GND Ground pins
B20
C1
C3
C5
C7
I = Input, O = Output, Z = High impedance, S = Supply voltage, GND = Ground, A = Analog Signal
IPD = Internal pulldown, IPU = Internal pullup. (These IPD/IPU signal pins feature a 30-k IPD or IPU resistor. To pull up a signal to the opposite
supply rail, a 1-kresistor should be used.)
{'5 TEXAS INSTRUMENTS
Terminal Functions
70 August 2004 − Revised January 2006SPRS241D
Table 3−9. Terminal Functions (Continued)
SIGNAL DESCRIPTION
IPD/
IPU
TYPE
NAME DESCRIPTION
IPD/
IPU
TYPE
NO.
GROUND PINS (CONTINUED)
C14
C21
D4
D10
D19
F2
F4
G19
G21
J2
J3
K19
L4
L22
N2
VSS
N19
GND
Ground pins
VSS P4 GND Ground pins
T21
U19
W4
W6
W8
W14
W17
W19
Y3
Y18
Y21
AA3
AA10
AA17
AA20
I = Input, O = Output, Z = High impedance, S = Supply voltage, GND = Ground, A = Analog Signal
IPD = Internal pulldown, IPU = Internal pullup. (These IPD/IPU signal pins feature a 30-k IPD or IPU resistor. To pull up a signal to the opposite
supply rail, a 1-kresistor should be used.)
*9 TEXAS INSTRUMENTS
Development Support
71
August 2004 − Revised January 2006 SPRS241D
3.11 Development Support
In case the customer would like to develop their own features and software on the TMS320C6418 device, TI
offers an extensive line of development tools for the TMS320C6000 DSP platform, including tools to
evaluate the performance of the processors, generate code, develop algorithm implementations, and fully
integrate and debug software and hardware modules. The tool’s support documentation is electronically
available within the Code Composer Studio Integrated Development Environment (IDE).
The following products support development of C6000 DSP-based applications:
Software Development Tools:
Code Composer Studio Integrated Development Environment (IDE): including Editor
C/C++/Assembly Code Generation, and Debug plus additional development tools
Scalable, Real-Time Foundation Software (DSP/BIOS), which provides the basic run-time target software
needed to support any DSP application.
Hardware Development Tools:
Extended Development System (XDS) Emulator (supports C6000 DSP multiprocessor system debug)
EVM (Evaluation Module)
For a complete listing of development-support tools for the TMS320C6000 DSP platform, visit the Texas
Instruments web site on the Worldwide Web at http://www.ti.com uniform resource locator (URL). For
information on pricing and availability, contact the nearest TI field sales office or authorized distributor.
Code Composer Studio, DSP/BIOS, and XDS are trademarks of Texas Instruments.
*9 TEXAS INSTRUMENTS
Device Support
72 August 2004 − Revised January 2006SPRS241D
3.12 Device Support
3.12.1 Device and Development-Support Tool Nomenclature
To designate the stages in the product development cycle, TI assigns prefixes to the part numbers of all DSP
devices and support tools. Each DSP commercial family member has one of three prefixes: TMX, TMP, or TMS
(e.g., TMS320C6412GDK600). Texas Instruments recommends two of three possible prefix designators for
its support tools: TMDX and TMDS. These prefixes represent evolutionary stages of product development
from engineering prototypes (TMX/TMDX) through fully qualified production devices/tools (TMS/TMDS).
Device development evolutionary flow:
TMX Experimental device that is not necessarily representative of the final device’s electrical
specifications.
TMP Final silicon die that conforms to the device’s electrical specifications but has not completed quality
and reliability verification.
TMS Fully qualified production device.
Support tool development evolutionary flow:
TMDX Development-support product that has not yet completed Texas Instruments internal qualification
testing.
TMDS Fully qualified development-support product.
TMX and TMP devices and TMDX development-support tools are shipped against the following disclaimer:
“Developmental product is intended for internal evaluation purposes.”
TMS devices and TMDS development-support tools have been characterized fully, and the quality and
reliability of the device have been demonstrated fully. TI’s standard warranty applies.
Predictions show that prototype devices (TMX or TMP) have a greater failure rate than the standard
production devices. Texas Instruments recommends that these devices not be used in any production system
because their expected end-use failure rate still is undefined. Only qualified production devices are to be used.
TI device nomenclature also includes a suffix with the device family name. This suffix indicates the package
type (for example, GTS), the temperature range (for example, “A” is the extended commercial temperature
range), and the device speed range in megahertz (for example, -500 is 500 MHz). Figure 3−7 provides a
legend for reading the complete device name for any TMS320C6000 DSP platform member.
The ZTS package, like the GTS package, is a 288-ball plastic BGA only with Pb-free balls. For device part
numbers and further ordering information for TMS320C6418 in the GTS and ZTS package types, see the TI
website (http://www.ti.com) or contact your TI sales representative.
TMS320 is a trademark of Texas Instruments.
ELL“ *9 TEXAS INSTRUMENTS
Device Support
73
August 2004 − Revised January 2006 SPRS241D
C64x DSP:
6418
PREFIX DEVICE SPEED RANGE
TMX= Experimental device
TMP= Prototype device
TMS= Qualified device
SMX= Experimental device, MIL
SMJ = MIL-PRF-38535, QML
SM = High Rel (non-38535)
DEVICE FAMILY
320 = TMS320t DSP family PACKAGE TYPE§
GTS = 288-pin plastic BGA
ZTS = 288-pin plastic BGA, with Pb-free soldered balls
DEVICE
The extended temperature “A version” devices may have different operating conditions than the commercial temperature devices.
For more details, see the recommended operating conditions portion of this data sheet.
BGA = Ball Grid Array
§The ZTS mechanical package designator represents the version of the GTS package with Pb-free balls. For more detailed
information, see the Mechanical Data section of this document.
For actual device part numbers (P/Ns) and ordering information, see the TI website (www.ti.com).
TEMPERATURE RANGE (DEFAULT: 0°C TO 90°C)
Blank = 0°C to 90°C, commercial temperature
A = −40°C to 105°C, extended temperature
500 (500-MHz CPU, 100-MHz EMIF)
600 (600-MHz CPU, 133-MHz EMIF)
Figure 3−7. TMS320C6418 DSP Device Nomenclature
For additional information, see the TMS320C6418 Digital Signal Processor Silicon Errata (literature number
SPRZ224).
SPRU189) TM832006000 DSP Peripherals Overview Reference Guide (literature number SPRU190) w SPRU395) spausaa) SP RU 041 ) TMS32006000 DSP Interrlntegrared Circuit (/20) Module Reference Guide (literature number SPRU175) Circuit (/20) Module Reference Guide (literature number SPR2221). 8 Digital Signal Processor Silicon Errata (literature number SPR2224) Using iBlS Made/s for Timing Analysis application report (literature number SPRA839) *9 TEXAS INSTRUMENTS
Device Support
74 August 2004 − Revised January 2006SPRS241D
3.12.2 Documentation Support
Extensive documentation supports all TMS320 DSP family generations of devices from product
announcement through applications development. The types of documentation available include: data
sheets, such as this document, with design specifications; complete user’s reference guides for all devices
and tools; technical briefs; development-support tools; on-line help; and hardware and software applications.
The following is a brief, descriptive list of support documentation specific to the C6000 DSP devices:
The TMS320C6000 CPU and Instruction Set Reference Guide (literature number SPRU189) describes the
C6000 DSP CPU (core) architecture, instruction set, pipeline, and associated interrupts.
The TMS320C6000 DSP Peripherals Overview Reference Guide (literature number SPRU190) provides an
overview and briefly describes the functionality of the peripherals available on the C6000 DSP platform of
devices. This document also includes a table listing the peripherals available on the C6000 devices along with
literature numbers and hyperlinks to the associated peripheral documents.
The TMS320C64x Technical Overview (literature number SPRU395) gives an introduction to the C64x
digital signal processor, and discusses the application areas that are enhanced by the C64x DSP
VelociTI.2 VLIW architecture.
The TMS320C64x DSP Viterbi-Decoder Coprocessor Reference Guide (literature number SPRU533)
describes the functionality of the Viterbi-Decoder Coprocessor (VCP).
The TMS320C6000 DSP Multichannel Audio Serial Port (McASP) Reference Guide (literature number
SPRU041) describes the functionality of the McASP peripheral.
The TMS320C6000 DSP Inter-Integrated Circuit (I2C) Module Reference Guide (literature number SPRU175)
describes the functionality of the I2C peripherals available on the C6418 device except for the additional
interrupt and new GPIO capability. For more detailed information on the additional interrupt and GPIO
capability, see the I2C section of this data manual and the TMS320C6410/C6413/C6418 DSP Inter-Integrated
Circuit (I2C) Module Reference Guide (literature number SPRZ221).
The TMS320C6418 Digital Signal Processor Silicon Errata (literature number SPRZ224) describes the known
exceptions to the functional specifications for particular silicon revisions of the TMS320C6418 device.
The Using IBIS Models for Timing Analysis application report (literature number SPRA839) describes how to
properly use IBIS models to attain accurate timing analysis for a given system.
The tools support documentation is electronically available within the Code Composer Studio Integrated
Development Environment (IDE). For a complete listing of C6000 DSP latest documentation, visit the Texas
Instruments web site on the Worldwide Web at http://www.ti.com uniform resource locator (URL).
*9 TEXAS INSTRUMENTS
Peripherals Detailed Description (Device-Specific)
75
August 2004 − Revised January 2006 SPRS241D
4 Peripherals Detailed Description (Device-Specific)
4.1 Clock PLL and Oscillator
Most of the internal C64x DSP clocks are generated from a single source through the CLKIN pin. This source
clock either drives the PLL, which multiplies the source clock frequency to generate the internal CPU clock,
or bypasses the PLL to become the internal CPU clock.
To use the PLL to generate the CPU clock, the external PLL filter circuit must be properly designed. Figure 4−1
shows the external PLL circuitry for either x1 (PLL bypass) or other PLL multiply modes.
To minimize the clock jitter, a single clean power supply should power both the C64x DSP device and the
external clock oscillator circuit. The minimum CLKIN rise and fall times should also be observed. For the input
clock timing requirements, see the input and output clocks electricals section.
Rise/fall times, duty cycles (high/low pulse durations), and the load capacitance of the external clock source
must meet the DSP requirements in this data sheet (see the electrical characteristics over recommended
ranges of supply voltage and operating case temperature table and the input and output clocks electricals
section).
| \ LKIN X INSTRUMENTS *9 TEXAS
Clock PLL and Oscillator
76 August 2004 − Revised January 2006SPRS241D
PLLMULT
1
0
PLLCLK
CLKMODE0
CLKMODE1
C2C1
EMI
Filter
3.3 V
/2
/8
/4
/6
00 01 10
CPU Clock
Peripheral Bus, EDMA
Clock
Timer Internal Clock
CLKOUT4, Peripheral Clock
CLKOUT6
/2
/4
EMIF 00 01 10 EK2RATE
(GBLCTL.[19,18])
ECLKOUT2ECLKOUT1
PLL
x5, x6−x12, x16,
x18−x22, x24
10 µF 0.1 µF
AEA[20:19]
(For the PLL options, CLKMODE pins setup, and PLL clock frequency ranges,
see Table 4−1.)
Internal to C6418
PLLV
AECLKIN
CLKMODE2
CLKMODE3
CLKIN
OSCVSS
OSCOUT
OSCVDD
OSCIN
470 pF
470 pF
Osc.
CLKINSEL
1
0
C6
C5
C7
C8RSRB
Exact values for these components depend on choice of crystal. For recommended crystal and component values, see Table 4−3.
Do not connect any of these nodes to board power or ground if the oscillator is used. They are internally connected for proper operation.
If CLKIN is being used instead of the oscillator, then OSCVDD and OSCVSS may either be left open, or OSCVDD may be tied to CVDD and
OSCVSS may be tied to ground.
AUXCLK
for McASPs
OSC_DIS
NOTES: A. Place all PLL external components (C1, C2, and the EMI Filter) as close to the C6000 DSP device as possible. For the best
performance, TI recommends that all the PLL external components be on a single side of the board without jumpers, switches, or
components other than the ones shown.
B. For reduced PLL jitter, maximize the spacing between switching signals and the PLL external components (C1, C2, and the EMI
Filter).
C. The 3.3-V supply for the EMI filter must be from the same 3.3-V power plane supplying the I/O voltage, DVDD.
D. EMI filter manufacturer TDK part number ACF451832-333, -223, -153, -103. Panasonic part number EXCCET103U.
E. If CLKIN is used instead of OSCIN, tie OSCIN to Ground to minimize noise and current. (Do not leave OSCIN floating.)
Figure 4−1. External PLL Circuitry for Either PLL Multiply Modes or x1 (Bypass) Mode
{9 TEXAS INSTRUMENTS
Clock PLL and Oscillator
77
August 2004 − Revised January 2006 SPRS241D
For proper C6418 device operation, the CLKINSEL pin must be used in conjunction with the OSC_DIS pin.
The OSC_DIS pin must follow the CLKINSEL pin operation. For more details on these two configuration pins,
see the Device Configuration at Device Reset section of this data sheet.
Table 4−1. TMS320C6418 PLL Multiply Factor Options, Clock Frequency Ranges,
and Typical Lock Time for −600 Devices
GTS and ZTS PACKAGES − 23 x 23 mm BGA
CLKMODE[3:0] CLKMODE
(PLL MULTIPLY FACTORS)
CLKIN
RANGE
(MHz)
CPU CLOCK
FREQUENCY
RANGE
(MHz)
OSCIN
RANGE
(MHz)
CPU CLOCK
FREQUENCY
RANGE
(MHz)
TYPICAL
LOCK TIME
(µs)
0000 Bypass (x1) 12−100 12−100 12−30 12−30 N/A
0 0 0 1 x5 28−100 140−500 28−30 140−150
0 0 1 0 x6 23−100 140−600 23−30 140−180
0 0 1 1 x7 20−85 140−600 20−30 140−210
0 1 0 0 x8 17−75 140−600 17−30 140−240
0 1 0 1 x9 15−66 140−600 15−30 140−270
0 1 1 0 x10 14−60 140−600 14−30 140−300
0 1 1 1 x11 12−54 140−600 12−30 140−330
1 0 0 0 x12 12−50 144−600 12−30 144−360 75
1 0 0 1 x16 12−37 192−600 12−30 192−480
75
1 0 1 0 x18 12−33 216−600 12−30 216−540
1 0 1 1 x19 12−31 228−600 12−30 228−570
1 1 0 0 x20 12−30 240−600 12−30 240−600
1 1 0 1 x21 12−28 252−600 12−28 252−600
1 1 1 0 x22 12−27 264−600 12−27 264−600
1 1 1 1 x24 12−25 288−600 12−25 288−600
Use external pullup resistors on the CLKMODE pins (CLKMODE1 and CLKMODE0) to set the C6418 device to one of the valid PLL multiply clock
modes (x5, x6, x7, x8, x9, x10, x11, x12, x16, x18, x19, x20, x21, x22, or x24). With internal pulldown resistors on the CLKMODE pins
(CLKMODE3, CLKMODE2, CLKMODE1, CLKMODE0), the default clock mode is x1 (bypass).
Under some operating conditions, the maximum PLL lock time may vary by as much as 150% from the specified typical value. For example, if
the typical lock time is specified as 100 µs, the maximum value may be as long as 250 µs.
{'5 TEXAS INSTRUMENTS
Clock PLL and Oscillator
78 August 2004 − Revised January 2006SPRS241D
Table 4−2. TMS320C6418 PLL Multiply Factor Options, Clock Frequency Ranges,
and Typical Lock Time for −500 Devices
GTS and ZTS PACKAGES − 23 x 23 mm BGA
CLKMODE[3:0] CLKMODE
(PLL MULTIPLY FACTORS)
CLKIN
RANGE
(MHz)
CPU CLOCK
FREQUENCY
RANGE
(MHz)
OSCIN
RANGE
(MHz)
CPU CLOCK
FREQUENCY
RANGE
(MHz)
TYPICAL
LOCK TIME
(µs)
0000 Bypass (x1) 12−100 12−100 12−30 12−30 N/A
0 0 0 1 x5 28−100 140−500 28−30 140−150
0 0 1 0 x6 23−83 140−500 23−30 140−180
0 0 1 1 x7 20−71 140−500 20−30 140−210
0 1 0 0 x8 17−63 140−500 17−30 140−240
0 1 0 1 x9 15−56 140−500 15−30 140−270
0 1 1 0 x10 14−50 140−500 14−30 140−300
0 1 1 1 x11 12−45 140−500 12−30 140−330
1 0 0 0 x12 12−42 144−500 12−30 144−360 75
1 0 0 1 x16 12−31 192−500 12−30 192−480
75
1 0 1 0 x18 12−28 216−500 12−28 216−500
1 0 1 1 x19 12−26 228−500 12−26 228−500
1 1 0 0 x20 12−25 240−500 12−25 240−500
1 1 0 1 x21 12−24 252−500 12−24 252−500
1 1 1 0 x22 12−23 264−500 12−23 264−500
1 1 1 1 x24 12−21 288−500 12−21 288−500
Use external pullup resistors on the CLKMODE pins (CLKMODE1 and CLKMODE0) to set the C6418 device to one of the valid PLL multiply clock
modes (x5, x6, x7, x8, x9, x10, x11, x12, x16, x18, x19, x20, x21, x22, or x24). With internal pulldown resistors on the CLKMODE pins
(CLKMODE3, CLKMODE2, CLKMODE1, CLKMODE0), the default clock mode is x1 (bypass).
Under some operating conditions, the maximum PLL lock time may vary by as much as 150% from the specified typical value. For example, if
the typical lock time is specified as 100 µs, the maximum value may be as long as 250 µs.
For the lowest jitter on the oscillator circuit, it is recommended that a pair of 470-pF capacitors be connected
between isolated (not directly connected to the board supply) OSCVDD and OSCVSS pins. This helps to cancel
out switching noise from other circuits on the DSP device.
Table 4−3 shows a recommended crystal and tank circuit values for the C6418 PLL circuitry.
Table 4−3. Crystal and Tank Circuit Recommendations
Components RECOMMENDED PART NUMBERS or VALUES MANUFACTURER
24.576 MHz
1AS245766AHA (SMD-49)
Crystal
24.576 MHz 1AF245766AAA (AT-49)
KDS Diashinku Corp.
Crystal
22.5792 MHz
1AS225796AG (SMD-49) KDS Diashinku Corp.
22.5792 MHz 1AF225796A (AT-49)
RB1 M
RS0
C7
C8 8 pF
*9 TEXAS INSTRUMENTS
Host-Port Interface (HPI) Peripheral
79
August 2004 − Revised January 2006 SPRS241D
4.2 Host-Port Interface (HPI) Peripheral
The TMS320C6418 device includes a user-configurable 16-bit or 32-bit Host-port interface (HPI16/HPI32).
On the C6418 device the HPI peripheral pins are muxed with the McASP1 and GP0 peripheral pins. By default,
the HPI peripheral pin functions are enabled. For more detailed information on the C6418 device pin muxing,
see the Device Configurations section of this data sheet.
The HPI peripheral can be disabled or enabled at reset through the HPI enable function of the TOUT0/HPI_EN
pin. The HPI is enabled when the TOUT0/HPI_EN pin is sampled low at reset and it is disabled if the pin is
sample high at reset. The TOUT0/HPI_EN pin has an internal pulldown that enables the HPI by default.
However, the HPI can be disabled via an external pullup resistor or by having an external device such as an
FPGA/CPLD drive that pin high at reset. In the latter case, the external device should ensure it has stopped
driving this pin to avoid contention. The HPI enable function can only be set a reset and cannot be changed
via software.
The HD5 pin controls the HPI_WIDTH, allowing the user to configure the HPI as a 16-bit or 32-bit peripheral.
For more details on HPI peripheral configuration and the associated pins, see the Device Configurations
section of this data sheet.
*9 TEXAS INSTRUMENTS
Multichannel Audio Serial Port (McASP) Peripheral
80 August 2004 − Revised January 2006SPRS241D
4.3 Multichannel Audio Serial Port (McASP) Peripheral
The TMS320C6418 device includes two multichannel audio serial port (McASP) interface peripheral
(McASP0 and McASP1). On the C6418 device the McASP1 peripheral pins are muxed with the HPI peripheral
pins. By default, the HPI peripheral pin functions are enabled. For the C6418 device McASP1 is a standalone
peripheral, not muxed. For more detailed information on the C6418 device pin muxing, see the Device
Configurations section of this data sheet.
The McASP is a serial port optimized for the needs of multichannel audio applications.
The McASP consists of a transmit and receive section. These sections can operate completely independently
with different data formats, separate master clocks, bit clocks, and frame syncs or alternatively, the transmit
and receive sections may be synchronized. The McASP module also includes a pool of 16 shift registers that
may be configured to operate as either transmit data, receive data, or general-purpose I/O (GPIO).
The transmit section of the McASP can transmit data in either a time-division-multiplexed (TDM) synchronous
serial format or in a digital audio interface (DIT) format where the bit stream is encoded for S/PDIF, AES-3,
IEC-60958, CP-430 transmission. The receive section of the McASP supports the TDM synchronous serial
format.
The McASP can support one transmit data format (either a TDM format or DIT format) and one receive format
at a time. All transmit shift registers use the same format and all receive shift registers use the same format.
However, the transmit and receive formats need not be the same.
Both the transmit and receive sections of the McASP also support burst mode which is useful for non-audio
data (for example, passing control information between two DSPs).
The McASP peripheral has additional capability for flexible clock generation, and error detection/handling, as
well as error management.
For more detailed information on and the functionality of the McASP peripheral, see the TMS320C6000 DSP
Multichannel Audio Serial Port (McASP) Reference Guide (literature number SPRU041).
4.3.1 McASP Block Diagram
Figure 4−2 illustrates the major blocks along with external signals of the TMS320C6418 McASP peripheral;
and shows the 6 serial data [AXRx] pins. The McASP also includes full general-purpose I/O (GPIO) control,
so any pins not needed for serial transfers can be used for general-purpose I/O.
*9 TEXAS INSTRUMENTS
Multichannel Audio Serial Port (McASP) Peripheral
81
August 2004 − Revised January 2006 SPRS241D
Receive
Clock
Generator
AHCLKRx
ACLKRx
Clock Check
Transmit
Generator
Clock
Transmit
ACLKXx
AHCLKXx
DIT
RAM
Transmit
Generator
Frame Sync AFSXx
Detect
Error
Receive
Frame Sync
GeneratorFormatter
Transmit
Data
AMUTEx
AMUTEINx
AFSRx
Serializer 0
Serializer 1
Serializer 3
Serializer 2
Serializer 6
Serializer 7
Serializer 5
Serializer 4
(High-
Frequency)
Receive
Clock Check
(High-
Frequency)
Receive
Formatter
Data
McASPx
DMA Transmit
DMA Receive
INDIVIDUALLY PROGRAMMABLE TX/RX/GPIO
Control
GPIO
AXRx[0]
AXRx[1]
AXRx[3]
AXRx[2]
AXRx[5]
AXRx[4]
On the C6418 device, the McASP1 peripheral has some additional pins muxed with AFSR1 and with ACLKR1 pins (i.e., AFSR1[1],
AFSR1[2], AFSR1[3] and ACLKR1[1]. ACLKR1[2], ACLKR1[3], respectively).
On the C6418 device, the McASP0 peripheral is standalone, not muxed and the McASP1 peripheral is muxed with the HPI peripheral.
For more detailed information on multiplexed pins, see the Device Configurations section of this data sheet.
Figure 4−2. McASP0 and McASP1 Configuration
*9 TEXAS INSTRUMENTS
I2C
82 August 2004 − Revised January 2006SPRS241D
4.4 I2C
The TMS320C6418 device includes two I2C peripheral modules (I2C0 and I2C1). NOTE: when using the I2C
modules (any mode), ensure there are external pullup resistors on the SDAx and SCLx pins.
One of the I2C modules on the TMS320C6418 may be used by the DSP to control local peripherals ICs (DACs,
ADCs, etc.) while the other module may be used to communicate with other controllers in a system or to
implement a user interface.
The I2Cx port supports:
Compatible with Philips I2C Specification Revision 2.1 (January 2000)
Fast Mode up to 400 Kbps (no fail-safe I/O buffers)
Noise Filter to remove noise 50 ns or less
7- and 10-Bit Device Addressing Modes
Multi-Master (Transmit/Receive) and Slave (Transmit/Receive) Functionality
Events: DMA, Interrupt, or Polling
Slew-Rate Limited Open-Drain Output Buffers
General-purpose input and output (GPIO) functionality for I2C pins
For more detailed information on C6418 I2C additional features, such as GPIO capability, etc., see the
TMS320C6000 DSP Inter−Integrated Circuit (I2C) Module Reference Guide (literature number SPRU175)
and the TMS320C6410/C6413/C6418 DSP Inter−Integrated Circuit (I2C) Module Reference Guide (literature
number SPRZ221) addendum.
I2CDX [JUJJU &H [H UH PU I2Cfi5 UH] UUUUU August 2004 , Rewsed January 2006 {9 TEXAS INSTRUMENTS
Viterbi-Decoder Coprocessor (VCP)
83
August 2004 − Revised January 2006 SPRS241D
Figure 4−3 is a block diagram of the I2C0 and I2C1 modules.
Clock
Prescale
I2CPSCx
Peripheral Clock
(CPU/4)
I2CCLKHx
Generator
Bit Clock
I2CCLKLx
Noise
Filter
SCL
I2CXSRx
I2CDXRx
Transmit
Transmit
Shift
Transmit
Buffer
I2CDRRx
Shift
I2CRSRx
Receive
Buffer
Receive
Receive
Filter
SDA
I2C Data Noise
I2COARx
I2CSARx Slave
Address
Control
Address
Own
I2CMDRx
I2CCNTx
Mode
Data
Count
Source
Interrupt
Interrupt
Status
I2CISRCx
I2CSTRx
Enable
Interrupt
I2CIERx
Interrupt/DMA
I2Cx Module
NOTE A: Shading denotes control/status registers.
I2C Clock
I2CEMDRx
I2CPFUNCx
I2CPDIRx
I2CPDINx
I2CPDOUTx
I2CPDSETx
I2CPDCLRx
GPIO Control
Function
Pin
Direction
Pin
In
Pin Data
Out
Pin Data
Set
Pin Data
Clear
Pin Data
Extended
Mode
Figure 4−3. I2Cx Module Block Diagram
4.5 Viterbi-Decoder Coprocessor (VCP)
The C6418 device has a high-performance embedded coprocessor [Viterbi-Decoder Coprocessor (VCP) that
significantly speeds up channel-decoding operations on-chip. The VCP operating at CPU clock divided-by-4
can decode over 500 7.95-Kbps adaptive multi-rate (AMR) [K = 9, R = 1/3] voice channels. The VCP supports
constraint lengths K = 5, 6, 7, 8, and 9, rates R = 1/2, 1/3, and 1/4, and flexible polynomials, while generating
hard decisions or soft decisions. Communications between the VCP and the CPU are carried out through the
EDMA controller.
For more detailed information on the VCP, see the TMS320C64x DSP Viterbi-Decoder Coprocessor
Reference Guide (literature number SPRU533).
4.6 General-Purpose Input/Output (GPIO)
On the C6418 device the GPIO peripheral pins GP0[15:9] are muxed with the HPI peripheral pins HD[15:9],
respectively. By default, the HPI peripheral pin functions are enabled [TOUT0/HPI_EN pin internall pulled low].
For more detailed information on device/peripheral configuration and the C6418 device pin muxing, see the
Device Configurations section of this data sheet.
{'5 TEXAS INSTRUMENTS
General-Purpose Input/Output (GPIO)
84 August 2004 − Revised January 2006SPRS241D
To use the GP0[15:0] software-configurable GPIO pins, the GPxEN bits in the GP Enable (GPEN) Register
and the GPxDIR bits in the GP Direction (GPDIR) Register must be properly configured.
GPxEN = 1 GP[x] pin is enabled
GPxDIR = 0 GP[x] pin is an input
GPxDIR = 1 GP[x] pin is an output
where “x” represents one of the 15 through 0 GPIO pins
Figure 4−4 shows the GPIO enable bits in the GPEN register for the C6418 device. To use any of the GPx
pins as general-purpose input/output functions, the corresponding GPxEN bit must be set to “1” (enabled).
Default values are device-specific, so refer to Figure 4−4 for the C6418 default configuration.
31 24 23 16
Reserved
R-0
15 14 13 12 11 10 9 8 7 6543210
GP15
EN GP14
EN GP13
EN GP12
EN GP11
EN GP10
EN GP9
EN GP8
EN GP7
EN GP6
EN GP5
EN GP4
EN GP3
EN GP2
EN GP1
EN GP0
EN
R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-1 R/W-1 R/W-1 R/W-1 R/W-1 R/W-0 R/W-0 R/W-1
Legend: R/W = Readable/Writeable; -n = value after reset, -x = undefined value after reset
Figure 4−4. GPIO Enable Register (GPEN) [Hex Address: 01B0 0000]
{9 TEXAS INSTRUMENTS
General-Purpose Input/Output (GPIO)
85
August 2004 − Revised January 2006 SPRS241D
Figure 4−5 shows the GPIO direction bits in the GPDIR register. This register determines if a given GPIO pin
is an input or an output providing the corresponding GPxEN bit is enabled (set to “1”) in the GPEN register.
By default, all the GPIO pins are configured as input pins.
31 24 23 16
Reserved
R-0
15 14 13 12 11 10 9876543210
GP15
DIR GP14
DIR GP13
DIR GP12
DIR GP11
DIR GP10
DIR GP9
DIR GP8
DIR GP7
DIR GP6
DIR GP5
DIR GP4
DIR GP3
DIR GP2
DIR GP1
DIR GP0
DIR
R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
Legend: R/W = Readable/Writeable; -n = value after reset, -x = undefined value after reset
Figure 4−5. GPIO Direction Register (GPDIR) [Hex Address: 01B0 0004]
For more detailed information on general-purpose inputs/outputs (GPIOs), see the TMS320C6000 DSP
General-Purpose Input/Output (GPIO) Reference Guide (literature number SPRU584).
Inlem Peliphe CLKIN RESET as SPRs2410 *9 TEXAS Aug INSTRUMENTS
Power-Down Modes Logic
86 August 2004 − Revised January 2006SPRS241D
4.7 Power-Down Modes Logic
Figure 4−6 shows the power-down mode logic on the C6418.
PWRD
Internal Clock Tree
CPU
IFR
IER
CSR
PD1
PD2
Power-
Down
Logic
Clock
PLL
CLKIN RESET
CLKOUT6
PD3
Internal
Peripherals
CLKOUT4
Clock
and Dividers
Distribution
External input clocks, with the exception of CLKIN, are not gated by the power-down mode logic.
TMS320C6418
Figure 4−6. Power-Down Mode Logic
Note: to further save power, the PERCFG register can be used to disable unused peripherals. For more
detailed information on disabling peripherals using the PERCFG register, see the Device Configurations
section of this data sheet.
4.7.1 Triggering, Wake-up, and Effects
The power-down modes and their wake-up methods are programmed by setting the PWRD field (bits 15−10)
of the control status register (CSR). The PWRD field of the CSR is shown in Figure 4−7 and described in
Table 4−4. When writing to the CSR, all bits of the PWRD field should be set at the same time. Logic 0 should
be used when writing to the reserved bit (bit 15) of the PWRD field. The CSR is discussed in detail in the
TMS320C6000 CPU and Instruction Set Reference Guide (literature number SPRU189).
Powerrdown mode blocks the wntema‘ dock mpuls at the {9 TEXAS INSTRUMENTS
Power-Down Modes Logic
87
August 2004 − Revised January 2006 SPRS241D
31 16
15 14 13 12 11 10 9 8
Reserved Enable or
Non-Enabled
Interrupt Wake
Enabled
Interrupt Wake PD3 PD2 PD1
R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
7 0
Legend: R/W−x = Read/write reset value
NOTE: The shadowed bits are not part of the power-down logic discussion and therefore are not covered here. For information on these other
bit fields in the CSR register, see the TMS320C6000 CPU and Instruction Set Reference Guide (literature number SPRU189).
Figure 4−7. PWRD Field of the CSR Register
A delay of up to nine clock cycles may occur after the instruction that sets the PWRD bits in the CSR before the
PD mode takes effect. As best practice, NOPs should be padded after the PWRD bits are set in the CSR to
account for this delay.
If PD1 mode is terminated by a non-enabled interrupt, the program execution returns to the instruction where
PD1 took effect. If PD1 mode is terminated by an enabled interrupt, the interrupt service routine will be executed
first, then the program execution returns to the instruction where PD1 took effect. In the case with an enabled
interrupt, the GIE bit in the CSR and the NMIE bit in the interrupt enable register (IER) must also be set in order
for the interrupt service routine to execute; otherwise, execution returns to the instruction where PD1 took effect
upon PD1 mode termination by an enabled interrupt.
PD2 and PD3 modes can only be aborted by device reset. Table 4−4 summarizes all the power-down modes.
Table 4−4. Characteristics of the Power-Down Modes
PRWD FIELD
(BITS 15−10) POWER-DOWN
MODE WAKE-UP METHOD EFFECT ON CHIP’S OPERATION
000000 No power-down — —
001001 PD1 Wake by an enabled interrupt CPU halted (except for the interrupt logic)
Power-down mode blocks the internal clock inputs at the
010001 PD1 Wake by an enabled or
non-enabled interrupt
Power-down mode blocks the internal clock inputs at the
boundary of the CPU, preventing most of the CPU’s logic from
switching. During PD1, EDMA transactions can proceed between
peripherals and internal memory.
011010 PD2Wake by a device reset
Output clock from PLL is halted, stopping the internal clock
structure from switching and resulting in the entire chip being
halted. All register and internal RAM contents are preserved. All
functional I/O “freeze” in the last state when the PLL clock is
turned off.
011100 PD3Wake by a device reset
Input clock to the PLL stops generating clocks. All register and
internal RAM contents are preserved. All functional I/O “freeze” in
the last state when the PLL clock is turned off. Following reset, the
PLL needs time to re-lock, just as it does following power-up.
Wake-up from PD3 takes longer than wake-up from PD2 because
the PLL needs to be re-locked, just as it does following power-up.
All others Reserved —
When entering PD2 and PD3, all functional I/O remains in the previous state. However, for peripherals which are asynchronous in nature or
peripherals with an external clock source, output signals may transition in response to stimulus on the inputs. Under these conditions,
peripherals will not operate according to specifications.
as SPRs2410 *9 TEXAS INSTRUMENTS
Power-Supply Sequencing
88 August 2004 − Revised January 2006SPRS241D
4.7.2 C64x Power-Down Mode with an Emulator
If user power-down modes are programmed, and an emulator is attached, the modes will be masked to allow
the emulator access to the system. This condition prevails until the emulator is reset or the cable is removed
from the header. If power measurements are to be performed when in a power-down mode, the emulator cable
should be removed.
When the DSP is in power-down mode PD2 or PD3, emulation logic will force any emulation execution
command (such as Step or Run) to spin in IDLE. For this reason, PC writes (such as loading code) will fail.
A DSP reset will be required to get the DSP out of PD2/PD3.
4.8 Power-Supply Sequencing
TI DSPs do not require specific power sequencing between the core supply and the I/O supply. However,
systems should be designed to ensure that neither supply is powered up for extended periods of time
(>1 second) if the other supply is below the proper operating voltage.
4.8.1 Power-Supply Design Considerations
A dual-power supply with simultaneous sequencing can be used to eliminate the delay between core and I/O
power up. A Schottky diode can also be used to tie the core rail to the I/O rail (see Figure 4−8).
DVDD
CVDD
VSS
C6000
DSP
Schottky
Diode
I/O Supply
Core Supply
GND
Figure 4−8. Schottky Diode Diagram
Core and I/O supply voltage regulators should be located close to the DSP (or DSP array) to minimize
inductance and resistance in the power delivery path. Additionally, when designing for high-performance
applications utilizing the C6000 platform of DSPs, the PC board should include separate power planes for
core, I/O, and ground, all bypassed with high-quality low-ESL/ESR capacitors.
TI DSPs do not require specific power sequencing between the core supply and the I/O supply. However,
systems should be designed to ensure that neither supply is powered up for extended periods of time if the
other supply is below the proper operating voltage.
*9 TEXAS INSTRUMENTS
Power-Supply Decoupling
89
August 2004 − Revised January 2006 SPRS241D
4.9 Power-Supply Decoupling
In order to properly decouple the supply planes from system noise, place as many capacitors (caps) as
possible close to the DSP. Assuming 0603 caps, the user should be able to fit a total of 60 caps, 30 for the
core supply and 30 for the I/O supply. These caps need to be close to the DSP power pins, no more than
1.25 cm maximum distance to be effective. Physically smaller caps, such as 0402, are better because of their
lower parasitic inductance. Proper capacitance values are also important. Small bypass caps (near 560 pF)
should be closest to the power pins. Medium bypass caps (220 nF or as large as can be obtained in a small
package) should be next closest. TI recommends no less than 8 small and 8 medium caps per supply (32 total)
be placed immediately next to the BGA vias, using the “interior” BGA space and at least the corners of the
“exterior”.
Eight larger caps (4 for each supply) can be placed further away for bulk decoupling. Large bulk caps (on the
order of 100 µF) should be furthest away (but still as close as possible). No less than 4 large caps per supply
(8 total) should be placed outside of the BGA.
Any cap selection needs to be evaluated from a yield/manufacturing point-of-view. As with the selection of any
component, verification of capacitor availability over the product’s production lifetime should be considered.
4.10 Peripheral Power-Down Operation
The C6418 device can be powered down in two ways:
Power-down due to software configuration − relates to the default state of the peripheral configuration bits
in the PERCFG register.
Power-down during run-time via software configuration
On the C6418 device, the HPI, McASP1, and GP0 peripherals pin muxing is controlled (selected) at the pin
level during chip reset (e.g., HPI_EN and HD5 pins). If McASP1 pin muxing is selected, then the McASP1
peripheral configuration register bit must be configured properly to enable the McASP1 peripheral.
The McASP1, McASP0, I2C1, and I2C0 peripheral functions are selected via the peripheral configuration
(PERCFG) register bits.
For more detailed information on the peripheral configuration pins and the PERCFG register bits, see the
Device Configurations section of this document.
*9 TEXAS INSTRUMENTS
IEEE 1149.1 JTAG Compatibility Statement
90 August 2004 − Revised January 2006SPRS241D
4.11 IEEE 1149.1 JTAG Compatibility Statement
The TMS320C6418 DSP requires that both TRST and RESET be asserted upon power up to be properly
initialized. While RESET initializes the DSP core, TRST initializes the DSP’s emulation logic. Both resets are
required for proper operation.
Note: TRST is synchronous and must be clocked by TCLK; otherwise, BSCAN may not respond as expected
after TRST is asserted.
While both TRST and RESET need to be asserted upon power up, only RESET needs to be released for the
DSP to boot properly. TRST may be asserted indefinitely for normal operation, keeping the JTAG port interface
and DSP’s emulation logic in the reset state. TRST only needs to be released when it is necessary to use a
JTAG controller to debug the DSP or exercise the DSP’s boundary scan functionality. RESET must be
released in order for boundary-scan JTAG to read the variant field of IDCODE correctly. Other boundary-scan
instructions work correctly independent of current state of RESET.
The TMS320C6418 DSP includes an internal pulldown (IPD) on the TRST pin to ensure that TRST will always
be asserted upon power up and the DSP’s internal emulation logic will always be properly initialized when this
pin is not routed out. JTAG controllers from Texas Instruments actively drive TRST high. However, some
third-party JTAG controllers may not drive TRST high but expect the use of an external pullup resistor on TRST.
When using this type of JTAG controller, assert TRST to initialize the DSP after powerup and externally drive
TRST high before attempting any emulation or boundary scan operations.
Following the release of RESET, the low-to-high transition of TRST must occur to latch the state of EMU1 and
EMU0. The EMU[1:0] pins configure the device for either Boundary Scan mode or Normal/Emulation mode.
For more detailed information, see the terminal functions section of this data sheet.
Note: The DESIGN_WARNING section of the TMS320C6418 BSDL file contains information and constraints
regarding proper device operation while in Boundary Scan Mode.
For more detailed information on the C6418 JTAG emulation, see the TMS320C6000 DSP Designing for JTAG
Emulation Reference Guide (literature number SPRU641).
4.12 EMIF Device Speed
The rated EMIF speed of these devices only applies to the SDRAM interface when in a system that meets the
following requirements:
1 chip-enable (CE) space (maximum of 2 chips) of SDRAM connected to EMIF
up to 1 CE space of buffers connected to EMIF
EMIF trace lengths between 1 and 3 inches
166-MHz SDRAM for 133-MHz operation
143-MHz SDRAM for 100-MHz operation
Other configurations may be possible, but timing analysis must be done to verify all AC timings are met.
Verification of AC timings is mandatory when using configurations other than those specified above. TI
recommends utilizing I/O buffer information specification (IBIS) to analyze all AC timings.
To properly use IBIS models to attain accurate timing analysis for a given system, see the Using IBIS Models
for Timing Analysis application report (literature number SPRA839).
To maintain signal integrity, serial termination resistors should be inserted into all EMIF output signal lines (see
the Terminal Functions table for the EMIF output signals).
For more detailed information on the C6418 EMIF peripheral, see the TMS320C6000 DSP External Memory
Interface (EMIF) Reference Guide (literature number SPRU266).
*9 TEXAS INSTRUMENTS
Bootmode
91
August 2004 − Revised January 2006 SPRS241D
4.13 Bootmode
The C6418 device resets using the active-low signal RESET. While RESET is low, the device is held in reset
and is initialized to the prescribed reset state. Refer to reset timing for reset timing characteristics and states
of device pins during reset. The release of RESET starts the processor running with the prescribed device
configuration and boot mode.
The C6418 has three types of boot modes:
Host boot
If host boot is selected, upon release of RESET, the CPU is internally “stalled” while the remainder of the
device is released. During this period, an external host can initialize the CPU’s memory space as
necessary through the host interface, including internal configuration registers, such as those that control
the EMIF or other peripherals. For the C6418 device, the HPI peripheral is used for host boot providing the
TOUT0/HPI_EN pin is low, enabling the HPI peripheral [default]. Once the host is finished with all
necessary initialization, it must set the DSPINT bit in the HPIC register to complete the boot process. This
transition causes the boot configuration logic to bring the CPU out of the “stalled” state. The CPU then
begins execution from address 0. The DSPINT condition is not latched by the CPU, because it occurs
while the CPU is still internally “stalled”. Also, DSPINT brings the CPU out of the “stalled” state only if the
host boot process is selected. All memory may be written to and read by the host. This allows for the host to
verify what it sends to the DSP if required. After the CPU is out of the “stalled” state, the CPU needs to clear
the DSPINT, otherwise, no more DSPINTs can be received.
EMIF boot (using default ROM timings)
Upon the release of RESET, the 1K-Byte ROM code located in the beginning of CE1 is copied to address 0
by the EDMA using the default ROM timings, while the CPU is internally “stalled”. The data should be
stored in the endian format that the system is using. In this case, the EMIF automatically assembles
consecutive 8-bit bytes to form the 32-bit instruction words to be copied. The transfer is automatically done
by the EDMA as a single-frame block transfer from the ROM to address 0. After completion of the block
transfer, the CPU is released from the “stalled” state and starts running from address 0.
No boot
With no boot, the CPU begins direct execution from the memory located at address 0. Note: operation is
undefined if invalid code is located at address 0.
4.14 Reset
A hardware reset (RESET) is required to place the DSP into a known good state out of power-up. The RESET
signal can be asserted (pulled low) prior to ramping the core and I/O voltages or after the core and I/O voltages
have reached their proper operating conditions. As a best practice, reset should be held low during power-up.
Prior to deasserting RESET (low-to-high transition), the core and I/O voltages should be at their proper
operating conditions and CLKIN should also be running at the correct frequency.
{'5 TEXAS INSTRUMENTS
Device Electrical Specifications
92 August 2004 − Revised January 2006SPRS241D
5 Device Electrical Specifications
5.1 Absolute Maximum Ratings Over Operating Case Temperature Range (Unless Otherwise
Noted)
Supply voltage ranges: CVDD (see Note 1) − 0.3 V to 1.8 V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
DVDD (see Note 1) −0.3 V to 4 V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Input voltage range: VI−0.3 V to 4 V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Output voltage range: VO−0.3 V to 4 V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Operating case temperature range, TC: (default) [GTS and ZTS] 0_C to 90_C. . . . . . . . . . . . . . . . . . . . . . .
(A version) [GTSA and ZTSA] −40_C to105_C. . . . . . . . . . . .
Storage temperature range, Tstg −65_C to 150_C. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Package Temperature Cycling: Temperature Range −40_C to125_C. . . . . . . . . . . . . . . . . . . . . . . . . . .
Number of Cycles (GTS and GTSA) 1000. . . . . . . . . . . . . . . . . . . . . . .
Number of Cycles (ZTS and ZTSA) 500. . . . . . . . . . . . . . . . . . . . . . . . .
Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and
functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not
implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
NOTE 1: All voltage values are with respect to VSS.
5.2 Recommended Operating Conditions
MIN NOM MAX UNIT
CVDD
Supply voltage, Core (−500 device)1.14 1.2 1.26 V
CVDD Supply voltage, Core (-600 device)1.36 1.4 1.44 V
DVDD Supply voltage, I/O 3.14 3.3 3.46 V
VSS Supply ground 0 0 0 V
VIH High-level input voltage 2 V
VIL Low-level input voltage 0.8 V
VOS Maximum voltage during overshoot 4.3§V
Vus Minimum voltage during undershoot −1.0§V
Commercial temperature device (GTS and ZTS) 0 90 _C
TCOperating case temperature Extended temperature device (GTSA and
ZTSA) −40 105 _C
Future variants of the C64x DSPs may operate at voltages ranging from 0.9 V to 1.4 V to provide a range of system power/performance options.
TI highly recommends that users design-in a supply that can handle multiple voltages within this range (i.e., 1.2 V, 1.25 V, 1.3 V, 1.35 V, 1.4 V
with ± 3% tolerances) by implementing simple board changes such as reference resistor values or input pin configuration modifications. Examples
of such supplies include the PT4660, PT5500, PT5520, PT6440, and PT6930 series from Power Trends, a subsidiary of Texas Instruments. Not
incorporating a flexible supply may limit the system’s ability to easily adapt to future versions of C64x devices.
§The absolute maximum ratings should not be exceeded for more than 30% of the cycle period.
Lowleve‘ ouiput current Core supp‘y currenl§ L’O supp‘y current§ *9 TEXAS INSTRUMENTS
Device Electrical Specifications
93
August 2004 − Revised January 2006 SPRS241D
5.3 Electrical Characteristics Over Recommended Ranges of Supply Voltage and Operating
Case Temperature (Unless Otherwise Noted)
PARAMETER TEST CONDITIONSMIN TYP MAX UNIT
VOH High-level output voltage DVDD = MIN, IOH = MAX 2.4 V
VOL Low-level output voltage DVDD = MIN, IOL = MAX 0.4 V
VI = VSS to DVDD no opposing internal
resistor ±10 uA
IIInput current VI = VSS to DVDD opposing internal
pullup resistor50 100 150 uA
VI = VSS to DVDD opposing internal
pulldown resistor−150 −100 −50 uA
IOH
High-level output current
EMIF, CLKOUT4, CLKOUT6, EMUx −16 mA
IOH High-level output current Timer, TDO, GPIO, McBSP, HPI −8 mA
EMIF, CLKOUT4, CLKOUT6, EMUx 16 mA
I
OL
Low-level output current Timer, TDO, GPIO, McBSP, HPI 8 mA
IOL
Low-level output current
SCL1, SDA1, SCL0, and SDA0 3 mA
IOZ Off-state output current VO = DVDD or 0 V ±10 uA
ICDD Core supply current§
CVDD = 1.4 V, CPU clock = 600 MHz 828 mA
ICDD Core supply current
§
CVDD = 1.2 V, CPU clock = 500 MHz 568 mA
IDDD I/O supply current§
DVDD = 3.3 V, CPU clock = 600 MHz 167 mA
IDDD I/O supply current
§
DVDD = 3.3 V, CPU clock = 500 MHz 140 mA
CiInput capacitance 10 pF
CoOutput capacitance 10 pF
For test conditions shown as MIN, MAX, or NOM, use the appropriate value specified in the recommended operating conditions table.
Applies only to pins with an internal pullup (IPU) or pulldown (IPD) resistor.
§Measured with average activity (50% high/50% low power) at 25°C case temperature and 133-MHz EMIF for -600 speed and 100-MHz EMIF
for -500 speed. This model represents a device performing high-DSP-activity operations 50% of the time, and the remainder performing
low-DSP-activity operations. The high/low-DSP-activity models are defined as follows:
High-DSP-Activity Model:
CPU: 8 instructions/cycle with 2 LDDW instructions [L1 Data Memory: 128 bits/cycle via LDDW instructions;
L1 Program Memory: 256 bits/cycle; L2/EMIF EDMA: 50% writes, 50% reads to/from SDRAM (50% bit-switching)]
McBSP: 2 channels at E1 rate
Timers: 2 timers at maximum rate
Low-DSP-Activity Model:
CPU: 2 instructions/cycle with 1 LDH instruction [L1 Data Memory: 16 bits/cycle; L1 Program Memory: 256 bits per 4 cycles;
L2/EMIF EDMA: None]
McBSP: 2 channels at E1 rate
Timers: 2 timers at maximum rate
The actual current draw is highly application-dependent. For more details on core and I/O activity, refer to the TMS320C6418 Power Consumption
Summary application report (literature number SPRAA60).
5.4 Recommended Clock and Control Signal Transition Behavior
All clocks and control signals must transition between VIH and VIL (or between VIL and VIH) in a monotonic