TNY253, 254, 255 Datasheet by Power Integrations | Digi-Key Electronics

TNY253, 254, 255 Datasheet by Power Integrations

View All Related Products | Download PDF Datasheet
Efigflfifl ‘ .HW—o
February 2012
Figure 1. Typical Standby Application.
ORDER
PART
NUMBER 85-265
VAC
230 VAC or
115 VAC
w/Doubler
Product Highlights
Lowest Cost, Low Power Switcher Solution
• LowercostthanRCC,discretePWMandotherintegrat-
ed/hybridsolutions
• Costeffectivereplacementforbulkylinearadapters
• Lowestcomponentcount
• SimpleON/OFFcontrol–noloopcompensationdevices
• Nobiaswinding–simpler,lowercosttransformer
• AllowssimpleRCtypeEMIfilterforupto2Wfrom
universalinputor4Wfrom115VACinput
Extremely Energy Efficient
• Consumesonly30/60mWat115/230VACwithnoload
• MeetsBlueAngel,EnergyStar,Energy2000and200mW
Europeancellphonerequirementsforstandby
• Saves$1to$4peryearinenergycosts(at$0.12/kWHr)
comparedtobulkylinearadapters
• Idealforcellularphonechargers,standbypowersuppliesfor
PC,TVandVCR,utilitymeters,andcordlessphones.
High Performance at Low Cost
• High-voltagepowered–idealforchargerapplications
• Veryhighloopbandwidthprovidesexcellenttransient
responseandfastturnonwithpracticallynoovershoot
• Currentlimitoperationrejectslinefrequencyripple
• Glitchfreeoutputwheninputisremoved
• Built-incurrentlimitandthermalprotection
• 44kHzoperation(TNY253/4)withsnubberclamp
reducesEMIandvideonoiseinTVsandVCRs
• Operateswithoptocouplerorbiaswindingfeedback
Description
TheTinySwitchfamilyusesabreakthroughdesigntoprovide
thelowestcost,highefficiency,off-lineswitchersolutionin
the0to10Wrange.Thesedevicesintegratea700Vpower
MOSFET, oscillator, high-voltage switched current source,
currentlimitandthermalshutdowncircuitry.Theystart-up
andrunonpowerderivedfromtheDRAINvoltage,eliminat-
ingtheneedforatransformerbiaswindingandtheassociated
circuitry.Andyet,theyconsumeonlyabout80mWatnoload,
from265VACinput.AsimpleON/OFFcontrolschemealso
eliminatestheneedforloopcompensation.
TNY253P
TNY254P
TinySwitch Selection Guide
PACKAGE
DIP-8
DIP-8
SMD-8
SMD-8
TNY253G
TNY255P
0-2 W
1-4 W
0-4 W
2-5 W
TNY255G
DIP-8
TNY254G
SMD-8
3.5-6.5 W4-10 W
TheTNY253andTNY254switchat44kHztominimizeEMI
andtoallowasimplesnubberclamptolimitDRAIN spike
voltage.Atthesametime,theyallowuseoflowcostEE16core
transformerstodeliverupto5W.TheTNY253isidenticalto
TNY254exceptforitslowercurrentlimit,whichreducesoutput
short-circuit current for applications under 2.5 W. TNY255
useshigherswitchingrateof130kHztodeliverupto10W
fromthesamelowcostEE16coreforapplicationssuchasPC
standbysupply. An EE13or EF13core withsafety spaced
bobbincanbeusedforapplicationsunder2.5W.Absenceof
abiaswindingeliminatestheneedfortaping/marginsinmost
applications,whentripleinsulatedwireisusedforthesecondary.
Thissimplifiesthetransformerconstructionandreducescost.
PI-2178-022699
Wide-Range
High-Voltage
DC Input
TinySwitch
D
S
EN
BP
+
+
DC
Output
Table 1. *Please refer to the Key Application Considerations section
for details.
Recommended Range
for Lowest System Cost*
TNY253/254/255
TinySwitch Family
Energy Efficient, Low Power Off-line Switchers
_I__I__I__I_ L8 O_l}o _I__I__I__I_
Rev E
02/12
TNY253/254/255
2
Figure 2. Functional Block Diagram.
Figure 3. Pin Configuration.
Pin Functional Description
DRAIN (D) Pin:
PowerMOSFETdrainconnection.Providesinternaloperating
currentforbothstart-upandsteady-stateoperation.
BYPASS (BP) Pin:
Connectionpointforanexternalbypasscapacitorfortheinter-
nallygenerated5.8Vsupply.Bypasspinisnotintendedfor
sourcingsupplycurrenttoexternalcircuitry.
ENABLE (EN) Pin:
ThepowerMOSFETswitchingcanbeterminatedbypulling
thispinlow.TheI-Vcharacteristicofthispinisequivalentto
avoltagesourceofapproximately1.5Vwithasourcecurrent
clampof50µA.
SOURCE (S) Pin:
PowerMOSFETsourceconnection.Primaryreturn.
TinySwitch Functional Description
TinySwitchisintendedforlowpoweroff-lineapplications.It
combinesahigh-voltagepowerMOSFETswitchwithapower
supplycontrollerinonedevice.UnlikeaconventionalPWM
(Pulse Width Modulator) controller, the TinySwitch uses a
simpleON/OFFcontroltoregulatetheoutputvoltage.
The TinySwitch controller consists of an Oscillator, Enable
(SenseandLogic)circuit,5.8VRegulator,Undervoltagecircuit,
HystereticOverTemperatureProtection,CurrentLimitcircuit,
LeadingEdgeBlanking,anda700VpowerMOSFET.Figure
2showsafunctionalblockdiagramwiththemostimportant
features.
Oscillator
Theoscillatorfrequencyisinternallysetat44kHz(130kHz
fortheTNY255).ThetwosignalsofinterestaretheMaxi-
mumDutyCyclesignal(DMAX)whichrunsattypically67%
dutycycleandtheClocksignalthatindicatesthebeginningof
eachcycle.Whencyclesareskipped(seebelow),theoscilla-
torfrequencydoubles(exceptforTNY255whichremainsat
130kHz).ThisincreasesthesamplingrateattheENABLE
pinforfasterloopresponse.
Enable (Sense and Logic)
TheENABLEpincircuithasasourcefollowerinputstageset
at1.5V.Theinputcurrentisclampedbyacurrentsourceset
at50µAwith10µAhysteresis.Theoutputoftheenablesense
PI-2197-061898
CLOCK
OSCILLATOR
5.8 V
5.1 V
SOURCE
S
R
Q
DCMAX
BYPASS
+
-
VILIMIT
LEADING
EDGE
BLANKING
THERMAL
SHUTDOWN
+
-
DRAIN
REGULATOR
5.8 V
UNDERVOLTAGE
1.5 V + VTH
ENABLE
Q
50 μA
PI-2199-031501
ENABLE
8
5
7
6
DRAIN
SOURCE
SOURCE
SOURCE
1
4
2
3
SOURCE
SOURCEBYPASS
P Package (DIP-8)
G Package (SMD-8)
TNY253/254/255
3
Rev E
02/12
circuit is sampled at the rising edge of the oscillator Clock
signal(atthebeginningofeachcycle).Ifitishigh,thenthe
powerMOSFETisturnedon(enabled)forthatcycle,otherwise
thepowerMOSFETremainsintheoffstate(cycleskipped).
Sincethesamplingisdoneonlyonceatthebeginningofeach
cycle,anysubsequentchangesattheENABLEpinduringthe
cycleareignored.
5.8 V Regulator
The5.8Vregulatorchargesthebypasscapacitorconnectedto
theBYPASSpinto5.8Vbydrawingacurrentfromthevoltage
ontheDRAIN,whenevertheMOSFETisoff.TheBYPASSpin
istheinternalsupplyvoltagenodefortheTinySwitch.When
theMOSFETison,theTinySwitchrunsoffoftheenergystored
inthebypasscapacitor.Extremelylowpowerconsumptionof
theinternalcircuitryallowstheTinySwitchtooperatecontinu-
ouslyfromthecurrentdrawnfromtheDRAINpin.Abypass
capacitorvalueof0.1µFissufficientforbothhighfrequency
de-couplingandenergystorage.
Undervoltage
TheundervoltagecircuitrydisablesthepowerMOSFETwhen
theBYPASSpinvoltagedropsbelow5.1V.OncetheBYPASS
pinvoltagedropsbelow5.1V,ithastorisebackto5.8Vto
enable(turn-on)thepowerMOSFET.
Hysteretic Over Temperature Protection
Thethermalshutdowncircuitrysensesthediejunctiontem-
perature.Thethresholdissetat135°Cwith70°Chysteresis.
When the junction temperature rises above this threshold
(135°C)thepowerMOSFETisdisabledandremainsdisabled
untilthediejunctiontemperaturefallsby70°C,atwhichpoint
itisre-enabled.
Current Limit
The current limit circuit senses the current in the power
MOSFET.Whenthiscurrentexceedstheinternalthreshold
(ILIMIT),thepowerMOSFETisturnedofffortheremainderof
thatcycle.
The leading edge blanking circuit inhibits the current limit
comparatorforashorttime(tLEB)afterthepowerMOSFET
isturnedon.Thisleadingedgeblankingtimehasbeensetso
that current spikes caused by primary-side capacitance and
secondary-siderectifierreverserecoverytimewillnotcause
prematureterminationoftheswitchingpulse.
TinySwitch Operation
TinySwitchisintendedtooperateinthecurrentlimitmode.
Whenenabled,theoscillatorturnsthepowerMOSFETonatthe
beginningofeachcycle.TheMOSFETisturnedoffwhenthe
currentrampsuptothecurrentlimit.Themaximumon-time
oftheMOSFETislimitedtoDCMAXbytheoscillator.Since
thecurrentlimitandfrequencyofagivenTinySwitchdevice
areconstant,thepowerdeliveredisproportionaltotheprimary
inductanceofthetransformerandisrelativelyindependentof
theinputvoltage.Therefore,thedesignofthepowersupply
involvescalculatingtheprimaryinductanceofthetransformer
forthemaximumpowerrequired.AslongastheTinySwitch
devicechosenisratedforthepowerlevelatthelowestinput
voltage,thecalculatedinductancewillrampupthecurrentto
thecurrentlimitbeforetheDCMAXlimitisreached.
Enable Function
TheTinySwitchsensestheENABLEpintodeterminewhether
ornottoproceedwiththenextswitchcycleasdescribedearlier.
OnceacycleisstartedTinySwitchalwayscompletesthecycle
(evenwhentheENABLEpinchangesstatehalfwaythroughthe
cycle).Thisoperationresultsinapowersupplywhoseoutput
voltagerippleisdeterminedbytheoutputcapacitor,amountof
energyperswitchcycleandthedelayoftheENABLEfeedback.
TheENABLEsignalisgeneratedonthesecondarybycomparing
thepowersupplyoutputvoltagewithareferencevoltage.The
ENABLEsignalishighwhenthepowersupplyoutputvoltage
islessthanthereferencevoltage.
In a typical implementation, the ENABLE pin is driven by
anoptocoupler.Thecollectoroftheoptocouplertransistoris
connectedtotheENABLEpinandtheemitterisconnectedto
theSOURCEpin.TheoptocouplerLEDisconnectedinseries
with a Zener across the DC output voltage to be regulated.
Whentheoutputvoltageexceedsthetargetregulationvoltage
level(optocouplerdiodevoltagedropplusZenervoltage),the
optocouplerdiodewillstarttoconduct,pullingtheENABLE
pinlow.TheZenercouldbereplacedbyaTL431devicefor
improvedaccuracy.
TheENABLE pin pull-downcurrentthreshold is nominally
50µA,butissetto40µAtheinstantthethresholdisexceeded.
Thisisresetto50µAwhentheENABLEpull-downcurrent
dropsbelowthecurrentthresholdof40µA.
ON/OFF Control
TheinternalclockoftheTinySwitchrunsallthetime.Atthe
beginning of each clock cycle the TinySwitch samples the
ENABLEpintodecidewhetherornottoimplementaswitch
cycle.IftheENABLEpinishigh(<40µA),thenaswitching
cycle takes place.  If the ENABLE pin is low (greater than
50µA)thennoswitchingcycleoccurs,andtheENABLEpin
statusissampledagainatthestartofthesubsequentclockcycle.
AtfullloadTinySwitchwillconductduringthe majority of
itsclock cycles (Figure 4).Atloadslessthanfullload,the
TinySwitchwill“skip”morecyclesinordertomaintainvolt-
age regulation at the secondary output (Figure 5). At light
loadornoload,almostallcycleswillbeskipped(Figure6).
Asmallpercentageofcycleswillconducttosupportthepower
consumptionofthepowersupply.
Rev E
02/12
TNY253/254/255
4
Figure 4. TinySwitch Operation at Heavy Load. Figure 5. TinySwitch Operation at Medium Load.
V
DRAIN
V
EN
CLOCK
DC
DRAIN
I
MAX
PI-2255-061298
V
DRAIN
V
EN
CLOCK
DC
DRAIN
I
MAX
PI-2259-061298
TheresponsetimeofTinySwitchON/OFFcontrolschemeis
veryfastcomparedtonormalPWMcontrol.Thisprovideshigh
lineripplerejectionandexcellenttransientresponse.
Power Up/Down
TinySwitchrequiresonlya0.1µFcapacitorontheBYPASS
pin.Becauseofthesmallsizeofthiscapacitor,thepower-up
delayiskepttoanabsoluteminimum,typically0.3ms(Fig-
ure7).DuetothefastnatureoftheON/OFFfeedback,thereis
noovershootatthepowersupplyoutput.Duringpower-down,
thepowerMOSFETwillswitchuntiltherectifiedlinevoltage
dropstoapproximately12V.ThepowerMOSFETwillthen
remainoffwithoutanyglitches(Figure8).
Bias Winding Eliminated
TinySwitchdoesnotrequireabiaswindingtoprovidepower
to the chip.  Instead it draws the power directly from the
DRAINpin(seeFunctionalDescriptionabove).Thishastwo
mainbenefits.Firstforanominalapplication,thiseliminates
thecostofanextrabiaswindingandassociatedcomponents.
Secondly,forchargerapplications,thecurrent-voltagechar-
acteristicoftenallowstheoutputvoltagetofalltolowvalues
whilestilldeliveringpower.Thistypeofapplicationnormally
requiresaforward-biaswindingwhichhasmanymoreassoci-
atedcomponents,noneofwhicharenecessarywithTinySwitch.
Current Limit Operation
EachswitchingcycleisterminatedwhentheDRAIN current
reachesthecurrentlimitoftheTinySwitch.Foragivenprimary
inductanceandinputvoltage,thedutycycleisconstant.How-
ever,dutycycledoeschangeinverselywiththeinputvoltage
providing“voltagefeed-forward”advantages:goodlineripple
rejectionandrelativelyconstantpowerdeliveryindependent
oftheinputvoltage.
44 kHz Switching Frequency (TNY253/254)
Switchingfrequency(withnocycleskipping)issetat44kHz.
Thisprovidesseveraladvantages.Athigherswitchingfrequen-
cies,thecapacitiveswitchinglossesareasignificantproportion
ofthepowerlossesinapowersupply.Athigherfrequencies,
thepreferredsnubbingschemesareRCDordiode-Zenerclamps.
However,duetothelowerswitchingfrequencyofTinySwitch,
itispossibletouseasimpleRCsnubber(andevenjustacapaci-
toralonein115VACapplicationsatpowerslevelsbelow4W).
Secondly,alowswitchingfrequencyalsoreducesEMIfiltering
requirements.At44kHz,thefirst,secondandthirdharmon-
icsareallbelow150kHzwheretheEMIlimitsarenotvery
restrictive.Forpowerlevelsbelow4Witispossibletomeet
worldwideEMIrequirementswithonlyresistiveandcapaci-
tivefilterelements(noinductorsorchokes).Thissignificantly
reducesEMIfiltercosts.
Finally, if the application requires stringent noise emissions
(suchasvideoapplications),thentheTNY253/254willallow
more effective use of diode snubbing (and other secondary
snubbingtechniques).Thelowerswitchingfrequencyallows
RCsnubberstobeusedtoreducenoise,withoutsignificantly
impactingtheefficiencyofthesupply.
130 kHz Switching Frequency (TNY255)
The switching frequency (with no cycle skipping) is set at
130kHz.ThisallowstheTNY255todeliver10Wwhilestill
usingthesamesize,lowcosttransformer(EE16)asusedby
theTNY253/254forlowerpowerapplications.
TNY253/254/255
5
Rev E
02/12
Figure 6. TinySwitch Operation at Light Load.
Figure 7. TinySwitch Power-Up Timing Diagram.
Figure 8. TinySwitch Power Down Timing Diagram.
PI-2261-061198
V
DRAIN
V
EN
CLOCK
DC
DRAIN
I
MAX
BYPASS Pin Capacitor
TheBYPASSpinusesasmall0.1µFceramiccapacitorfor
decouplingtheinternalpowersupplyoftheTinySwitch.
Application Examples
Television Standby
TinySwitchisanidealsolutionforlowcost,highefficiency
standbypowersuppliesusedinconsumerelectronicproducts
suchasTVs.Figure9showsa7.5V,1.3Wflybackcircuitthat
usesTNY253forimplementingaTVstandbysupply.Thecircuit
operatesfromtheDChigh-voltagealreadyavailablefromthe
mainpowersupply.Thisinputvoltagecanrangefrom120to
375VDCdependingontheinputACvoltagerangethattheTV
isratedfor.CapacitorC1filtersthehigh-voltageDCsupply,
andisnecessaryonlyifthereisalongtracelengthfromthe
sourceoftheDCsupplytotheinputsoftheTVstandbycircuit.
Thehigh-voltageDCbusisappliedtotheseriescombination
oftheprimarywindingofT1andtheintegratedhigh-voltage
MOSFETinsidetheTNY253.Thelowoperatingfrequencyof
theTNY253(44kHz),allowsalowcostsnubbercircuitC2and
R1tobeusedinplaceofaprimaryclampcircuit.Inaddition
tolimitingtheDRAINturnoffvoltagespiketoasafevalue,
theRCsnubberalsoreducesradiatedvideonoisebylowering
thedv/dtoftheDRAINwaveform,whichiscriticalforvideo
applicationssuchasTVandVCR.OnfixedfrequencyPWM
andRCCcircuits,useofasnubberwillresultinanundesir-
ablefixedACswitchinglossthatisindependentofload.The
ON/OFFcontrolontheTinySwitcheliminatesthisproblem
by scaling the effective switching frequency and therefore,
switchinglosslinearlywithload.Thustheefficiencyofthe
supplystaysrelativelyconstantdowntoafractionofawattof
outputloading.
ThesecondarywindingisrectifiedandfilteredbyD1andC4to
createthe7.5Voutput.L1andC5provideadditionalfiltering.
Theoutputvoltageisdeterminedbythesumoftheoptocoupler
U2LEDforwarddrop(~1V)andZenerdiodeVR1voltage.
TheresistorR2,maintainsabiascurrentthroughtheZenerto
improveitsvoltagetolerance.
10 W Standby
TheTNY255isidealforstandbyapplicationsthatrequireup
to10Wofpowerfrom230VACor100/115VACwithdoubler
circuit.TheTNY255operatesat130kHzasopposedto44kHz
forTNY253/254.Thehigherfrequencyoperationallowsthe
V
DRAIN
V
IN
PI–2253-062398
0.2
Time (ms)
.4 .6 .8 1
0 V
0
V
V
DRAIN
V
IN
12 V
PI–2251-062398
12 V
0 100
Time (ms)
200 300 400 500
0 V
0
V
Rev E
02/12
TNY253/254/255
6
Figure 9. 1.3 W TV Standby Circuit using TNY253.
Figure 10. 10 W Standby Supply Circuit.
useofalowcostEE16coretransformeruptothe10Wlevel.
Figure10showsa5V,10Wcircuitforsuchanapplication.
Thecircuitoperatesfromthehigh-voltageDCsupplyalready
availablefromthemainpowersupply.CapacitorC1filtersthe
high-voltageDCsupply,andisnecessaryonlyifthereisalong
tracelengthfromthesourceoftheDCsupplytotheinputsof
thestandbycircuit.Thehigh-voltageDCbusisappliedtothe
primarywindingofT1inserieswiththeintegratedhigh-voltage
MOSFETinsidetheTNY255.ThediodeD1,capacitorC2and
resistorR1comprisetheclampcircuitthatlimitstheturn-off
voltagespikeontheTinySwitchDRAINpintoasafevalue.
ThesecondarywindingisrectifiedandfilteredbyD2andC4
toprovidethe5Vouput.Additionalfilteringisprovidedby
L1andC5.Theoutputvoltageisdeterminedbythesumofthe
optocouplerU2LEDforwarddrop(~1V)andZenerdiode
VR1voltage.TheresistorR2,maintainsabiascurrentthrough
theZenertoimproveitsvoltagetolerance.Fortightertolerance,
aTL431precisionreferenceICfeedbackcircuitmaybeused.
Cellular Phone Charger
TheTinySwitchiswellsuitedforapplicationsthatrequirea
constantvoltageandconstantcurrentoutput.TinySwitchis
alwayspoweredfromtheinputhigh-voltage,thereforeitdoes
notrequirebiaswindingforpower.Consequently,itsopera-
tionisnotdependentontheleveloftheoutputvoltage.This
allowsforconstantcurrentchargerdesignsthatworkdownto
zerovoltsontheoutput.
PI-2242-082898
TinySwitch
D
S
EN
BP
+ 5 V
RTN
C1
0.01 μF
1 kV
C3
0.1 μF
240 - 375
VDC
R1
150 kΩ
1 W
U2
LTV817
D2
SB540 L1
10 μH
C4
2700 μF
6.3 V
C5
220 μF
10 V
VR1
1N5229B
U1
TNY255P
C2
4700 pF
1 kV
T1
1
48
10
R2
68 Ω
D1
1N4937
Optional
PI-2246-082898
DC IN
120 - 375
VDC
TinySwitch
D
S
EN
BP
+
+ 7.5 V
RTN
C3
0.1 μF
R2
1 kΩ
VR1
1N5235B
C1
0.01 μF
1 kV
R1
100 Ω
1/2 W
C2
56 pF
1 kV
D1
1N4934 L1
15 μH
C5
47 μF
10 V
C4
330 μF
10 V
U1
TNY253P
T1
U2
SFH615-2
C6
680 pF
Y1 Safety
1
48
10
Optional
2S M;
TNY253/254/255
7
Rev E
02/12
Figure 11. 3.6 W Constant Voltage-Constant Current Cellular Phone Charger Circuit.
Figure11showsa5.2V,3.6Wcellularphonechargercircuit
thatusestheTNY254andprovidesconstantvoltageandconstant
currentoutputoveranuniversalinput(85to265VAC)range.
TheACinputisrectifiedandfilteredbyD1-D4,C1andC2
tocreateahigh-voltageDCbusconnectedtoT1inserieswith
thehigh-voltageMOSFETinsidetheTNY254.Theinductor
L1formsaπ-filterinconjunctionwithC1andC2.Theresistor
R1dampsresonancesintheinductorL1.Thelowfrequencyof
operationofTNY254(44kHz)allowsuseofthesimpleπ-filter
describedaboveincombinationwithasingleY1-capacitorC8
tomeetworldwideconductedEMIstandards.ThediodeD6,
capacitorC4andresistorR2comprisetheclampcircuitthat
limitstheturn-offvoltagespikeontheTinySwitchDRAINpin
toasafevalue.Thesecondarywindingisrectifiedandfiltered
byD5andC5toprovidethe5.2Voutput.Additionalfiltering
isprovidedbyL2andC6.Theoutputvoltageisdetermined
bythesumoftheoptocouplerU2LEDforwarddrop(~1V)
andZenerdiodeVR1voltage.TheresistorR8,maintainsa
biascurrentthroughtheZenertoimproveitsvoltagetolerance.
AsimpleconstantcurrentcircuitisimplementedusingtheVBE
oftransistorQ1tosensethevoltageacrossthecurrentsense
resistorR4,whichcanbemadeupofoneormoreresistorsto
Figure 12. 0.5 W Open Loop AC Adapter Circuit.
PI-2244-082898
TinySwitch
D
S
EN
BP
+ 5.2 V
RTN
D1
1N4005
C1
6.8 μF
400 V
Fusible
RF1
10 Ω
C3
0.1 μF
85 - 265
VAC
L1
560 μH
D2
1N4005
D3
1N4005 D4
1N4005
R2
100 kΩ
1 W
U2
LTV817
D5
FR201 L2
3.3 μH
C5
220 μF
25 V
C2
4.7 μF
400 V
C6
220 μF
16 V
R7
100 Ω
R3
22 Ω
R4
1 Ω
1 W
R9
47 Ω
Q1
2N3904
R8
820 Ω
VR1
1N5230B
4.7 V
C8
2.2 nF
Y1 Safety
U1
TNY254P
C4
2200 pF
D6
1N4937
R6
0.82 Ω
1/2 W
T1
R1
1.2 kΩ
1
25
10
R5
18 Ω
1/8 W
PI-2190-031501
TinySwitch
D
S
EN
BP
+ 9 V
RTN
D1
1N4004
C1
2.2 μF
200 V
Fusible
RF1
1.8 Ω
C4
68 pF
1 KV
115 VAC
± 15%
R2
100 Ω
D2
1N4004
C3
0.1 μF
D3
1N3934
C6
100 μF
16V
C2
2.2 μF
200 V
VR1
1N5239B
C5
2.2 nF
Y1 Safety
U1
TNY253P
T1
1
56
10
Rev E
02/12
TNY253/254/255
8
achievetheappropriate value. R3 is a base currentlimiting
resistor.WhenthedropacrossR4exceedstheVBEoftransistor
Q1,itturnsonandtakesoverthecontroloftheloopbydriving
theoptocouplerLED.R6dropsanadditionalvoltagetokeep
thecontrolloopinoperationdowntozerovoltsontheoutput.
Withtheoutputshorted,thedropacrossR4andR6(~1.5V)is
sufficienttokeeptheQ1andLEDcircuitactive.ResistorsR7
andR9limittheforwardcurrentthatcouldbedrawnthrough
VR1byQ1underoutputshort-circuitconditions,duetothe
voltagedropacrossR6andR4.
AC Adapter
Manyconsumerelectronicproductsutilizelowpower50/60Hz
transformerbasedACadapters.TheTinySwitchcancostef-
fectivelyreplace these linear adapterswithasolutionthatis
lighter,smallerandmoreenergyefficient.Figure12showsa
9V,0.5WACadaptercircuitusingtheTNY253.Thiscircuit
operatesfroma115VACinput.Tosavecost,thiscircuitruns
without any feedback, in discontinuous conduction mode to
deliver constant power output relatively independent of  in-
putvoltage.Theoutputvoltageisdeterminedbythevoltage
dropacrossZenerdiodeVR1.Theprimaryinductanceofthe
transformerischosentodeliverapowerthatisinexcessofthe
requiredoutputpowerbyatleast50%toallowforcomponent
tolerancesandtomaintainsomecurrentthroughtheZenerVR1
atfullload.Atnoload,allofthepowerisdeliveredtotheZener
whichshouldberatedandheatsinkedaccordingly.Inspiteof
aconstantpowerconsumptionfromthemainsinput,thissolu-
tionisstillsignificantlymoreefficientthanlinearadaptersup
tooutputpowerlevelsofapproximately1W.
TheACinputisrectifiedbydiodesD1andD2.D2isusedto
reduceconductedEMIbyonlyallowingnoiseontotheneutral
lineduringdiodeconduction.TherectifiedACisthenfiltered
bycapacitorsC1andC2togenerateahigh-voltageDCbus,
whichisappliedtotheseriescombinationoftheprimarywind-
ingofT1andthehigh-voltageMOSFETinsidetheTNY253.
TheresistorR2alongwithcapacitorsC1andC2formaπ-filter
which is sufficient for meeting EMI conducted emissions at
thesepowerlevels.C5isaYcapacitorwhichisusedtoreduce
commonmodeEMI.Duetothe700VratingoftheTinySwitch
MOSFET,asimplecapacitivesnubber(C4)isadequatetolimit
theleakageinductancespikein115VACapplications,atlow
powerlevels.Thesecondarywindingisrectifiedandfiltered
byD3andC6.
Key Application Considerations
For the most up to date information visit our Web site
at: www.powerint.com
Design
Output Power Range
ThepowerlevelsshownintheTinySwitchSelectionGuide
(Table1)areapproximate,recommendedoutputpowerranges
that will provide a cost optimum design and are based on
followingassumptions:
1. TheminimumDCinputvoltageis90Vorhigherfor85VAC
inputor240Vorhigherfor230VACinputor115VAC
inputwithavoltagedoubler.
2. The TinySwitch is not thermally limited - the source
pinsaresolderedtosufficientcopperareatokeepthedie
temperatureatorbelow100°C.Thislimitationdoesnot
usuallyapplytoTNY253andTNY254.
ThemaximumpowercapabilityofaTinySwitchdependson
the thermal environment, transformer core size and design
(continuousordiscontinuous),efficiencyrequired,minimum
specifiedinputvoltage,inputstoragecapacitance,outputvolt-
age,outputdiodeforwarddrop,etc.,andcanbedifferentfrom
thevaluesshownintheselectionguide.
Audible Noise
Atloadsotherthanmaximumload,thecycleskippingmode
operationusedinTinySwitchcangenerateaudiofrequency
componentsinthetransformer.Thiscancausethetransformer
to produce audio noise.  Transformer audible noise can be
reduced by utilizing appropriate transformer construction
techniquesand decreasing the peak fluxdensity. For more
information on audio suppression techniques, please check
the Application Notes section on our Web site at
www.powerint.com.
CeramiccapacitorsthatusedielectricssuchasZ5U,whenused
inclampandsnubbercircuits,canalsogenerateaudionoise
duetoelectrostrictionandpiezo-electriceffects.Ifthisisthe
case,replacingthemwithacapacitorhavingadifferenttype
ofdielectricisthesimplestsolution.Polyesterfilmcapacitor
isagoodalternative.
Short-Circuit Current
TheTinySwitchdoesnothaveanauto-restartfeature.Asa
result,TinySwitchwillcontinuetodeliverpowertotheload
duringoutputshort-circuitconditions.Intheworstcase,peak
short-circuitcurrentisequaltotheprimarycurrentlimit(ILIMIT)
multipliedbytheturnsratioofthetransformer(Np/Ns).In
atypicaldesigntheaveragecurrentis25to50%lowerthan
this peak value. At the power levels of TinySwitch this is
TNY253/254/255
9
Rev E
02/12
Figure 13. Recommended PC Layout for the TinySwitch.
easilyaccommodatedbyratingtheoutputdiodetohandlethe
short-circuitcurrent.Theshort-circuitcurrentcanbeminimized
bychoosingthesmallest(lowestcurrentlimit)TinySwitchfor
therequiredpower.
Layout
Single Point Grounding
UseasinglepointgroundconnectionattheSOURCEpinfor
theBYPASSpincapacitorandtheInputFilterCapacitor(see
Figure13).
Primary Loop Area
Theareaoftheprimaryloopthatconnectstheinputfilterca-
pacitor,transformerprimaryandTinySwitchtogether,should
bekeptassmallaspossible.
Primary Clamp Circuit
Aclamporsnubbercircuitisusedtominimizepeakvoltage
andringingontheDRAINpinatturn-off.Thiscanbeachieved
byusinganRCsnubberforlessthan3WoranRCDclamp
asshowninFigure13forhigherpower.AZeneranddiode
clampacrosstheprimaryorasingle550VZenerclampfrom
DRAINtoSOURCEcanalsobeused.Inallcasescareshould
betakentominimizethecircuitpathfromthesnubber/clamp
componentstothetransformerandTinySwitch.
Thermal Considerations
CopperunderneaththeTinySwitchacts notonlyasa single
pointground,butalsoasaheatsink.Thehatchedareashown
in Figure 13 should be maximized for good heat-sinking of
TinySwitchandoutputdiode.
Y Capacitor
TheplacementoftheYcapacitorshouldbedirectlyfromthe
primarysinglepointgroundtothecommon/returnterminalon
thesecondaryside.SuchplacementwillmaximizetheEMI
benefitoftheYcapacitor.
Optocoupler
It is important to maintain the minimum circuit path from
the optocoupler transistor to the TinySwitch ENABLE and
SOURCEpinstominimizenoisecoupling.
Output Diode
For best performance, the area of the loop connecting the
secondarywinding,theOutput Diode and theOutputFilter
Capacitor,shouldbeminimized.SeeFigure13foroptimized
layout.Inaddition,sufficientcopperareashouldbeprovided
attheanodeandcathodeterminalsofthediodetoadequately
heatsinkthediodeunderoutputshort-circuitconditions.
Input and Output Filter Capacitors
Thereareconstrictionsinthetracesconnectedtotheinputand
outputfiltercapacitors.Theseconstrictionsarepresentfortwo
reasons.Thefirstistoforceallthehighfrequencycurrents
toflowthroughthecapacitor(ifthetracewerewidethenit
couldflowaroundthecapacitor).Secondly,theconstrictions
minimizetheheattransferredfromtheTinySwitchtotheinput
filtercapacitorandfromthesecondarydiodetotheoutputfilter
capacitor.Thecommon/return(thenegativeoutputterminal
inFigure13)terminaloftheoutputfiltercapacitorshouldbe
connectedwithashort,lowresistancepathtothesecondary
winding.Inaddition,thecommon/returnoutputconnection
shouldbetakendirectlyfromthesecondarywindingpinand
notfromtheYcapacitorconnectionpoint.
TOP VIEW
PI-2176-071398
Y1-
Capacitor
Opto-
coupler
C
BP
D
EN
BP
TinySwitch
+
HV
+DC
OUT
Input Filter Capacitor Output Filter Capacitor
Safety Spacing
Transformer
Maximize hatched copper
areas ( ) for optimum
heat sinking
S
S
PRI SEC
68 50 30 80 TNY255 TNYZSS TNYZSS
Rev E
02/12
TNY253/254/255
10
StorageTemperature...................................... -65to150°C
OperatingJunctionTemperature(2)................ -40to150°C
LeadTemperature(3).................................................260°C
ThermalImpedance(θJA)..................70°C/W(4),55°C/W(5)
ThermalImpedance(θJC)....................................... 11°C/W
4.Solderedto0.36sq.inch(232mm2),2oz.(610gm/m2)copperclad.
5.Solderedto1sq.inch(645mm2),2oz.(610gm/m2)copperclad.
6.Thehigherpeakdraincurrentisallowedwhilethedrain
voltageissimultaneouslylessthan400V.
ABSOLUTE MAXIMUM RATINGS(1)
DRAINVoltage.......................................... -0.3Vto700V
PeakDRAINCurrent(TNY253/4)............400(500)mA(6)
PeakDRAINCurrent(TNY255)...............530(660)mA(6)
ENABLEVoltage........................................... -0.3Vto9V
ENABLECurrent................................................... 100mA
BYPASSVoltage............................................ -0.3Vto9V
1. AllvoltagesreferencedtoSOURCE,TA=25°C.
2. Normallylimitedbyinternalcircuitry.
3. 1/16"fromcasefor5seconds.
40 44 48
66 68 71
-68 -50 -30
-15 -10 -5
1.10 1.45 1.80
-58 -42 -25
160 200
140 180
-2.5
5.8
0.72
CONTROL FUNCTIONS
Output
Frequency
Maximum
Duty Cycle
ENABLE Pin Turnoff
Threshold Current
ENABLE Pin
Hysteresis Current
ENABLE Pin
Voltage
ENABLE Short-
Circuit Current
DRAIN
Supply Current
BYPASS Pin
Charge Current
BYPASS Pin
Voltage
BYPASS
Hysteresis
kHz
%
µA
µA
V
µA
µA
µA
mA
mA
V
V
Min Typ Max
fOSC
DCMAX
IDIS
IHYS
VEN
IENSC
IS1
IS2
ICH1
ICH2
VBP
VBPH
Parameter Symbol
(Unless Otherwise Specified)
See Figure 14
Conditions
TNY253
TNY255
TNY253
TNY254
TNY255
TNY253
TNY254
TNY255
TNY253
TNY254
TNY255
130
215
-4.5
-3.3
TNY254
ENABLE Open
(MOSFET Switching)
See Note B, C
TJ = 25 °C
115 140
265
-2.0
-5.0 -3.5
-4.0 -1.0
5.6 6.1
0.60 0.85
Units
SOURCE = 0 V; TJ = -40 to 125 °C
TNY253
TNY255 67
TNY254
TJ = -40 °C to 125 °C
TJ = 125 °C-68 -52 -45
VEN = 0 V, TJ = -40 °C to 125 °C
VEN = 0 V, TJ = 125 °C-58 -45 -38
VBP = 0 V, TJ = 25 °C
See Note D, E
VBP = 4 V, TJ = 25 °C See
Note D, E
64 69
-4.8 -1.8
-6.0 -3.0
170 215
TNY253
TNY254
TNY255
S1 Open
See Note A
IEN = -25 µA
VEN = 0 V
(MOSFET Not Switching)
See Note B
See Note D
TNY254 TNY255
TNY253/254/255
11
Rev E
02/12
Conditions
Parameter Symbol SOURCE = 0 V; TJ = -40 to 125 °C
See Figure 14
(Unless Otherwise Specified)
di/dt = 12.5 mA/µs
TJ = 25 °C
di/dt = 25 mA/µs
TJ = 25 °C
di/dt = 80 mA/µs
TJ = 25 °C
135 150 165
230 255 280
255 280 310
170 240
170 215
200 250
100 150
125 135 145
70
31 36
50 60
23 27
37 45
50
700
50
50
ILIMIT
Note F
IINIT
tLEB
tILD
RDS(ON)
IDSS
BVDSS
tR
tF
mA
mA
ns
ns
°C
°C
µA
V
ns
ns
Current Limit
Initial Current
Limit
Leading Edge
Blanking Time
Current Limit
Delay
Thermal Shutdown
Temperature
Thermal Shutdown
Hysteresis
ON-State
Resistance
OFF-State Drain
Leakage Current
Breakdown
Voltage
Rise Time
Fall Time
Min Typ Max Units
CIRCUIT PROTECTION
OUTPUT
VBP = 6.2 V, VEN = 0 V,
VDS = 560 V, TJ = 125 °C
TJ = 25 °C
TJ = 100 °C
TJ = 25 °C
TJ = 100 °C
TNY253/TNY254
ID = 25 mA
Measured with Figure 10
Schematic.
TNY253
TNY254
TNY255
VBP = 6.2 V, VEN = 0 V,
IDS = 100 µA, TJ = 25 °C
TNY253
TNY254
TNY255
TNY253
TNY254
TNY255
TJ = 25 °C
See Note G
TNY255
ID = 33 mA
See Figure 17
TJ = 25 °C
TJ = 25 °C
0.65 x
ILIMIT(MIN)
l2 TNY255 4709 SW O/A EM JV WV 51
Rev E
02/12
TNY253/254/255
12
NOTES:
A. For a threshold with a negative value, negative hysteresis is a decrease in magnitude of the corresponding threshold.
B. Total current consumption is the sum of IS1 and IDSS when ENABLE pin is shorted to ground (MOSFET not switching)
and the sum of IS2 and IDSS when ENABLE pin is open (MOSFET switching).
C. Since the output MOSFET is switching, it is difficult to isolate the switching current from the supply current at the
DRAIN. An alternative is to measure the BYPASS pin current at 6.2 V.
D. BYPASS pin is not intended for sourcing supply current to external circuitry.
E. See typical performance characteristics section for BYPASS pin start-up charging waveform.
F. For current limit at other di/dt values, refer to current limit vs. di/dt curve under typical performance characteristics.
G. This parameter is derived from the change in current limit measured at 5X and 10X of the di/dt shown in the ILIMIT
specification.
Figure 14. TinySwitch General Test Circuit.
PI-2211-061898
0.1 μF
10 V
50 V
470 Ω
5 W S2
S1
470 Ω
NOTE: This test circuit is not applicable for current limit or output characteristic measurements.
DEN
BPS
S
S
S
S
Conditions
Parameter Symbol SOURCE = 0 V; TJ = -40 to 125 °C
See Figure 14
(Unless Otherwise Specified)
50
0.5
tEN
tDST
V
µs
µs
DRAIN Supply
Voltage
Output Enable
Delay
Output Disable
Setup Time
Min Typ Max Units
OUTPUT (cont.)
TNY253
TNY254
TNY255 10
14
Breakdown Voltage (V) DRAIN Current (normalized) Time (us) BREAKDOWN vs. TEMPERATURE FREQUENCY vs. TEMPERATURE 4 (Normalized lo 25 "(2) Ouipul Frequency (Normalized to 25 “(2) Junclion Temperature (“(2) Junction Temperalure (“0)
TNY253/254/255
13
Rev E
02/12
1.1
1.0
0.9
-50 -25 0255075 100 125 150
BREAKDOWN vs. TEMPERATURE
PI-2213-040901
Typical Performance Characteristics
Figure 17. Current Limit Envelope.
Figure 15. TinySwitch Duty Cycle Measurement.
PI-2194-062398
ENABLE
tP
tEN
tP = 1
2fOSC
for TNY253/254
DCMAX
tP = 1
fOSC
for TNY255
Figure 16. TinySwitch Output Enable Timing.
1.2
1.0
0.8
0.6
0.4
0.2
0
-50 -25 0255075 100 125
FREQUENCY vs. TEMPERATURE
PI-2238-033001
0.8
1.3
1.2
1.1
0.9
0.8
1.0
0
012683
Time (μs)
DRAIN Current (normalized)
PI-2248-090198
45 7
0.7
0.6
0.5
0.4
0.3
0.2
0.1
ILIMIT(MAX) @ 25 °C
ILIMIT(MIN) @ 25 °C
IINIT(MIN)
tLEB (Blanking Time)
PI-2048-033001
DRAIN
VOLTAGE
HV
0 V
90%
10%
90%
t2
t1
D = t1
t2
CURRENT LIMIT vs. TEMPERATURE TNY253 CURRENT LIMIT vs. di/dt {5 ,..’/ J 2 E é’ Junction Temperature ("6) TNY254 CURRENT LIMIT vs. di/dt TNY255 CURRENT LIMIT vs. di/dI ”’ ”’ — /”’ /’ g g E E .1 .1 E E 2 E.’ '5 5 L) O BYPASS PIN START-UP WAVEFORM OUTPUT CHARACTERISTIC , — Tcns525 ”C § 2 ------ c E E ‘7; ‘E > g ‘ _ . 1n . n. o / Scahng Factors E X’ TNVQSS 1.00 , TNV254 1.00 x" wuss 1.33
Rev E
02/12
TNY253/254/255
14
Typical Performance Characteristics (Continued)
1.2
1.0
0.8
0.6
0.4
0.2
0.0
0 160 320 480 640 800
di/dt in mA/s
TNY255 CURRENT LIMIT vs. di/dt
PI-2234-082798
Current Limit
(Normalized to 80 mA/s)
1.4
1.2
1.0
0.8
0.6
0.4
0.2
0.0
-50 -25025 50 75 100 125
CURRENT LIMIT vs. TEMPERATURE
PI-2236-033001
1.4
6
5
4
3
2
1
0
0 0.2 0.4 0.6 0.8 1.0
Time (ms)
BYPASS PIN START-UP WAVEFORM
PI-2240-082898
BYPASS Pin Voltage (V)
7
DRAIN Voltage (V)
Drain Current (mA)
OUTPUT CHARACTERISTIC
300
250
200
100
50
150
0
0246810
PI-2221-033001
TNY253 1.00
TNY254 1.00
TNY255 1.33
Scaling Factors:
DRAIN Capacitance (pF) C s vs. DRAIN VOLTAGE Power (mW) DRAIN CAPACITANCE POWER
TNY253/254/255
15
Rev E
02/12
PI-2076-040110
1
A
K
J1
4
L
G
8 5
C
N
PDIP-8 (P Package)
D S .004 (.10)
J2
-E-
-D-
B
-F-
DIM
A
B
C
G
H
J1
J2
K
L
M
N
P
Q
Inches
0.367-0.387
0.240-0.260
0.125-0.145
0.015-0.040
0.120-0.140
0.057-0.068
0.014-0.022
0.008-0.015
0.100 BSC
0.030 (MIN)
0.300-0.320
0.300-0.390
0.300 BSC
mm
9.32-9.83
6.10-6.60
3.18-3.68
0.38-1.02
3.05-3.56
1.45-1.73
0.36-0.56
0.20-0.38
2.54 BSC
0.76 (MIN)
7.62-8.13
7.62-9.91
7.62 BSC
Notes:
1. Package dimensions conform to JEDEC
specification MS-001-AB for standard dual in-line
(DIP) package .300 inch row spacing (PLASTIC)
8 leads (issue B, 7/85).
2. Controlling dimensions are inches.
3. Dimensions shown do not include mold flash
or other protrusions. Mold flash or protrusions
shall not exceed .006 (.15) on any side.
4. D, E and F are reference datums on the molded
body.
H
M
P
Q P08A
Typical Performance Characteristics (Continued)
100
1
0 600
DRAIN Voltage (V)
DRAIN Capacitance (pF)
C
OSS
vs. DRAIN VOLTAGE
10
PI-2223-033001
200 400
TNY253 1.00
TNY254 1.00
TNY255 1.33
Scaling Factors:
50
30
40
10
20
0
0 200 400 600
DRAIN Voltage (V)
Power (mW)
DRAIN CAPACITANCE POWER
PI-2225-033001
TNY253 1.00
TNY254 1.00
TNY255 1.33
Scaling Factors:
% .LHTMT . , «hi , m EH 5 mm HI
Rev E
02/12
TNY253/254/255
16
PI-2077-040110
1
A
J1
4
L
85
C
G08A
SMD-8 (G Package)
D S .004 (.10)
J2
E S .010 (.25)
-E-
-D-
B
-F-
M
J3
DIM
A
B
C
G
H
J1
J2
J3
J4
K
L
M
P
α
Inches
0.367-0.387
0.240-0.260
0.125-0.145
0.004-0.012
0.036-0.044
0.057-0.068
0.048-0.053
0.032-0.037
0.007-0.011
0.010-0.012
0.100 BSC
0.030 (MIN)
0.372-0.388
0-8°
mm
9.32-9.83
6.10-6.60
3.18-3.68
0.10-0.30
0.91-1.12
1.45-1.73
1.22-1.35
0.81-0.94
0.18-0.28
0.25-0.30
2.54 BSC
0.76 (MIN)
9.45-9.86
0-8°
Notes:
1. Package dimensions conform to JEDEC
specification MS-001-AB (issue B, 7/85)
except for lead shape and size.
2. Controlling dimensions are inches.
3. Dimensions shown do not include mold
flash or other protrusions. Mold flash or
protrusions shall not exceed .006 (.15) on
any side.
4. D, E and F are reference datums on the
molded body.
K
G
α
H
.004 (.10)
J4
P
.010 (.25) M A S
.420
.046 .060 .060 .046
.080
Pin 1
.086
.186
.286
Solder Pad Dimensions
Revision Notes Date
A - 02/99
B1. Leading edge blanking time (tLEB) typical and minimum values increased to improve design flexibility.
2. Minimum DRAIN supply current (IS1, IS2) eliminated as it has no design revelance. 07/01
C
1. Updated package reference.
2. Corrected VR1 in Figure 12.
3. Corrected storage temperature, θJA and θJC and updated nomenclature in parameter table.
4. Corrected spacing and font sizes in figures.
D
1. Corrected θJA for P/G package.
2. Updated DIP-8 and SMD-8 Package Drawings.
3. Figure 10 caption and text description modified.
04/03
E 1. Changed SOA limit. 02/12
TNY253/254/255
17
Rev E
02/12
Notes
Rev E
02/12
TNY253/254/255
18
For the latest updates, visit our website: www.powerint.com
Power Integrations reserves the right to make changes to its products at any time to improve reliability or manufacturability. Power
Integrations does not assume any liability arising from the use of any device or circuit described herein. POWER INTEGRATIONS MAKES
NO WARRANTY HEREIN AND SPECIFICALLY DISCLAIMS ALL WARRANTIES INCLUDING, WITHOUT LIMITATION, THE IMPLIED
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF THIRD PARTY RIGHTS.
Patent Information
The products and applications illustrated herein (including transformer construction and circuits external to the products) may be covered
by one or more U.S. and foreign patents, or potentially by pending U.S. and foreign patent applications assigned to Power Integrations. A
complete list of Power Integrations patents may be found at www.powerint.com. Power Integrations grants its customers a license under
certain patent rights as set forth at http://www.powerint.com/ip.htm.
Life Support Policy
POWER INTEGRATIONS PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR
SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF POWER INTEGRATIONS. As used herein:
1. A Life support device or system is one which, (i) is intended for surgical implant into the body, or (ii) supports or sustains life, and (iii)
whose failure to perform, when properly used in accordance with instructions for use, can be reasonably expected to result in significant
injury or death to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause
the failure of the life support device or system, or to affect its safety or effectiveness.
The PI logo, TOPSwitch, TinySwitch, LinkSwitch, DPA-Switch, PeakSwitch, CAPZero, SENZero, LinkZero, HiperPFS, HiperTFS, HiperLCS,
Qspeed, EcoSmart, Clampless, E-Shield, Filterfuse, StakFET, PI Expert and PI FACTS are trademarks of Power Integrations, Inc. Other
trademarks are property of their respective companies. ©2012, Power Integrations, Inc.
Power Integrations Worldwide Sales Support Locations
World Headquarters
5245 Hellyer Avenue
San Jose, CA 95138, USA.
Main: +1-408-414-9200
Customer Service:
Phone: +1-408-414-9665
Fax: +1-408-414-9765
e-mail: usasales@powerint.com
China (Shanghai)
Rm 1601/1610, Tower 1,
Kerry Everbright City
No. 218 Tianmu Road West,
Shanghai, P.R.C. 200070
Phone: +86-21-6354-6323
Fax: +86-21-6354-6325
e-mail: chinasales@powerint.com
China (ShenZhen)
3rd Floor, Block A,
Zhongtou International Business
Center, No. 1061, Xiang Mei Rd,
FuTian District, ShenZhen,
China, 518040
Phone: +86-755-8379-3243
Fax: +86-755-8379-5828
e-mail: chinasales@powerint.com
Germany
Rueckertstrasse 3
D-80336, Munich
Germany
Phone: +49-89-5527-3910
Fax: +49-89-5527-3920
e-mail: eurosales@powerint.com
India
#1, 14th Main Road
Vasanthanagar
Bangalore-560052 India
Phone: +91-80-4113-8020
Fax: +91-80-4113-8023
e-mail: indiasales@powerint.com
Italy
Via De Amicis 2
20091 Bresso MI
Italy
Phone: +39-028-928-6000
Fax: +39-028-928-6009
e-mail: eurosales@powerint.com
Japan
Kosei Dai-3 Bldg.
2-12-11, Shin-Yokomana,
Kohoku-ku
Yokohama-shi Kanagwan
222-0033 Japan
Phone: +81-45-471-1021
Fax: +81-45-471-3717
e-mail: japansales@powerint.com
Korea
RM 602, 6FL
Korea City Air Terminal B/D, 159-6
Samsung-Dong, Kangnam-Gu,
Seoul, 135-728, Korea
Phone: +82-2-2016-6610
Fax: +82-2-2016-6630
e-mail: koreasales@powerint.com
Singapore
51 Newton Road
#15-08/10 Goldhill Plaza
Singapore, 308900
Phone: +65-6358-2160
Fax: +65-6358-2015
e-mail: singaporesales@powerint.com
Taiwan
5F, No. 318, Nei Hu Rd., Sec. 1
Nei Hu Dist.
Taipei, Taiwan 114, R.O.C.
Phone: +886-2-2659-4570
Fax: +886-2-2659-4550
e-mail: taiwansales@powerint.com
Europe HQ
1st Floor, St. James’s House
East Street, Farnham
Surrey GU9 7TJ
United Kingdom
Phone: +44 (0) 1252-730-141
Fax: +44 (0) 1252-727-689
e-mail: eurosales@powerint.com
Applications Hotline
World Wide +1-408-414-9660
Applications Fax
World Wide +1-408-414-9760

Products related to this Datasheet

IC OFFLINE SWIT OTP OCP HV 8SMD
IC OFFLINE SWIT OTP OCP HV 8DIP
IC OFFLINE SWIT OTP OCP HV 8DIP
IC OFFLINE SWIT OTP OCP HV 8SMD
IC OFFLINE SWIT OTP OCP HV 8DIP
IC OFFLINE SWIT OTP OCP HV 8SMD
IC OFFLINE SWIT OTP OCP HV 8SMD
IC OFFLINE SWIT OTP OCP HV 8SMD
IC OFFLINE SWIT OTP OCP HV 8SMD
IC OFFLINE SWIT OTP OCP HV 8SMD
IC OFFLINE SWIT OTP OCP HV 8SMD
IC OFFLINE SWIT OTP OCP HV 8SMD
IC OFFLINE SWIT OTP OCP HV 8DIP
IC OFFLINE SWIT OTP OCP HV 8SMD
IC OFFLINE SWIT OTP OCP HV 8SMD
IC OFFLINE SWIT OTP OCP HV 8DIP
IC OFFLINE SWIT OTP OCP HV 8SMD
IC OFFLINE SWIT OTP OCP HV 8SMD
IC OFFLINE SWIT OTP OCP HV 8DIP
KIT DESIGN ACCELERATOR APPLIANCE
IC OFFLINE SWIT OTP OCP HV 8SMD
IC OFFLINE SWIT OTP OCP HV 8SMD
IC OFFLINE SWIT OTP OCP HV 8SMD
IC OFFLINE SWIT OTP OCP HV 8SMD
IC OFFLINE SWIT OTP OCP HV 8SMD