M24C32-(W,R,F,X,DF) by STMicroelectronics Datasheet | DigiKey

M24C32-(W,R,F,X,DF) Datasheet by STMicroelectronics

OO 00
This is information on a product in full production.
September 2017 DocID4578 Rev 30 1/51
M24C32-W M24C32-R M24C32-F
M24C32-X M24C32-DF
32-Kbit serial I²C bus EEPROM
Datasheet - production data
Features
Compatible with all I2C bus modes:
–1 MHz
400 kHz
100 kHz
Memory array:
32 Kbit (4 Kbyte) of EEPROM
Page size: 32 byte
Additional Write lockable page (M24C32-D
order codes)
Single supply voltage:
1.7 V to 5.5 V over –40 °C / +85 °C
1.6 V to 5.5 V over –20 °C / +85 °C
Write:
Byte Write within 5 ms
Page Write within 5 ms
Random and sequential Read modes
Write protect of the whole memory array
Enhanced ESD/Latch-Up protection
More than 4 million Write cycles
More than 200-years data retention
Packages
PDIP8 ECOPACK2®
SO8 ECOPACK2®
TSSOP8 ECOPACK2®
UFDFPN8 ECOPACK2®
WLCSP ECOPACK2®
UFDFPN5 ECOPACK2®
Unsawn wafer (each die is tested)
PDIP8 (BN)
SO8 (MN)
150 mil width
TSSOP8 (DW)
169 mil width
UFDFPN8 (MC)
DFN8 - 2x3 mm
UFDFPN5 (MH)
DFN5 - 1.7x1.4 mm
Unsawn wafer
WLCSP (CU)
www.st.com
Contents M24C32-W M24C32-R M24C32-F M24C32-X M24C32-DF
2/51 DocID4578 Rev 30
Contents
1 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2 Signal description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.1 Serial Clock (SCL) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2 Serial Data (SDA) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.3 Chip Enable (E2, E1, E0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.4 Write Control (WC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.5 VSS (ground) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.6 Supply voltage (VCC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.6.1 Operating supply voltage (VCC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.6.2 Power-up conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.6.3 Device reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.6.4 Power-down conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3 Memory organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
4 Device operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
4.1 Start condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
4.2 Stop condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
4.3 Data input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
4.4 Acknowledge bit (ACK) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
4.5 Device addressing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
5 Instructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
5.1 Write operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
5.1.1 Byte Write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
5.1.2 Page Write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
5.1.3 Write Identification Page (M24C32-D only) . . . . . . . . . . . . . . . . . . . . . . 17
5.1.4 Lock Identification Page (M24C32-D only) . . . . . . . . . . . . . . . . . . . . . . 17
5.1.5 ECC (Error Correction Code) and Write cycling . . . . . . . . . . . . . . . . . . 17
5.1.6 Minimizing Write delays by polling on ACK . . . . . . . . . . . . . . . . . . . . . . 18
5.2 Read operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
5.2.1 Random Address Read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
DocID4578 Rev 30 3/51
M24C32-W M24C32-R M24C32-F M24C32-X M24C32-DF Contents
3
5.2.2 Current Address Read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
5.2.3 Sequential Read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
5.2.4 Read Identification Page (M24C32-D only) . . . . . . . . . . . . . . . . . . . . . . 20
5.2.5 Read the lock status (M24C32-D only) . . . . . . . . . . . . . . . . . . . . . . . . . 21
6 Initial delivery state . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
7 Maximum rating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
8 DC and AC parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
9 Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
9.1 UFDFPN5 (DFN5) package information . . . . . . . . . . . . . . . . . . . . . . . . . . 34
9.2 UFDFPN8 (DFN8) package information . . . . . . . . . . . . . . . . . . . . . . . . . . 36
9.3 TSSOP8 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
9.4 SO8N package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
9.5 PDIP8 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
9.6 Ultra Thin WLCSP package information . . . . . . . . . . . . . . . . . . . . . . . . . . 41
10 Ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
11 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
List of tables M24C32-W M24C32-R M24C32-F M24C32-X M24C32-DF
4/51 DocID4578 Rev 30
List of tables
Table 1. Signal names . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Table 2. Signals vs. bump position . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Table 3. Device select code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Table 4. Most significant address byte . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Table 5. Least significant address byte . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Table 6. Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Table 7. Operating conditions (voltage range W) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Table 8. Operating conditions (voltage range R) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Table 9. Operating conditions (voltage range F) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Table 10. Operating conditions (voltage range X) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Table 11. Input parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Table 12. AC measurement conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Table 13. Cycling performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Table 14. Memory cell data retention . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Table 15. DC characteristics (M24C32-W, device grade 6) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Table 16. DC characteristics (M24C32-R device grade 6) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Table 17. DC characteristics (M24C32-F, device grade 6). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Table 18. DC characteristics (M24C32-X, device grade 5). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Table 19. 400 kHz AC characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Table 20. 1 MHz AC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Table 21. UFDFPN5 - 1.7 × 1.4 mm, 0.55 mm thickness, ultra thin fine pitch
dual flat package, no lead - package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
Table 22. UFDFPN8 – 2x3 mm, 0.55 thickness, ultra thin fine pitch dual flat package,
no lead - package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Table 23. TSSOP8 – 3 x 4.4 mm, 0.65 mm pitch, 8-lead thin shrink small outline,
package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
Table 24. SO8N – 3.9x4.9 mm, 8-lead plastic small outline, 150 mils body width,
package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
Table 25. PDIP8 – 8-pin plastic DIP, 0.25 mm lead frame, package mechanical data. . . . . . . . . . . . 40
Table 26. Ultra Thin WLCSP- 4-bump, 0.795 x 0.674 mm, wafer level chip scale
package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
Table 27. Ultra Thin WLCSP- 4-bump, 0.795 x 0.674 mm, with BSC, wafer level chip
scale package mechanical data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
Table 28. Ordering information scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
Table 29. Ordering information scheme (unsawn wafer) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
Table 30. Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
DocID4578 Rev 30 5/51
M24C32-W M24C32-R M24C32-F M24C32-X M24C32-DF List of figures
5
List of figures
Figure 1. Logic diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Figure 2. 8-pin package connections, top view . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Figure 3. UFDFPN5 (DFN5) package connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Figure 4. WLCSP 4 bump Ultra thin package connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Figure 5. Chip enable inputs connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Figure 6. Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Figure 7. I2C bus protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Figure 8. Write mode sequences with WC = 0 (data write enabled) . . . . . . . . . . . . . . . . . . . . . . . . . 15
Figure 9. Write mode sequences with WC = 1 (data write inhibited) . . . . . . . . . . . . . . . . . . . . . . . . . 16
Figure 10. Write cycle polling flowchart using ACK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Figure 11. Read mode sequences. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Figure 12. AC measurement I/O waveform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Figure 13. Maximum Rbus value versus bus parasitic capacitance (Cbus) for
an I2C bus at maximum frequency fC = 400 kHz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Figure 14. Maximum Rbus value versus bus parasitic capacitance Cbus) for
an I2C bus at maximum frequency fC = 1MHz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Figure 15. AC waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Figure 16. UFDFPN5 – 1.7x1.4 mm, 0.55 mm thickness, ultra thin fine pitch
dual flat package, no lead - package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
Figure 17. UFDFPN5 - 5-lead, 1.7 × 1.4 mm, 0.55 mm thickness, ultra thin fine pitch
dual flat package, no lead recommended footprint. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
Figure 18. UFDFPN8 – 2x3 mm, 0.55 thickness, ultra thin fine pitch
dual flat package, no lead - package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Figure 19. TSSOP8 – 3x4.4 mm, 0.65 mm pitch, 8-lead thin shrink small outline,
package outline. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
Figure 20. SO8N – 3.9x4.9 mm, 8-lead plastic small outline, 150 mils body width, package outline . 38
Figure 21. SO8N – 3.9x4.9 mm, 8-lead plastic small outline, 150 mils body width,
package recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
Figure 22. PDIP8 – 8-pin plastic DIP, 0.25 mm lead frame, package outline . . . . . . . . . . . . . . . . . . . 40
Figure 23. Ultra Thin WLCSP- 4-bump, 0.795 x 0.674 mm, wafer level chip scale
package outline. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
Figure 24. Thin WLCSP- 4-bump, 0.795 x 0.674 mm, wafer level chip scale
package recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
Figure 25. Ultra Thin WLCSP- 4-bump, 0.795 x 0.674 mm, with BSC, wafer level chip
scale package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
Figure 26. Thin WLCSP- 4-bump, 0.795 x 0.674 mm, wafer level chip scale
package recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
.lZZIZJ
Description M24C32-W M24C32-R M24C32-F M24C32-X M24C32-DF
6/51 DocID4578 Rev 30
1 Description
The M24C32 is a 32-Kbit I2C-compatible EEPROM (Electrically Erasable PROgrammable
Memory) organized as 4 K × 8 bits.
The M24C32-W can operate with a supply voltage from 2.5 V to 5.5 V, the M24C32-R can
operate with a supply voltage from 1.8 V to 5.5 V, and the M24C32-F and M24C32-DF can
operate with a supply voltage from 1.7 V to 5.5 V, over an ambient temperature range of
-40 °C / +85 °C; while the M24C32-X can operate with a supply voltage from 1.6 V to 5.5 V
over an ambient temperature range of -20 °C / +85 °C.
The M24C32-D offers an additional page, named the Identification Page (32 byte). The
Identification Page can be used to store sensitive application parameters which can be
(later) permanently locked in Read-only mode.
Figure 1. Logic diagram
Figure 2. 8-pin package connections, top view
Table 1. Signal names
Signal name Function Direction
E2, E1, E0 Chip Enable Input
SDA Serial Data I/O
SCL Serial Clock Input
WC Write Control Input
VCC Supply voltage -
VSS Ground -
$,I
(( 6'$
9&&
0[[[
:&
6&/
966
$,I
6'$966
6&/
:&(
( 9&&
(
CJCI |:| |:||:| , /,, ‘/ \‘ M \ ‘ / \7/ /’\ / \ 77/ /
DocID4578 Rev 30 7/51
M24C32-W M24C32-R M24C32-F M24C32-X M24C32-DF Description
50
Figure 3. UFDFPN5 (DFN5) package connections
1. Inputs E2, E1, E0 are not connected, therefore read as (000). Please refer to Section 2.3 for further
explanations.
Figure 4. WLCSP 4 bump Ultra thin package connections
1. Inputs E2, E1, E0 are read as (000). Please refer to Section 2.3 for further explanations.
Table 2. Signals vs. bump position
Position A B
1V
CC SCL
2V
SS SDA
-36
3$! 3#,
7#

6##
633 633
4OPVIEW
MARKINGSIDE
"OTTOMVIEW
PADSSIDE
!"#$
89:7
06Y9
0DUNLQJVLGH
WRSYLHZ
%XPSVLGH
ERWWRPYLHZ
9&& 966
6&/ 6'$
9&&
966
6&/6'$

$ $
% %
Signal description M24C32-W M24C32-R M24C32-F M24C32-X M24C32-DF
8/51 DocID4578 Rev 30
2 Signal description
2.1 Serial Clock (SCL)
The signal applied on the SCL input is used to strobe the data available on SDA(in) and to
output the data on SDA(out).
2.2 Serial Data (SDA)
SDA is an input/output used to transfer data in or data out of the device. SDA(out) is an
open drain output that may be wire-OR’ed with other open drain or open collector signals on
the bus. A pull-up resistor must be connected from Serial Data (SDA) to VCC (Figure 13
indicates how to calculate the value of the pull-up resistor).
2.3 Chip Enable (E2, E1, E0)
(E2,E1,E0) input signals are used to set the value that is to be looked for on the three least
significant bits (b3, b2, b1) of the 7-bit device select code (see Table 3). These inputs must
be tied to VCC or VSS, as shown in Figure 5. When not connected (left floating), these inputs
are read as low (0).
For the UFDFPN5 package, the (E2,E1,E0) inputs are not connected, therefore read as
(0,0,0).
For the 4-balls WLCSP package (see Figure 4), the (E2,E1,E0) inputs are internally
connected to (0, 0, 0).
Figure 5. Chip enable inputs connection
2.4 Write Control (WC)
This input signal is useful for protecting the entire contents of the memory from inadvertent
write operations. Write operations are disabled to the entire memory array when Write
Control (WC) is driven high. Write operations are enabled when Write Control (WC) is either
driven low or left floating.
When Write Control (WC) is driven high, device select and address bytes are
acknowledged, Data bytes are not acknowledged.
$L
9&&
0[[[
966
(L
9&&
0[[[
966
(L
DocID4578 Rev 30 9/51
M24C32-W M24C32-R M24C32-F M24C32-X M24C32-DF Signal description
50
2.5 VSS (ground)
VSS is the reference for the VCC supply voltage.
2.6 Supply voltage (VCC)
2.6.1 Operating supply voltage (VCC)
Prior to selecting the memory and issuing instructions to it, a valid and stable VCC voltage
within the specified [VCC(min), VCC(max)] range must be applied (see Operating conditions
in Section 8: DC and AC parameters). In order to secure a stable DC supply voltage, it is
recommended to decouple the VCC line with a suitable capacitor (usually of the order of
10 nF to 100 nF) close to the VCC/VSS package pins.
This voltage must remain stable and valid until the end of the transmission of the instruction
and, for a write instruction, until the completion of the internal write cycle (tW).
2.6.2 Power-up conditions
The VCC voltage has to rise continuously from 0 V up to the minimum VCC operating voltage
(see Operating conditions in Section 8: DC and AC parameters).
2.6.3 Device reset
In order to prevent inadvertent write operations during power-up, a power-on-reset (POR)
circuit is included.
At power-up, the device does not respond to any instruction until VCC has reached the
internal reset threshold voltage. This threshold is lower than the minimum VCC operating
voltage (see Operating conditions in Section 8: DC and AC parameters). When VCC passes
over the POR threshold, the device is reset and enters the Standby Power mode; however,
the device must not be accessed until VCC reaches a valid and stable DC voltage within the
specified [VCC(min), VCC(max)] range (see Operating conditions in Section 8: DC and AC
parameters).
In a similar way, during power-down (continuous decrease in VCC), the device must not be
accessed when VCC drops below VCC(min). When VCC drops below the internal reset
threshold voltage, the device stops responding to any instruction sent to it.
2.6.4 Power-down conditions
During power-down (continuous decrease in VCC), the device must be in the Standby Power
mode (mode reached after decoding a Stop condition, assuming that there is no internal
write cycle in progress).
Memory organization M24C32-W M24C32-R M24C32-F M24C32-X M24C32-DF
10/51 DocID4578 Rev 30
3 Memory organization
The memory is organized as shown below.
Figure 6. Block diagram
-36
7#
#ONTROLLOGIC (IGHVOLTAGE
GENERATOR
)/SHIFTREGISTER
!DDRESSREGISTER
ANDCOUNTER
$ATA
REGISTER
PAGE
8DECODER
9DECODER
)DENTIFICATIONPAGE
%
%
3#,
3$!
%
m—\_/—\_/' """" W_/— SBA \ l X .14/ +SDA++ SDA+ START Sfop . mpm Change Condmon Candmnn 50L 1 2 3 7 a 9 SDA \ I M55 x x x x x \ ACK START Common SCL t 2 3 7 a a \mssx x x x x \m / STOP Candmcn mama
DocID4578 Rev 30 11/51
M24C32-W M24C32-R M24C32-F M24C32-X M24C32-DF Device operation
50
4 Device operation
The device supports the I2C protocol. This is summarized in Figure 7. Any device that sends
data on to the bus is defined to be a transmitter, and any device that reads the data to be a
receiver. The device that controls the data transfer is known as the bus master, and the
other as the slave device. A data transfer can only be initiated by the bus master, which will
also provide the serial clock for synchronization. The device is always a slave in all
communications.
Figure 7. I2C bus protocol
Device operation M24C32-W M24C32-R M24C32-F M24C32-X M24C32-DF
12/51 DocID4578 Rev 30
4.1 Start condition
Start is identified by a falling edge of Serial Data (SDA) while Serial Clock (SCL) is stable in
the high state. A Start condition must precede any data transfer instruction. The device
continuously monitors (except during a Write cycle) Serial Data (SDA) and Serial Clock
(SCL) for a Start condition.
4.2 Stop condition
Stop is identified by a rising edge of Serial Data (SDA) while Serial Clock (SCL) is stable and
driven high. A Stop condition terminates communication between the device and the bus
master. A Read instruction that is followed by NoAck can be followed by a Stop condition to
force the device into the Standby mode.
A Stop condition at the end of a Write instruction triggers the internal Write cycle.
4.3 Data input
During data input, the device samples Serial Data (SDA) on the rising edge of Serial Clock
(SCL). For correct device operation, Serial Data (SDA) must be stable during the rising edge
of Serial Clock (SCL), and the Serial Data (SDA) signal must change only when Serial Clock
(SCL) is driven low.
4.4 Acknowledge bit (ACK)
The acknowledge bit is used to indicate a successful byte transfer. The bus transmitter,
whether it be bus master or slave device, releases Serial Data (SDA) after sending eight bits
of data. During the 9th clock pulse period, the receiver pulls Serial Data (SDA) low to
acknowledge the receipt of the eight data bits.
NVrile (RW
DocID4578 Rev 30 13/51
M24C32-W M24C32-R M24C32-F M24C32-X M24C32-DF Device operation
50
4.5 Device addressing
To start communication between the bus master and the slave device, the bus master must
initiate a Start condition. Following this, the bus master sends the device select code, shown
in Table 3 (most significant bit first).
When the device select code is received, the device only responds if the Chip Enable
address is the same as the value on its Chip Enable E2,E1,E0 inputs.
The 8th bit is the Read/Write bit (RW). This bit is set to 1 for Read and 0 for Write operations.
If a match occurs on the device select code, the corresponding device gives an
acknowledgment on Serial Data (SDA) during the 9th bit time. If the device does not match
the device select code, the device deselects itself from the bus, and goes into Standby
mode.
Table 3. Device select code
Device type identifier(1)
1. The most significant bit, b7, is sent first.
Chip Enable address(2)
2. E0, E1 and E2 are compared with the value read on input pins E0, E1 and E2.
RW
b7 b6 b5 b4 b3 b2 b1 b0
Device select code
when addressing the
memory array
1010E2E1E0RW
Device select code
when accessing the
Identification page
1011E2E1E0RW
Instructions M24C32-W M24C32-R M24C32-F M24C32-X M24C32-DF
14/51 DocID4578 Rev 30
5 Instructions
5.1 Write operations
Following a Start condition the bus master sends a device select code with the R/W bit (RW)
reset to 0. The device acknowledges this, as shown in Figure 8, and waits for two address
bytes. The device responds to each address byte with an acknowledge bit, and then waits
for the data byte.
When the bus master generates a Stop condition immediately after a data byte Ack bit (in
the “10th bit” time slot), either at the end of a Byte Write or a Page Write, the internal Write
cycle tW is triggered. A Stop condition at any other time slot does not trigger the internal
Write cycle.
After the Stop condition and the successful completion of an internal Write cycle (tW), the
device internal address counter is automatically incremented to point to the next byte after
the last modified byte.
During the internal Write cycle, Serial Data (SDA) is disabled internally, and the device does
not respond to any requests.
If the Write Control input (WC) is driven High, the Write instruction is not executed and the
accompanying data bytes are not acknowledged, as shown in Figure 9.
Table 4. Most significant address byte
A15 A14 A13 A12 A11 A10 A9 A8
Table 5. Least significant address byte
A7 A6 A5 A4 A3 A2 A1 A0
ACK ACK ACK ACK Byte Wme Dev sel ‘ Byte addr Byte addr Data In H g L g 5; WW 6 R ACK ACK ACK ACK Page Wme ‘ Byte addr Byte audr E w 51“ WW fl (oom'd) ACK ACK ,1 . . . ‘ . . . | Page Wmeuxml‘d) 1“ DammN H n .% Amflusd
DocID4578 Rev 30 15/51
M24C32-W M24C32-R M24C32-F M24C32-X M24C32-DF Instructions
50
5.1.1 Byte Write
After the device select code and the address bytes, the bus master sends one data byte. If
the addressed location is Write-protected, by Write Control (WC) being driven high, the
device replies with NoAck, and the location is not modified. If, instead, the addressed
location is not Write-protected, the device replies with Ack. The bus master terminates the
transfer by generating a Stop condition, as shown in Figure 8.
Figure 8. Write mode sequences with WC = 0 (data write enabled)
ACK ACK ACK No ACK \ \ Ewewme Devse‘ ‘ Byteaudr Ewe addr Dam m Ll s ‘— s 5 WW :7) WC ACK ACK ACK NO ACK Page wme Dev 59‘ nye addr By|e addr Data m 1 Dam m 2 IIIIII}\II\III\ IVIIIVI \IIIIII ,L E 7 5, RM fimanm) N0 ACK NO ACK '1 ‘ . . . . ‘ . . Page wme (com‘d) J Da'a m N .1 l . . . ‘ . . saw I:’ Amman
Instructions M24C32-W M24C32-R M24C32-F M24C32-X M24C32-DF
16/51 DocID4578 Rev 30
5.1.2 Page Write
The Page Write mode allows up to 32 byte to be written in a single Write cycle, provided that
they are all located in the same page in the memory: that is, the most significant memory
address bits, b16-b5, are the same. If more bytes are sent than will fit up to the end of the
page, a “roll-over” occurs, i.e. the bytes exceeding the page end are written on the same
page, from location 0.
The bus master sends from 1 to 32 byte of data, each of which is acknowledged by the
device if Write Control (WC) is low. If Write Control (WC) is high, the contents of the
addressed memory location are not modified, and each data byte is followed by a NoAck, as
shown in Figure 9. After each transferred byte, the internal page address counter is
incremented.
The transfer is terminated by the bus master generating a Stop condition.
Figure 9. Write mode sequences with WC = 1 (data write inhibited)
DocID4578 Rev 30 17/51
M24C32-W M24C32-R M24C32-F M24C32-X M24C32-DF Instructions
50
5.1.3 Write Identification Page (M24C32-D only)
The Identification Page (32 byte) is an additional page which can be written and (later)
permanently locked in Read-only mode. It is written by issuing the Write Identification Page
instruction. This instruction uses the same protocol and format as Page Write (into memory
array), except for the following differences:
Device type identifier = 1011b
MSB address bits A15/A5 are don't care except for address bit A10 which must be ‘0’.
LSB address bits A4/A0 define the byte address inside the Identification page.
If the Identification page is locked, the data bytes transferred during the Write Identification
Page instruction are not acknowledged (NoAck).
5.1.4 Lock Identification Page (M24C32-D only)
The Lock Identification Page instruction (Lock ID) permanently locks the Identification page
in Read-only mode. The Lock ID instruction is similar to Byte Write (into memory array) with
the following specific conditions:
Device type identifier = 1011b
Address bit A10 must be ‘1’; all other address bits are don't care
The data byte must be equal to the binary value xxxx xx1x, where x is don't care
5.1.5 ECC (Error Correction Code) and Write cycling
The ECC is offered only in devices identified with process letter K, all other devices
(identified with a different process letter) do not embed the ECC logic.
The Error Correction Code (ECC) is an internal logic function which is transparent for the
I2C communication protocol.
The ECC logic is implemented on each group of four EEPROM bytes(1). Inside a group, if a
single bit out of the four bytes happens to be erroneous during a Read operation, the ECC
detects this bit and replaces it with the correct value. The read reliability is therefore much
improved.
Even if the ECC function is performed on groups of four bytes, a single byte can be
written/cycled independently. In this case, the ECC function also writes/cycles the three
other bytes located in the same group(1). As a consequence, the maximum cycling budget is
defined at group level and the cycling can be distributed over the 4 bytes of the group: the
sum of the cycles seen by byte0, byte1, byte2 and byte3 of the same group must remain
below the maximum value defined Table 13: Cycling performance.
1. A group of four bytes is located at addresses [4*N, 4*N+1, 4*N+2, 4*N+3], where N is an integer.
Nex: Operauan \s addressing the memory
Instructions M24C32-W M24C32-R M24C32-F M24C32-X M24C32-DF
18/51 DocID4578 Rev 30
5.1.6 Minimizing Write delays by polling on ACK
The maximum Write time (tw) is shown in AC characteristics tables in Section 8: DC and AC
parameters, but the typical time is shorter. To make use of this, a polling sequence can be
used by the bus master.
The sequence, as shown in Figure 10, is:
Initial condition: a Write cycle is in progress.
Step 1: the bus master issues a Start condition followed by a device select code (the
first byte of the new instruction).
Step 2: if the device is busy with the internal Write cycle, no Ack will be returned and
the bus master goes back to Step 1. If the device has terminated the internal Write
cycle, it responds with an Ack, indicating that the device is ready to receive the second
part of the instruction (the first byte of this instruction having been sent during Step 1).
Figure 10. Write cycle polling flowchart using ACK
1. The seven most significant bits of the Device Select code of a Random Read (bottom right box in the figure) must be
identical to the seven most significant bits of the Device Select code of the Write (polling instruction in the figure).
:ULWHF\FOH
LQSURJUHVV
$,H
1H[W
2SHUDWLRQLV
DGGUHVVLQJWKH
PHPRU\
6WDUWFRQGLWLRQ
$&.
UHWXUQHG
<(6
12
<(612
5H6WDUW
6WRS
'DWDIRUWKH
:ULWHRSHUDWLRQ
6HQG$GGUHVV
DQG5HFHLYH$&.
<(612
&RQWLQXHWKH
:ULWHRSHUDWLRQ
&RQWLQXHWKH
5DQGRP5HDGRSHUDWLRQ
'HYLFHVHOHFW
ZLWK5: 
)LUVWE\WHRILQVWUXFWLRQ
ZLWK5: DOUHDG\
GHFRGHGE\WKHGHYLFH
'HYLFHVHOHFW
ZLWK5: 
6WDUW&RQGLWLRQ
DocID4578 Rev 30 19/51
M24C32-W M24C32-R M24C32-F M24C32-X M24C32-DF Instructions
50
5.2 Read operations
Read operations are performed independently of the state of the Write Control (WC) signal.
After the successful completion of a Read operation, the device internal address counter is
incremented by one, to point to the next byte address.
For the Read instructions, after each byte read (data out), the device waits for an
acknowledgment (data in) during the 9th bit time. If the bus master does not acknowledge
during this 9th time, the device terminates the data transfer and switches to its Standby
mode.
Figure 11. Read mode sequences
6WDUW
'HYVHO %\WHDGGU %\WHDGGU
6WDUW
'HYVHO 'DWDRXW
$,G
'DWDRXW1
6WRS
6WDUW
&XUUHQW
$GGUHVV
5HDG
'HYVHO 'DWDRXW
5DQGRP
$GGUHVV
5HDG
6WRS
6WDUW
'HYVHO 'DWDRXW
6HTXHQWLDO
&XUUHQW
5HDG
6WRS
'DWDRXW1
6WDUW
'HYVHO %\WHDGGU %\WHDGGU
6HTXHQWLRQ
5DQGRP
5HDG
6WDUW
'HYVHO 'DWDRXW
6WRS
$&.
5:
12$&.
$&.
5:
$&. $&. $&.
5:
$&. $&. $&. 12$&.
5:
12$&.
$&. $&. $&.
5:
$&. $&.
5:
$&. 12$&.
E \
Instructions M24C32-W M24C32-R M24C32-F M24C32-X M24C32-DF
20/51 DocID4578 Rev 30
5.2.1 Random Address Read
A dummy Write is first performed to load the address into this address counter (as shown in
Figure 11) but without sending a Stop condition. Then, the bus master sends another Start
condition, and repeats the device select code, with the RW bit set to 1. The device
acknowledges this, and outputs the contents of the addressed byte. The bus master must
not acknowledge the byte, and terminates the transfer with a Stop condition.
5.2.2 Current Address Read
For the Current Address Read operation, following a Start condition, the bus master only
sends a device select code with the R/W bit set to 1. The device acknowledges this, and
outputs the byte addressed by the internal address counter. The counter is then
incremented. The bus master terminates the transfer with a Stop condition, as shown in
Figure 11, without acknowledging the byte.
Note that the address counter value is defined by instructions accessing either the memory
or the Identification page. When accessing the Identification page, the address counter
value is loaded with the byte location in the Identification page, therefore the next Current
Address Read in the memory uses this new address counter value. When accessing the
memory, it is safer to always use the Random Address Read instruction (this instruction
loads the address counter with the byte location to read in the memory, see Section 5.2.1)
instead of the Current Address Read instruction.
5.2.3 Sequential Read
This operation can be used after a Current Address Read or a Random Address Read. The
bus master does acknowledge the data byte output, and sends additional clock pulses so
that the device continues to output the next byte in sequence. To terminate the stream of
bytes, the bus master must not acknowledge the last byte, and must generate a Stop
condition, as shown in Figure 11.
The output data comes from consecutive addresses, with the internal address counter
automatically incremented after each byte output. After the last memory address, the
address counter “rolls-over”, and the device continues to output data from memory address
00h.
5.2.4 Read Identification Page (M24C32-D only)
The Identification Page (32 byte) is an additional page which can be written and (later)
permanently locked in Read-only mode.
The Identification Page can be read by issuing an Read Identification Page instruction. This
instruction uses the same protocol and format as the Random Address Read (from memory
array) with device type identifier defined as 1011b. The MSB address bits A15/A5 are don't
care, the LSB address bits A4/A0 define the byte address inside the Identification Page. The
number of bytes to read in the ID page must not exceed the page boundary (e.g.: when
reading the Identification Page from location 10d, the number of bytes should be less than
or equal to 22, as the ID page boundary is 32 byte).
DocID4578 Rev 30 21/51
M24C32-W M24C32-R M24C32-F M24C32-X M24C32-DF Instructions
50
5.2.5 Read the lock status (M24C32-D only)
The locked/unlocked status of the Identification page can be checked by transmitting a
specific truncated command [Identification Page Write instruction + one data byte] to the
device. The device returns an acknowledge bit if the Identification page is unlocked,
otherwise a NoAck bit if the Identification page is locked.
Right after this, it is recommended to transmit to the device a Start condition followed by a
Stop condition, so that:
Start: the truncated command is not executed because the Start condition resets the
device internal logic,
Stop: the device is then set back into Standby mode by the Stop condition.
Initial delivery state M24C32-W M24C32-R M24C32-F M24C32-X M24C32-DF
22/51 DocID4578 Rev 30
6 Initial delivery state
The device is delivered with all the memory array bits set to 1 (each byte contains FFh).
When delivered in unsawn wafer, all memory bits are set to 1 (each memory byte contains
FFh) except the last byte located at address FFFh which is written with the value 22h.
DocID4578 Rev 30 23/51
M24C32-W M24C32-R M24C32-F M24C32-X M24C32-DF Maximum rating
50
7 Maximum rating
Stressing the device outside the ratings listed in Table 6 may cause permanent damage to
the device. These are stress ratings only, and operation of the device at these, or any other
conditions outside those indicated in the operating sections of this specification, is not
implied. Exposure to absolute maximum rating conditions for extended periods may affect
device reliability.
Table 6. Absolute maximum ratings
Symbol Parameter Min. Max. Unit
Ambient operating temperature –40 130 °C
TSTG Storage temperature –65 150 °C
TLEAD
Lead temperature during soldering see note(1)
1. Compliant with JEDEC Std J-STD-020D (for small body, Sn-Pb or Pb-free assembly), the ST ECOPACK2®
7191395 specification, and the European directive on Restrictions of Hazardous Substances (RoHS
directive 2011/65/EU of July 2011).
°C
PDIP-specific lead temperature during soldering - 260(2)
2. TLEAD max must not be applied for more than 10 s.
°C
IOL DC output current (SDA = 0) - 5 mA
VIO Input or output range –0.50 6.5 V
VCC Supply voltage –0.50 6.5 V
VESD Electrostatic pulse (Human Body model)(3)
3. Positive and negative pulses applied on different combinations of pin connections, according to AEC-
Q100-002 (compliant with ANSI/ESDA/JEDEC JS-001-2012 standard, C1=100 pF, R1=1500 Ω).
- 3000(4)
4. 4000 V for devices identified with process letter K and P.
V
DC and AC parameters M24C32-W M24C32-R M24C32-F M24C32-X M24C32-DF
24/51 DocID4578 Rev 30
8 DC and AC parameters
This section summarizes the operating and measurement conditions, and the DC and AC
characteristics of the device.
Table 7. Operating conditions (voltage range W)
Symbol Parameter Min. Max. Unit
VCC Supply voltage 2.5 5.5 V
TAAmbient operating temperature –40 85 °C
fCOperating clock frequency - 1(1)
1. 400 kHz for devices identified by process letter P.
MHz
Table 8. Operating conditions (voltage range R)
Symbol Parameter Min. Max. Unit
VCC Supply voltage 1.8 5.5 V
TAAmbient operating temperature –40 85 °C
fCOperating clock frequency - 1(1)
1. 400 kHz for devices by process letter P.
MHz
Table 9. Operating conditions (voltage range F)
Symbol Parameter Min. Max. Unit
VCC Supply voltage 1.6(1)
1. Only for devices identified with process letter T
1.7 5.5 V
TA
Ambient operating temperature: READ -40 -40 85
°C
Ambient operating temperature: WRITE 0 -40 85
fC
Operating clock frequency, VCC 1.6 V(1) -400
kHz
Operating clock frequency, VCC 1.7 V - 1000
Table 10. Operating conditions (voltage range X)
Symbol Parameter Min. Max. Unit
VCC Supply voltage 1.6 5.5 V
TAAmbient operating temperature –20 85 °C
fCOperating clock frequency - 1 MHz
W
DocID4578 Rev 30 25/51
M24C32-W M24C32-R M24C32-F M24C32-X M24C32-DF DC and AC parameters
50
Figure 12. AC measurement I/O waveform
Table 11. Input parameters
Symbol Parameter(1)
1. Characterized only, not tested in production.
Test condition Min. Max. Unit
CIN Input capacitance (SDA) - - 8 pF
CIN Input capacitance (other pins) - - 6 pF
ZLInput impedance (E2, E1, E0, WC)(2)
2. E2, E1, E0 input impedance when the memory is selected (after a Start condition).
VIN < 0.3 VCC 30 - kΩ
ZHVIN > 0.7 VCC 500 - kΩ
Table 12. AC measurement conditions
Symbol Parameter Min. Max. Unit
Cbus Load capacitance - 100 pF
-SCL input rise/fall time, SDA input fall time - 50 ns
-Input levels 0.2 VCC to 0.8 VCC V
-Input and output timing reference levels 0.3 VCC to 0.7 VCC V
Table 13. Cycling performance
Symbol Parameter Test condition Max.(1)
1. Cycling performance for products identified by process letter K or T (previous products were specified with
1 million cycles at 25 °C & 300 K cycles at 85 °C)
Unit
Ncycle Write cycle
endurance(2)
2. The Write cycle endurance is defined by characterization and qualification. For devices embedding the
ECC functionality (see Chapter 5.1.5), the write cycle endurance is defined for group of four bytes located
at addresses [4*N, 4*N+1, 4*N+2, 4*N+3] where N is an integer.
TA 25 °C, VCC(min) < VCC < VCC(max) 4,000,000 Write cycle(3)
3. A Write cycle is executed when either a Page Write, a Byte write, a Write Identification Page or a Lock
Identification Page instruction is decoded. When using the Byte Write, the Page Write or the Write
Identification Page, refer also to Section 5.1.5: ECC (Error Correction Code) and Write cycling
TA = 85 °C, VCC(min) < VCC < VCC(max) 1,200,000
Table 14. Memory cell data retention
Parameter Test condition Min. Unit
Data retention(1)
1. The data retention behavior is checked in production, while the data retention limit defined in this table is
extracted from characterization and qualification results.
TA = 55 °C 200(2)
2. For products identified by process letter K or T (previous products were specified with a data retention of 40
years at 55°C).
Year
-36
6##
6##
6##
6##
)NPUTANDOUTPUT
4IMINGREFERENCELEVELS
)NPUTVOLTAGELEVELS
DC and AC parameters M24C32-W M24C32-R M24C32-F M24C32-X M24C32-DF
26/51 DocID4578 Rev 30
Table 15. DC characteristics (M24C32-W, device grade 6)
Symbol Parameter Test conditions (in addition to those
in Table 7)Min. Max. Unit
ILI
Input leakage current
(SCL, SDA, E2, E1,
E0)
VIN = VSS or VCC, device in Standby
mode 2µA
ILO
Output leakage
current
SDA in Hi-Z, external voltage applied
on SDA: VSS or VCC
2µA
ICC Supply current (Read)
2.5 V < VCC < 5.5 V, fc = 400 kHz
(rise/fall time < 50 ns) -2mA
2.5 V < VCC < 5.5 V, fc = 1 MHz(1)
(rise/fall time < 50 ns)
1. Only for devices identified with process letter K or T.
-2.5mA
ICC0 Supply current (Write) During tW,
2.5 V VCC 5.5 V -5
(2)
2. Characterized value, not tested in production.
mA
ICC1
Standby supply
current
Device not selected(3),
VIN = VSS or VCC, VCC = 2.5 V
3. The device is not selected after power-up, after a Read instruction (after the Stop condition), or after the
completion of the internal write cycle tW (tW is triggered by the correct decoding of a Write instruction).
-2µA
Device not selected(3),
VIN = VSS or VCC, VCC = 5.5 V -(4)
4. 5 µA for previous devices identified by process letter P.
µA
VIL
Input low voltage
(SCL, SDA, WC, E2,
E1, E0)(5)
5. Ei inputs should be tied to Vss (see Section 2.3).
- –0.45 0.3 VCC V
VIH
Input high voltage
(SCL, SDA) -0.7 V
CC 6.5 V
Input high voltage
(WC, E2, E1, E0)(6)
6. Ei inputs should be tied to Vcc (see Section 2.3).
-0.7 V
CC VCC+1 V
VOL Output low voltage IOL = 2.1 mA, VCC = 2.5 V or
IOL = 3 mA, VCC = 5.5 V -0.4V
DocID4578 Rev 30 27/51
M24C32-W M24C32-R M24C32-F M24C32-X M24C32-DF DC and AC parameters
50
Table 16. DC characteristics (M24C32-R device grade 6)
Symbol Parameter Test conditions(1) (in addition to
those in Table 8)
1. If the application uses the voltage range R device with 2.5 V < Vcc < 5.5 V and -40 °C < TA < +85 °C,
please refer to Table 15 instead of this table.
Min. Max. Unit
ILI
Input leakage current
(E0, E1, E2, SCL, SDA)
VIN = VSS or VCC, device in
Standby mode 2µA
ILO Output leakage current SDA in Hi-Z, external voltage
applied on SDA: VSS or VCC
2µA
ICC Supply current (Read)
VCC = 1.8 V, fc= 400 kHz - 0.8 mA
fc= 1 MHz(2)
2. Only for devices operating at fC max = 1 MHz (see note (1) in Table 20).
-2.5mA
ICC0 Supply current (Write)(3)
3. For devices identified with process letter K or T
During tW
1.8 V VCC 2.5 V -3
(4)
4. Characterized value, not tested in production.
mA
ICC1 Standby supply current Device not selected(5),
VIN = VSS or VCC, VCC = 1.8 V
5. The device is not selected after power-up, after a Read instruction (after the Stop condition), or after the
completion of the internal write cycle tW (tW is triggered by the correct decoding of a Write instruction).
-1µA
VIL
Input low voltage
(SCL, SDA)(6)
6. Ei inputs should be tied to Vss (see Section 2.3).
1.8 V VCC < 2.5 V –0.45 0.25 VCC V
VIH
Input high voltage
(SCL, SDA) 1.8 V VCC < 2.5 V 0.75 VCC 6.5 V
Input high voltage
(WC, E2, E1, E0)(7)
7. Ei inputs should be tied to Vcc (see Section 2.3).
1.8 V VCC < 2.5 V 0.75 VCC VCC+1 V
VOL Output low voltage IOL = 1 mA, VCC = 1.8 V - 0.2 V
DC and AC parameters M24C32-W M24C32-R M24C32-F M24C32-X M24C32-DF
28/51 DocID4578 Rev 30
Table 17. DC characteristics (M24C32-F, device grade 6)
Symbol Parameter Test conditions(1) (in addition to
those in Table 9)
1. If the application uses the voltage range F device with 2.5 V < VCC < 5.5 V and -40 °C < TA < +85 °C,
please refer to Table 15 instead of this table.
Min. Max. Unit
ILI
Input leakage current
(E1, E2, SCL, SDA)
VIN = VSS or VCC
device in Standby mode 2µA
ILO Output leakage current SDA in Hi-Z, external voltage applied
on SDA: VSS or VCC
2µA
ICC Supply current (Read)
VCC = 1.6 V or 1.7 V, fC = 400 kHz - 0.8
mA
fC = 1 MHz(2)
2. Only for devices operating at fC max = 1 MHz (see note(1) in Table 20).
-2.5
ICC0 Supply current (Write) During tWVCC < 2.5 V - 3(3)
3. Characterized value, not tested in production.
mA
ICC1 Standby supply current
Device not selected(4),
VIN = VSS or VCC, VCC = 1.6 V or
1.7 V
4. The device is not selected after power-up, after a Read instruction (after the Stop condition), or after the
completion of the internal write cycle tW (tW is triggered by the correct decoding of a Write instruction).
-1µA
VIL
Input low voltage
(SCL, SDA, WC, Ei)(5)
5. Ei inputs should be tied to VSS(see Section 2.3).
VCC < 2.5 V –0.45 0.25 VCC V
VIH
Input high voltage
(SCL, SDA) VCC < 2.5 V 0.75 VCC 6.5
V
Input high voltage
(WC, E2, E1, E0)(6)
6. Ei inputs should be tied to VCC (see Section 2.3).
VCC < 2.5 V 0.75 VCC VCC+ 1
VOL Output low voltage IOL =1mA, VCC = 1.6 V or 1.7 V - 0.2 V
DocID4578 Rev 30 29/51
M24C32-W M24C32-R M24C32-F M24C32-X M24C32-DF DC and AC parameters
50
Table 18. DC characteristics (M24C32-X, device grade 5)
Symbol Parameter Test conditions(1) (in addition
to those in Table 10)
1. If the application uses the device with 2.5 V < VCC < 5.5 V and -20 °C < TA < +85 °C, please refer to
Table 15 instead of this table.
Min. Max. Unit
ILI
Input leakage current
(E1, E2, SCL, SDA)
VIN = VSS or VCC
device in Standby mode 2µA
ILO Output leakage current SDA in Hi-Z, external voltage
applied on SDA: VSS or VCC
2µA
ICC Supply current (Read)
VCC = 1.6 V, fc= 400 kHz - 0.8
mA
fc= 1 MHz(2)
2. Only for devices operating at fC max = 1 MHz (see note(1) in Table 20)
-2.5
ICC0 Supply current (Write) During tW, 1.6 V < VCC < 2.5 V - 3(3)
3. Characterized value, not tested in production.
mA
ICC1 Standby supply current Device not selected(4),
VIN = VSS or VCC, VCC = 1.6 V
4. The device is not selected after power-up, after a Read instruction (after the Stop condition), or after the
completion of the internal write cycle tW (tW is triggered by the correct decoding of a Write instruction).
-1µA
VIL
Input low voltage
(SCL, SDA, WC, Ei)(5)
5. Ei inputs should be tied to VSS (see Section 2.3).
1.6 V VCC < 2.5 V –0.45 0.25 VCC V
VIH
Input high voltage
(SCL, SDA) 1.6 V VCC < 2.5 V 0.75 VCC 6.5 V
Input high voltage
(WC, E2, E1, E0)(6)
6. Ei inputs should be tied to VCC (see Section 2.3).
1.6 V VCC < 2.5 V 0.75 VCC VCC+0.6 V
VOL Output low voltage IOL = 1 mA, VCC = 1.6 V - 0.2 V
DC and AC parameters M24C32-W M24C32-R M24C32-F M24C32-X M24C32-DF
30/51 DocID4578 Rev 30
Table 19. 400 kHz AC characteristics
Symbol Alt. Parameter Min. Max. Unit
fCfSCL Clock frequency - 400 kHz
tCHCL tHIGH Clock pulse width high 600 - ns
tCLCH tLOW Clock pulse width low 1300 - ns
tQL1QL2(1)
1. Characterized only, not tested in production.
tFSDA (out) fall time 20(2)
2. With CL = 10 pF.
300 ns
tXH1XH2 tRInput signal rise time (3)
3. There is no min. or max. values for the input signal rise and fall times. It is however recommended by the
I²C specification that the input signal rise and fall times be more than 20 ns and less than 300 ns when
fC < 400 kHz.
(3) ns
tXL1XL2 tFInput signal fall time (3) (3) ns
tDXCH tSU:DAT Data in set up time 100 - ns
tCLDX tHD:DAT Data in hold time 0 - ns
tCLQX(4)
4. To avoid spurious Start and Stop conditions, a minimum delay is placed between SCL=1 and the falling or
rising edge of SDA.
tDH Data out hold time 100(5)
5. The previous products were specified with tCLQX longer than 50 ns. it should be noted that any tCLQX value
longer than 50ns offers a safe margin when compared to the I2C-bus specification recommendations.
-ns
tCLQV(6)
6. tCLQV is the time (from the falling edge of SCL) required by the SDA bus line to reach either 0.3VCC or
0.7VCC, assuming that Rbus × Cbus time constant is within the values specified in Figure 13.
tAA Clock low to next data valid (access time) - 900 ns
tCHDL tSU:STA Start condition setup time 600 - ns
tDLCL tHD:STA Start condition hold time 600 - ns
tCHDH tSU:STO Stop condition set up time 600 - ns
tDHDL tBUF
Time between Stop condition and next Start
condition 1300 - ns
tWLDL(7)(1)
7. WC=0 set up time condition to enable the execution of a WRITE command.
tSU:WC WC set up time (before the Start condition) 0 - µs
tDHWH(8)(1)
8. WC=0 hold time condition to enable the execution of a WRITE command.
tHD:WC WC hold time (after the Stop condition) 1 - µs
tWtWR Internal Write cycle duration - 5(9)
9. 10 ms for the M24C32-X.
ms
tNS(1) -Pulse width ignored (input filter on SCL and
SDA) - single glitch -80
(10)
10. The previous products were specified with tNS longer than 50ns. it should be noted that the tNS (max) =
50ns is the value defined by the I2C-bus specification.
ns
DocID4578 Rev 30 31/51
M24C32-W M24C32-R M24C32-F M24C32-X M24C32-DF DC and AC parameters
50
Table 20. 1 MHz AC characteristics
Symbol Alt. Parameter(1)
1. Only for devices identified by the process letter K or T (devices qualified at 1 MHz).
Min. Max. Unit
fCfSCL Clock frequency 0 1 MHz
tCHCL tHIGH Clock pulse width high 260 - ns
tCLCH tLOW Clock pulse width low 500 - ns
tXH1XH2 tRInput signal rise time (2)
2. There is no min. or max. values for the input signal rise and fall times. It is however recommended by the
I²C specification that the input signal rise and fall times be less than 120 ns when fC < 1 MHz.
(2) ns
tXL1XL2 tFInput signal fall time (2) (2) ns
tQL1QL2(3)
3. Characterized only, not tested in production.
tFSDA (out) fall time 20(4)
4. With CL = 10 pF.
120 ns
tDXCH tSU:DAT Data in setup time 50 - ns
tCLDX tHD:DAT Data in hold time 0 - ns
tCLQX(5)
5. To avoid spurious Start and Stop conditions, a minimum delay is placed between SCL=1 and the falling or
rising edge of SDA.
tDH Data out hold time 100 - ns
tCLQV(6)
6. tCLQV is the time (from the falling edge of SCL) required by the SDA bus line to reach either 0.3 VCC or
0.7 VCC, assuming that the Rbus × Cbus time constant is within the values specified in Figure 14.
tAA Clock low to next data valid (access time) - 450 ns
tCHDL tSU:STA Start condition setup time 250 - ns
tDLCL tHD:STA Start condition hold time 250 - ns
tCHDH tSU:STO Stop condition setup time 250 - ns
tDHDL tBUF
Time between Stop condition and next Start
condition 500 - ns
tWLDL(7)(3)
7. WC=0 set up time condition to enable the execution of a WRITE command.
tSU:WC WC set up time (before the Start condition) 0 - µs
tDHWH(8)(3)
8. WC=0 hold time condition to enable the execution of a WRITE command.
tHD:WC WC hold time (after the Stop condition) 1 - µs
tWtWR Write time - 5(9)
9. 10 ms for the M24C32-X.
ms
tNS(3) -Pulse width ignored (input filter on SCL and
SDA) -80ns
n =|-—| :Ffi “H;
DC and AC parameters M24C32-W M24C32-R M24C32-F M24C32-X M24C32-DF
32/51 DocID4578 Rev 30
Figure 13. Maximum Rbus value versus bus parasitic capacitance (Cbus) for
an I2C bus at maximum frequency fC = 400 kHz
Figure 14. Maximum Rbus value versus bus parasitic capacitance Cbus) for
an I2C bus at maximum frequency fC = 1MHz

 
"USLINECAPACITORP&
"USLINEPULLUPRESISTORK 
-36
)£#BUS
MASTER -XXX
2BUS
6##
#BUS
3#,
3$!
(ERE
2BUS
§
#BUS
NS
2BUS§#BUSNS

4HE2BUS§#BUSTIMECONSTANT
MUSTBEBELOWTHENS
TIMECONSTANTLINEREPRESENTED
ONTHELEFT

DocID4578 Rev 30 33/51
M24C32-W M24C32-R M24C32-F M24C32-X M24C32-DF DC and AC parameters
50
Figure 15. AC waveforms
^>
^KƵƚ
^>
^/Ŷ
ĂƚĂǀĂůŝĚ
ƚ>Ys ƚ>Yy
ƚ,,
^ƚŽƉ
ĐŽŶĚŝƚŝŽŶ
ƚ,>
^ƚĂƌƚ
ĐŽŶĚŝƚŝŽŶ
tƌŝƚĞĐLJĐůĞ
ƚt
/ϬϬϳϵϱŝ
ĂƚĂǀĂůŝĚ
ƚY>ϭY>Ϯ
^/Ŷ
ƚ,>
^ƚĂƌƚ
ĐŽŶĚŝƚŝŽŶ
ƚy,
ƚ>y
^
/ŶƉƵƚ ^
ŚĂŶŐĞ
ƚ,, ƚ,>
^ƚŽƉ
ĐŽŶĚŝƚŝŽŶ
^ƚĂƌƚ
ĐŽŶĚŝƚŝŽŶ
ƚy,ϭy,Ϯ
^>
ƚ,>
ƚ>>
ƚ>,ƚy,ϭy,Ϯ ƚy>ϭy>Ϯ
ƚy>ϭy>Ϯ
t
ƚt>> ƚ,t,
ƚ,>
Package information M24C32-W M24C32-R M24C32-F M24C32-X M24C32-DF
34/51 DocID4578 Rev 30
9 Package information
In order to meet environmental requirements, ST offers these devices in different grades of
ECOPACK® packages, depending on their level of environmental compliance. ECOPACK®
specifications, grade definitions and product status are available at: www.st.com.
ECOPACK® is an ST trademark.
For die information concerning the M24C32 delivered in unsawn wafer, please contact your
nearest ST Sales Office.
9.1 UFDFPN5 (DFN5) package information
Figure 16. UFDFPN5 – 1.7x1.4 mm, 0.55 mm thickness, ultra thin fine pitch
dual flat package, no lead - package outline
1. On the bottom side, pin 1 is identified by the specific pad shape and, on the top side, pin 1 is defined from
the orientation of the marking: when reading the marking, pin 1 is below the upper left package corner.
Table 21. UFDFPN5 - 1.7 × 1.4 mm, 0.55 mm thickness, ultra thin fine pitch
dual flat package, no lead - package mechanical data
Symbol
millimeters inches(1)
Min Typ Max Min Typ Max
A 0.500 0.550 0.600 0.0197 0.0217 0.0236
A1 0.000 - 0.050 0.0000 - 0.0020
b(2) 0.175 0.200 0.225 0.0069 0.0079 0.0089
D 1.600 1.700 1.800 0.0630 0.0669 0.0709
D1 1.400 1.500 1.600 0.0551 0.0591 0.0630
E 1.300 1.400 1.500 0.0512 0.0551 0.0591
E1 0.175 0.200 0.225 0.0069 0.0079 0.0089
X - 0.200 - - 0.0079 -
7RSYLHZ
PDUNLQJVLGH
'
(
6LGHYLHZ
$
$
$8.B0(B9
%RWWRPYLHZ
SDGVVLGH
'
(
E
N/
H
3LQ
3LQ
;
<
/
DocID4578 Rev 30 35/51
M24C32-W M24C32-R M24C32-F M24C32-X M24C32-DF Package information
50
Figure 17. UFDFPN5 - 5-lead, 1.7 × 1.4 mm, 0.55 mm thickness, ultra thin fine pitch
dual flat package, no lead recommended footprint
1. Dimensions are expressed in millimeters.
Y - 0.200 - - 0.0079 -
e - 0.400 - - 0.0157 -
L 0.500 0.550 0.600 0.0197 0.0217 0.0236
L1 - 0.100 - - 0.0039 -
k - 0.400 - - 0.0157 -
1. Values in inches are converted from mm and rounded to 4 decimal digits.
2. Dimension b applies to plated terminal and is measured between 0.15 and 0.30mm from the terminal tip.
Table 21. UFDFPN5 - 1.7 × 1.4 mm, 0.55 mm thickness, ultra thin fine pitch
dual flat package, no lead - package mechanical data (continued)
Symbol
millimeters inches(1)
Min Typ Max Min Typ Max
$8.B)3B9





 

3LQ
10v UU [0300 .- y
Package information M24C32-W M24C32-R M24C32-F M24C32-X M24C32-DF
36/51 DocID4578 Rev 30
9.2 UFDFPN8 (DFN8) package information
Figure 18. UFDFPN8 – 2x3 mm, 0.55 thickness, ultra thin fine pitch
dual flat package, no lead - package outline
1. Drawing is not to scale.
2. The central pad (the area E2 by D2 in the above illustration) must be either connected to VSS or left floating
(not connected) in the end application.
Table 22. UFDFPN8 – 2x3 mm, 0.55 thickness, ultra thin fine pitch dual flat package,
no lead - package mechanical data
Symbol
millimeters inches(1)
1. Values in inches are converted from mm and rounded to four decimal digits.
Min Typ Max Min Typ Max
A 0.450 0.550 0.600 0.0177 0.0217 0.0236
A1 0.000 0.020 0.050 0.0000 0.0008 0.0020
b 0.200 0.250 0.300 0.0079 0.0098 0.0118
D 1.900 2.000 2.100 0.0748 0.0787 0.0827
D2 1.200 - 1.600 0.0472 - 0.0630
E 2.900 3.000 3.100 0.1142 0.1181 0.1220
E2 1.200 - 1.600 0.0472 - 0.0630
e - 0.500 - - 0.0197 -
K 0.300 - - 0.0118 - -
L 0.300 - 0.500 0.0118 - 0.0197
L1 - - 0.150 - - 0.0059
L3 0.300 - - 0.0118 - -
eee(2)
2. Applied for exposed die paddle and terminals. Exclude embedding part of exposed die paddle from
measuring.
0.080 - - 0.0031 - -
=:B0(H9
ϭ
ĞĞĞ
Ğ ď
Ϯ
>
Ϯ
WŝŶϭ
<
3LQ,'PDUNLQJ
HHHH V EF%
DocID4578 Rev 30 37/51
M24C32-W M24C32-R M24C32-F M24C32-X M24C32-DF Package information
50
9.3 TSSOP8 package information
Figure 19.TSSOP8 – 3x4.4 mm, 0.65 mm pitch, 8-lead thin shrink small outline,
package outline
1. Drawing is not to scale.
Table 23. TSSOP8 – 3 x 4.4 mm, 0.65 mm pitch, 8-lead thin shrink small outline,
package mechanical data
Symbol
millimeters inches(1)
1. Values in inches are converted from mm and rounded to four decimal digits.
Min. Typ. Max. Min. Typ. Max.
A - - 1.200 - - 0.0472
A1 0.050 - 0.150 0.0020 - 0.0059
A2 0.800 1.000 1.050 0.0315 0.0394 0.0413
b 0.190 - 0.300 0.0075 - 0.0118
c 0.090 - 0.200 0.0035 - 0.0079
CP - - 0.100 - - 0.0039
D 2.900 3.000 3.100 0.1142 0.1181 0.1220
e - 0.650 - - 0.0256 -
E 6.200 6.400 6.600 0.2441 0.2520 0.2598
E1 4.300 4.400 4.500 0.1693 0.1732 0.1772
L 0.450 0.600 0.750 0.0177 0.0236 0.0295
L1 - 1.000 - - 0.0394 -
α0° - 8° 0° - 8°
76623$0B9
ϭ
W
Đ
>
ɲ
Ğ
ϰ
ϭ
Ϯ
ď
ϴϱ
ϭ
Package information M24C32-W M24C32-R M24C32-F M24C32-X M24C32-DF
38/51 DocID4578 Rev 30
9.4 SO8N package information
Figure 20. SO8N – 3.9x4.9 mm, 8-lead plastic small outline, 150 mils body width,
package outline
1. Drawing is not to scale.
Table 24. SO8N – 3.9x4.9 mm, 8-lead plastic small outline, 150 mils body width,
package mechanical data
Symbol
millimeters inches(1)
1. Values in inches are converted from mm and rounded to four decimal digits.
Min. Typ. Max. Min. Typ. Max.
A - - 1.750 - - 0.0689
A1 0.100 - 0.250 0.0039 - 0.0098
A2 1.250 - - 0.0492 - -
b 0.280 - 0.480 0.0110 - 0.0189
c 0.170 - 0.230 0.0067 - 0.0091
D 4.800 4.900 5.000 0.1890 0.1929 0.1969
E 5.800 6.000 6.200 0.2283 0.2362 0.2441
E1 3.800 3.900 4.000 0.1496 0.1535 0.1575
e - 1.270 - - 0.0500 -
h 0.250 - 0.500 0.0098 - 0.0197
k 0° - 8° 0° - 8°
L 0.400 - 1.270 0.0157 - 0.0500
L1 - 1.040 - - 0.0409 -
ccc - - 0.100 - - 0.0039
62$B9
%
CCC
B
$
C
%
HX
!
K
PP
,
!
*$8*(3/$1(
E
!
,
7 g M M %
DocID4578 Rev 30 39/51
M24C32-W M24C32-R M24C32-F M24C32-X M24C32-DF Package information
50
Figure 21. SO8N – 3.9x4.9 mm, 8-lead plastic small outline, 150 mils body width,
package recommended footprint
1. Dimensions are expressed in millimeters.
2B621B)3B9

[


l—Il—Il—Il—I |_||_||_||_|
Package information M24C32-W M24C32-R M24C32-F M24C32-X M24C32-DF
40/51 DocID4578 Rev 30
9.5 PDIP8 package information
Figure 22. PDIP8 – 8-pin plastic DIP, 0.25 mm lead frame, package outline
1. Drawing is not to scale.
2. Not recommended for new designs.
Table 25. PDIP8 – 8-pin plastic DIP, 0.25 mm lead frame, package mechanical data
Symbol
millimeters inches(1)
1. Values in inches are converted from mm and rounded to four decimal digits.
Min. Typ. Max. Min. Typ. Max.
A - - 5.33 - - 0.2098
A1 0.38 - - 0.0150 - -
A2 2.92 3.30 4.95 0.1150 0.1299 0.1949
b 0.36 0.46 0.56 0.0142 0.0181 0.0220
b2 1.14 1.52 1.78 0.0449 0.0598 0.0701
c 0.20 0.25 0.36 0.0079 0.0098 0.0142
D 9.02 9.27 10.16 0.3551 0.3650 0.4000
E 7.62 7.87 8.26 0.3000 0.3098 0.3252
E1 6.10 6.35 7.11 0.2402 0.2500 0.2799
e - 2.54 - - 0.1000 -
eA - 7.62 - - 0.3000 -
eB - - 10.92 - - 0.4299
L 2.92 3.30 3.81 0.1150 0.1299 0.1500
0$)0"
!
!
!
,
BE
$
%
C
E!
B
E"
%
DocID4578 Rev 30 41/51
M24C32-W M24C32-R M24C32-F M24C32-X M24C32-DF Package information
50
9.6 Ultra Thin WLCSP package information
Figure 23. Ultra Thin WLCSP- 4-bump, 0.795 x 0.674 mm, wafer level chip scale
package outline
1. Drawing is not to scale.
2. Primary datum Z and seating plane are defined by the spherical crowns of the bump.
3. Side view
Table 26. Ultra Thin WLCSP- 4-bump, 0.795 x 0.674 mm, wafer level chip scale
package mechanical data
Symbol
millimeters inches(1)
Min Typ Max Min Typ Max
A 0.260 0.290 0.320 0.0102 0.0114 0.0126
A1 - 0.115 - - 0.0045 -
A2 - 0.175 - - 0.0069 -
b(2) - 0.160 - - 0.0063 -
D - 0.795 0.815 - 0.0313 0.0321
E - 0.674 0.694 - 0.0265 0.0273
e - 0.400 - - 0.0157 -
F - 0.137 - - 0.0054 -
G - 0.198 - - 0.0078 -
aaa - - 0.110 - - 0.0043
$=B:/&63B0(B9
:DIHUEDFNVLGH 6LGHYLHZ
2ULHQWDWLRQ
UHIHUHQFH ;
DDD
(
';<
'HWDLO$
EEE =
$
$
%XPS
$
=
'HWDLO$
5RWDWHG
HHH =
E;
H
**
)
H
6HDWLQJSODQH
2ULHQWDWLRQ
UHIHUHQFH
; <
TGGG0
=
TFFF0
=
)
%XPSVLGH
Package information M24C32-W M24C32-R M24C32-F M24C32-X M24C32-DF
42/51 DocID4578 Rev 30
Figure 24. Thin WLCSP- 4-bump, 0.795 x 0.674 mm, wafer level chip scale
package recommended footprint
1. Dimensions are expressed in millimeters.
bbb - - 0.110 - - 0.0043
ccc - - 0.110 - - 0.0043
ddd - - 0.060 - - 0.0024
eee - - 0.060 - - 0.0024
1. Values in inches are converted from mm and rounded to 4 decimal digits.
2. Dimension is measured at the maximum bump diameter parallel to primary datum Z.
Table 26. Ultra Thin WLCSP- 4-bump, 0.795 x 0.674 mm, wafer level chip scale
package mechanical data (continued)
$=B:/&63B)3B9


[ E
O +0‘O
DocID4578 Rev 30 43/51
M24C32-W M24C32-R M24C32-F M24C32-X M24C32-DF Package information
50
Figure 25. Ultra Thin WLCSP- 4-bump, 0.795 x 0.674 mm, with BSC, wafer level chip
scale package outline
1. Drawing is not to scale.
2. Primary datum Z and seating plane are defined by the spherical crowns of the bump.
Table 27. Ultra Thin WLCSP- 4-bump, 0.795 x 0.674 mm, with BSC, wafer level chip
scale package mechanical data
Symbol
millimeters inches(1)
Min Typ Max Min Typ Max
A 0.285 0.315 0.345 0.0112 0.0124 0.0136
A1 - 0.115 - - 0.0045 -
A2 - 0.175 - - 0.0069 -
A3 (BSC) - 0.025 - - 0.0010 -
b(2) (3) - 0.160 - - 0.0063 -
D - 0.795 0.815 - 0.0313 0.0321
E - 0.674 0.694 - 0.0265 0.0273
e - 0.400 - - 0.0157 -
F - 0.137 - - 0.0054 -
G - 0.198 - - 0.0078 -
aaa - - 0.110 - - 0.0043
bbb - - 0.110 - - 0.0043
$=%6&B0(B9
:DIHUEDFNVLGH 6LGHYLHZ
2ULHQWDWLRQ
UHIHUHQFH ;
DDD
(
';<
'HWDLO$
EEE =
$
$
%XPS
$
=
'HWDLO$
5RWDWHG
HHH =
E;
H
**
)
H
6HDWLQJSODQH
2ULHQWDWLRQ
UHIHUHQFH
; <
TGGG0
=
TFFF0
=
)
%DFNVLGHFRDWLQJ
WKLFNQHVVPP
$
%XPS6LGH
Package information M24C32-W M24C32-R M24C32-F M24C32-X M24C32-DF
44/51 DocID4578 Rev 30
Figure 26. Thin WLCSP- 4-bump, 0.795 x 0.674 mm, wafer level chip scale
package recommended footprint
1. Dimensions are expressed in millimeters.
ccc - - 0.110 - - 0.0043
ddd - - 0.060 - - 0.0024
eee - - 0.060 - - 0.0024
1. Values in inches are converted from mm and rounded to 4 decimal digits.
2. Dimension is measured at the maximum bump diameter parallel to primary datum Z.
3. Primary datum Z and seating plane are defined by the spherical crowns of the bump.
Table 27. Ultra Thin WLCSP- 4-bump, 0.795 x 0.674 mm, with BSC, wafer level chip
scale package mechanical data (continued)
H
H
[ E
$=%6&B)3B9
F am
DocID4578 Rev 30 45/51
M24C32-W M24C32-R M24C32-F M24C32-X M24C32-DF Ordering information
50
10 Ordering information
Table 28. Ordering information scheme
Example: M24C32 -D W MC 6 T P /T F
Device type
M24 = I2C serial access EEPROM
Device function
C32 = 32 Kbit (4096 x 8 bit)
Device family
Blank = Without Identification page
D = With Identification page
Operating voltage
W = VCC = 2.5 V to 5.5 V
R = VCC = 1.8 V to 5.5 V
F = VCC = 1.7 V to 5.5 V
X = VCC = 1.6 V to 5.5 V
Package
BN = PDIP8(1)
1. RoHS-compliant (ECOPACK1®)
MN = SO8 (150 mil width)(2)
2. RoHS compliant and free of brominated, chlorinated and antimony-oxide flame retardants
DW = TSSOP8 (169 mil width)(2)
MC = UFDFPN8 (DFN8)(2)
MH = UFDFPN5 (DFN5)(2)
CU = Ultra-thin 4 bump WLCSP(2)
Device grade
5 = Consumer: device tested with standard test flow over –20 to 85°C
6 = Industrial: device tested with standard test flow over –40 to 85 °C
Option
T = Tape and reel packing
blank = tube packing
Plating technology
P or G = ECOPACK2®
Process(3) (4)
3. These process letters appear on the device package (marking) and on the shipment box. Please contact
your nearest ST Sales Office for further information.
4. Part numbering for WLCSP
/P or /K or /T= Manufacturing technology code
Option
Blank = No Back Side Coating
F = Back Side Coating (WLCSP height = 0.345mm)
j
Ordering information M24C32-W M24C32-R M24C32-F M24C32-X M24C32-DF
46/51 DocID4578 Rev 30
Table 29. Ordering information scheme (unsawn wafer)(1)
1. For all information concerning the M24C32 delivered in unsawn wafer, please contact your nearest ST
Sales Office.
Example: M24C32 - F T W 20 I /90
Device type
M24 = I2C serial access EEPROM
Device function
C32 = 32 Kbit (4096 x 8 bit)
Operating voltage
F = VCC = 1.7 V to 5.5 V
Process
T = F8H
Delivery form
W = Wafer (bare die)
Wafer thickness
20 = Non-backlapped wafer
Wafer testing
I = Inkless test
Device grade
90 = -40°C to 85°C
DocID4578 Rev 30 47/51
M24C32-W M24C32-R M24C32-F M24C32-X M24C32-DF Ordering information
50
Engineering samples
Parts marked as ES or E are not yet qualified and therefore not approved for use in
production. ST is not responsible for any consequences deriving from such use. In no event,
will ST be liable for the customer using of these engineering samples in production. ST’s
quality department must be contacted prior to any decision to use these engineering
samples to run qualification activity.
Revision history M24C32-W M24C32-R M24C32-F M24C32-X M24C32-DF
48/51 DocID4578 Rev 30
11 Revision history
Table 30. Document revision history
Date Revision Changes
18-Mar-2011 18
Added:
M24C32-DF and all information concerning the Identification Page:
sections 4.9, 4.10, 4.17, 4.18
ECC section 4.11
AC table with clock frequency of 1 MHz (Table 18)
Table 4: Device select code
Updated:
Section 1: Description
Section 4.5: Memory addressing
Section 4.18: Read the lock status (M24C32-D)
Table 6: Absolute maximum ratings
AC/DC tables 13, 17 with values specific to the device identified with
process letter K
Deleted:
Table 2: Device select code
Table 23: Available M24C32 products (package, voltage range,
temperature grade)
14-Sep-2011 19
Updated:
Figure 4: I2C Fast mode (fC = 400 kHz): maximum Rbus value versus
bus parasitic capacitance (Cbus)
Figure 5: I2C Fast mode Plus (fC = 1 MHz): maximum Rbus value
versus bus parasitic capacitance (Cbus)
Added tWLDL and tDHWH in:
Table 17: 400 kHz AC characteristics
Table 18: 1 MHz AC characteristics
Figure 13: AC waveforms
Minor text changes.
21-May-2012 20
Datasheet split into:
M24C32-DF, M24C32-W, M24C32-R,M24C32-F (this datasheet) for
standard products (range 6),
M24C32-125 datasheet for automotive products (range 3).
25-Jul-2012 21
Added reference M24C32-X.
Updated:
– AC and DC tables in Section 8: DC and AC parameters.
Figure 56.: M24C16-FCS5TP/S WLCSP 5 bumps package outline.
DocID4578 Rev 30 49/51
M24C32-W M24C32-R M24C32-F M24C32-X M24C32-DF Revision history
50
19-May-2014 22
Add new package UFDFPN5, description onFigure 51 and Table 20.
Updated:
Figure 30: Block diagram
–V
ESD value on Table 14
Icc1 values on Table 32
Icc and Icc0 test conditions on Table 40
–V
IH(max) values on Table 32, Table 33
Icc, Icc0 ,Icc1, VIL, VOL and VIH test conditions onTable 40
Note on Table 29, Table 31, Table 32, Table 40, Table 41 and Table 48
Table 76
Section numbering for Section 5.2.5 and Section 5.2.6.
28-Jul-2014 23 Updated Table 21.
02-Sept-2014 24
Updated
Section 5.1.6.
Note 1 on Table 29
Section 9, added reference to unsawn wafer availability.
note 3 on Table 76.
Added:
Note 1 on Table 21
Note 2 on Table 31
Note 2 on Figure 58
Table 90.
Removed notes 1 and 2 on Section 5.1.6
23-Jul-2015 25
Updated:
Section 2.4
Section 6
Table 76
note 2 on Table 76
Added:
WLCSP package in cover page.
Section 9.7: Ultra Thin WLCSP package information
27-Aug-2015 26
Updated:
Table 14
Added:
Note 3 in Figure 59.
Note 1 in Table 60.
Note 2 Table 76
12-Feb-2016 27 Updated Figure 17, Figure 51. Added Ta ble 2.
05-May-2016 28 Updated Table 14: Absolute maximum ratings.
Table 30. Document revision history (continued)
Date Revision Changes
Revision history M24C32-W M24C32-R M24C32-F M24C32-X M24C32-DF
50/51 DocID4578 Rev 30
10-Jul-2017 29 Updated Section 9.6: Ultra Thin WLCSP package information
11-Sep-2017 30
Added reference to DFN8 and DFN5 in: cover page figure, Figure 3:
UFDFPN5 (DFN5) package connections, Section 9.1: UFDFPN5
(DFN5) package information, Section 9.2: UFDFPN8 (DFN8) package
information and Table 28: Ordering information scheme
Table 30. Document revision history (continued)
Date Revision Changes
DocID4578 Rev 30 51/51
M24C32-W M24C32-R M24C32-F M24C32-X M24C32-DF
51
IMPORTANT NOTICE – PLEASE READ CAREFULLY
STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and
improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on
ST products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order
acknowledgement.
Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or
the design of Purchasers’ products.
No license, express or implied, to any intellectual property right is granted by ST herein.
Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.
ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.
Information in this document supersedes and replaces information previously supplied in any prior versions of this document.
© 2017 STMicroelectronics – All rights reserved