FDD8870_F085 by onsemi Datasheet | DigiKey

FDD8870_F085 Datasheet by onsemi

® on Semiconduflol“ TJ 5m SJA
©2013 Semiconductor Components Industries, LLC.
September-2017, Rev. 3
Publication Order Number:
FDD8870-F085/D
FDD8870-F085
N-Channel PowerTrench® MOSFET
30V, 160A, 3.9mΩ
General Description
This N-Channel MOSFET has been designed specifically to
improve the overall efficiency of DC/DC converters using
either synchronous or conventional switching PWM
controllers. It has been optimized for low gate charge, low
rDS(ON) and fast switching speed.
Applications
DC/DC converters
Features
•r
DS(ON) = 3.9mΩ, VGS = 10V, ID = 35A
•r
DS(ON) = 4.4mΩ, VGS = 4.5V, ID = 35A
High performance trench technology for extremely low
rDS(ON)
Low gate charge
High power and current handling capability
MOSFET Maximum Ratings TC= 25°C unless otherwise noted
Thermal Characteristics
Symbol Parameter Ratings Units
VDSS Drain to Source Voltage 30 V
VGS Gate to Source Voltage ±20 V
ID
Drain Current
160 A
Continuous (TC = 25oC, VGS = 10V) (Note 1)
Continuous (TC = 25oC, VGS = 4.5V) (Note 1) 150 A
Continuous (Tamb = 25oC, VGS = 10V, with RθJA = 52oC/W) 21 A
Pulsed Figure 4 A
EAS Single Pulse Avalanche Energy (Note 2) 690 mJ
PD
Power dissipation 160 W
Derate above 25oC1.07W/
oC
TJ, TSTG Operating and Storage Temperature -55 to 175 oC
RθJC Thermal Resistance Junction to Case TO-252 0.94 oC/W
RθJA Thermal Resistance Junction to Ambient TO-252 100 oC/W
RθJA Thermal Resistance Junction to Ambient TO-252, 1in2 copper pad area 52 oC/W
D
G
S
G
S
D
TO-252
D-PAK
(TO-252)
FDD8870-F085 N-Channel PowerTrench ®MOSFET
Qualified to AEC Q101
RoHS Compliant
'Gss gd ‘or; QRR
Package Marking and Ordering Information
Electrical Characteristics TC = 25°C unless otherwise noted
Off Characteristics
On Characteristics
Dynamic Characteristics
Switching Characteristics (VGS = 10V)
Drain-Source Diode Characteristics
Notes:
1: Package current limitation is 35A.
2: Starting TJ= 25°C, L = 1.77mH, IAS = 28A, VDD = 27V, VGS = 10V.
:
F
Device Marking Device Package Reel Size Tape Width Quantity
FDD8870 13” 12mm 2500 units
F
F
Symbol Parameter Test Conditions Min Typ Max Units
BVDSS Drain to Source Breakdown Voltage ID = 250μA, VGS = 0V 30 - - V
IDSS Zero Gate Voltage Drain Current VDS = 24V - - 1 μA
VGS = 0V TC = 150oC - - 250
IGSS Gate to Source Leakage Current VGS = ±20V - -±100 nA
VGS(TH) Gate to Source Threshold Voltage VGS = VDS, ID = 250μA 1.2 - 2.5 V
rDS(ON) Drain to Source On Resistance
ID = 35A, VGS = 10V - 0.0032 0.0039
Ω
ID = 35A, VGS = 4.5V - 0.0036 0.0044
ID = 35A, VGS = 10V,
TJ = 175oC- 0.0051 0.0063
CISS Input Capacitance VDS = 15V, VGS = 0V,
f = 1MHz
- 5160 - pF
COSS Output Capacitance - 990 - pF
CRSS Reverse Transfer Capacitance - 590 - pF
RGGate Resistance VGS = 0.5V, f = 1MHz - 2.1 - Ω
Qg(TOT) Total Gate Charge at 10V VGS = 0V to 10V
VDD = 15V
ID = 35A
Ig= 1.0mA
- 91 118 nC
Qg(5) Total Gate Charge at 5V VGS = 0V to 5V - 48 62 nC
Qg(TH)Threshold Gate Charge VGS = 0V to 1V - 5 6.5 nC
Qgs Gate to Source Gate Charge - 14 - nC
Qgs2 Gate Charge Threshold to Plateau - 9 - nC
Qgd Gate to Drain “Miller” Charge - 18 - nC
tON Tu r n-O n T im e
VDD = 15V
, ID = 35A
VGS = 10V, RGS = 3.3Ω
- - 139 ns
td(ON)Turn-On Delay Time - 9 - ns
trRise Time - 83 - ns
td(OFF) Turn-Off Delay Time - 83 - ns
tfFall Time - 42 - ns
tOFF Turn-Off Time - - 189 ns
VSD Source to Drain Diode Voltage ISD = 35A - - 1.25 V
ISD = 15A - - 1.0 V
trr Reverse Recovery Time ISD = 35A, dISD/dt = 100A/μs- -37ns
QRR Reverse Recovered Charge ISD = 35A, dISD/dt = 100A/μs- -21nC
FDD8870-F085 TO-252AA
FDD8870-F085 N-Channel PowerTrench ®MOSFET
www.onsemi.com
2
Typical Characteristics TC = 25°C unless otherwise noted
Figure 1. Normalized Power Dissipation vs Case
Temperature
Figure 2. Maximum Continuous Drain Current vs
Case Temperature
Figure 3. Normalized Maximum Transient Thermal Impedance
Figure 4. Peak Current Capability
TC, CASE TEMPERATURE (oC)
POWER DISSIPATION MULTIPLIER
0
025 50 75 100 175
0.2
0.4
0.6
0.8
1.0
1.2
125 150 0
25
50
75
100
125
150
175
25 50 75 100 125 150 175
ID, DRAIN CURRENT (A)
TC, CASE TEMPERATURE (oC)
CURRENT LIMITED
BY PACKAGE
0.1
1
10-5 10-4 10-3 10-2 10-1 100101
0.01
2
t, RECTANGULAR PULSE DURATION (s)
ZθJC, NORMALIZED
THERMAL IMPEDANCE
NOTES:
DUTY FACTOR: D = t1/t2
PEAK TJ = PDM x ZθJC x RθJC + TC
PDM
t1
t2
0.5
0.2
0.1
0.05
0.01
0.02
DUTY CYCLE - DESCENDING ORDER
SINGLE PULSE
100
1000
30
2000
IDM, PEAK CURRENT (A)
t, PULSE WIDTH (s)
10-5 10-4 10-3 10-2 10-1 100101
TC = 25oC
I = I25 175 - TC
150
FOR TEMPERATURES
ABOVE 25oC DERATE PEAK
CURRENT AS FOLLOWS:
TRANSCONDUCTANCE
MAY LIMIT CURRENT
IN THIS REGION
VGS = 4.5V
FDD8870-F085 N-Channel PowerTrench ®MOSFET
www.onsemi.com
3
W ,/ / //
Figure 5. Forward Bias Safe Operating Area Figure 6. Unclamped Inductive Switching
Capability
Figure 7. Transfer Characteristics Figure 8. Saturation Characteristics
Figure 9. Drain to Source On Resistance vs Gate
Voltage and Drain Current
Figure 10. Normalized Drain to Source On
Resistance vs Junction Temperature
Typical Characteristics TC = 25°C unless otherwise noted
0.1
1
10
100
1000
110
60
VDS, DRAIN TO SOURCE VOLTAGE (V)
ID, DRAIN CURRENT (A)
TJ = MAX RATED
TC = 25oC
SINGLE PULSE
LIMITED BY rDS(ON)
AREA MA
Y BE
OPERATION IN THIS
10μs
1ms
DC
100μs
10ms
1
10
100
0.1 1 10 100
IAS, AVALANCHE CURRENT (A)
tAV, TIME IN AVALANCHE (ms)
STARTING TJ = 25oC
STARTING TJ = 150oC
tAV = (L)(IAS)/(1.3*RATED BVDSS - VDD)
If R = 0
If R 0
tAV = (L/R)ln[(IAS*R)/(1.3*RATED BVDSS - VDD) +1]
0
20
40
60
80
100
1.52.02.53.0
ID, DRAIN CURRENT (A)
VGS, GATE TO SOURCE VOLTAGE (V)
PULSE DURATION = 80μs
DUTY CYCLE = 0.5% MAX
VDD = 15V
TJ = 175oC
TJ = 25oC
TJ = -55oC
0
20
40
60
80
100
0 0.2 0.4 0.6
ID, DRAIN CURRENT (A)
VDS, DRAIN TO SOURCE VOLTAGE (V)
VGS = 3V
PULSE DURATION = 80μs
DUTY CYCLE = 0.5% MAX
TC = 25oC
VGS = 10VVGS = 4V
VGS = 2.5V
VGS = 5V
2
4
6
8
2468
10
8
ID = 1A
VGS, GATE TO SOURCE VOLTAGE (V)
ID = 35A
rDS(ON), DRAIN TO SOURCE
ON RESISTANCE (mΩ)
PULSE DURATION = 80μs
DUTY CYCLE = 0.5% MAX
0.6
0.8
1.0
1.2
1.4
1.6
-80 -40 0 40 80 120 160 200
NORMALIZED DRAIN TO SOURCE
TJ, JUNCTION TEMPERATURE (oC)
ON RESISTANCE
VGS = 10V, ID = 35A
PULSE DURATION = 80μs
DUTY CYCLE = 0.5% MAX
FDD8870-F085 N-Channel PowerTrench ®MOSFET
www.onsemi.com
4
Figure 11. Normalized Gate Threshold Voltage vs
Junction Temperature
Figure 12. Normalized Drain to Source
Breakdown Voltage vs Junction Temperature
Figure 13. Capacitance vs Drain to Source
Voltage
Figure 14. Gate Charge Waveforms for Constant
Gate Current
Typical Characteristics TC = 25°C unless otherwise noted
0.4
0.6
0.8
1.0
1.2
-80 -40 0 40 80 120 160 200
VGS = VDS, ID = 250μA
NORMALIZED GATE
TJ, JUNCTION TEMPERATURE (oC)
THRESHOLD VOLTAGE
0.9
1.0
1.1
1.2
-80 -40 0 40 80 120 160 200
TJ, JUNCTION TEMPERATURE (oC)
NORMALIZED DRAIN TO SOURCE
ID = 250μA
BREAKDOWN VOLTAGE
1000
10000
0.1 1 10 30
400
C, CAPACITANCE (pF)
VDS, DRAIN TO SOURCE VOLTAGE (V)
VGS = 0V, f = 1MHz
CISS = CGS + CGD
COSS CDS + CGD
CRSS = CGD
0
2
4
6
8
10
020406080100
VGS, GATE TO SOURCE VOLTAGE (V)
Qg, GATE CHARGE (nC)
VDD = 15V
ID = 35A
ID = 5A
WAVEFORMS IN
DESCENDING ORDER:
FDD8870-F085 N-Channel PowerTrench ®MOSFET
www.onsemi.com
5
1/: \f_ 1% AL
Test Circuits and Waveforms
Figure 15. Unclamped Energy Test Circuit Figure 16. Unclamped Energy Waveforms
Figure 17. Gate Charge Test Circuit Figure 18. Gate Charge Waveforms
Figure 19. Switching Time Test Circuit Figure 20. Switching Time Waveforms
tP
VGS
0.01Ω
L
IAS
+
-
VDS
VDD
RG
DUT
VARY tP TO OBTAIN
REQUIRED PEAK IAS
0V
VDD
VDS
BVDSS
tP
IAS
tAV
0
VGS +
-
VDS
VDD
DUT
Ig(REF)
L
VDD
Qg(TH)
VGS = 1V
Qgs2
Qg(TOT)
VGS = 10V
VDS VGS
Ig(REF)
0
0
Qgs Qgd
Qg(5)
VGS = 5V
VGS
RL
RGS
DUT
+
-
VDD
VDS
VGS
tON
td(ON)
tr
90%
10%
VDS
90%
10%
tf
td(OFF)
tOFF
90%
50%
50%
10% PULSE WIDTH
VGS
0
0
FDD8870-F085 N-Channel PowerTrench ®MOSFET
www.onsemi.com
6
Thermal Resistance vs. Mounting Pad Area
The maximum rated junction temperature, TJM, and the
thermal resistance of the heat dissipating path determines
the maximum allowable device power dissipation, PDM, in an
application. Therefore the application’s ambient
temperature, TA (oC), and thermal resistance RθJA (oC/W)
must be reviewed to ensure that TJM is never exceeded.
Equation 1 mathematically represents the relationship and
serves as the basis for establishing the rating of the part.
In using surface mount devices such as the TO-252
package, the environment in which it is applied will have a
significant influence on the part’s current and maximum
power dissipation ratings. Precise determination of PDM is
complex and influenced by many factors:
1. Mounting pad area onto which the device is attached and
whether there is copper on one side or both sides of the
board.
2. The number of copper layers and the thickness of the
board.
3. The use of external heat sinks.
4. The use of thermal vias.
5. Air flow and board orientation.
6. For non steady state applications, the pulse width, the
duty cycle and the transient thermal response of the part,
the board and the environment they are in.
ON Semiconductor provides thermal information to
assist the designer’s preliminary application
evaluation. Figure 21
defines the RθJA for the device as a function of the top
copper (component side) area. This is for a horizontally
positioned FR-4 board with 1oz copper after 1000 seconds
of steady state power with no air flow. This graph provides
the necessary information for calculation of the steady state
junction temperature or power dissipation. Pulse
applications can be evaluated using the ON
Semiconductor device Spice thermal model or manually
utilizing the normalized maximum transient thermal
impedance curve.
Thermal resistances corresponding to other copper areas
can be obtained from Figure 21 or by calculation using
Equation 2 or 3. Equation 2 is used for copper area defined
in inches square and equation 3 is for area in centimeters
square. The area, in square inches or square centimeters is
(EQ. 1)
PDM
TJM TA
()
RθJA
-----------------------------=
25
50
75
100
125
0.01 0.1 1 10
Figure 21. Thermal Resistance vs Mounting
Pad Area
RθJA = 33.32+ 23.84/(0.268+Area) EQ.2
RθJA (oC/W)
AREA, TOP COPPER AREA in2 (cm2)
RθJA = 33.32+ 154/(1.73+Area) EQ.3
(0.645) (6.45) (64.5)(0.0645)
FDD8870-F085 N-Channel PowerTrench MOSFET
®
www.onsemi.com
7
Area in Inches Squared
(EQ. 2)
RθJA 33.32
(0.268 +Area)
-----
23
--.
--8
----
4
------------ ------------+=
(EQ. 3)
RθJA =33.32
(1.73 +Area)
----
15
----
4
------------- -------------+
Area in Centimeters Squared
H7. w @ H @lT
PSPICE Electrical Model
.SUBCKT FDD8870 2 1 3 ; rev July 2003
Ca 12 8 4.2e-9
Cb 15 14 4.2e-9
Cin 6 8 4.7e-9
Dbody 7 5 DbodyMOD
Dbreak 5 11 DbreakMOD
Dplcap 10 5 DplcapMOD
Ebreak 11 7 17 18 32.7
Eds 14 8 5 8 1
Egs 13 8 6 8 1
Esg 6 10 6 8 1
Evthres 6 21 19 8 1
Evtemp 20 6 18 22 1
It 8 17 1
Lgate 1 9 5e-9
Ldrain 2 5 1.0e-9
Lsource 3 7 2e-9
RLgate 1 9 50
RLdrain 2 5 10
RLsource 3 7 20
Mmed 16 6 8 8 MmedMOD
Mstro 16 6 8 8 MstroMOD
Mweak 16 21 8 8 MweakMOD
Rbreak 17 18 RbreakMOD 1
Rdrain 50 16 RdrainMOD 1.57e-3
Rgate 9 20 2.1
RSLC1 5 51 RSLCMOD 1e-6
RSLC2 5 50 1e3
Rsource 8 7 RsourceMOD 1.2e-3
Rvthres 22 8 RvthresMOD 1
Rvtemp 18 19 RvtempMOD 1
S1a 6 12 13 8 S1AMOD
S1b 13 12 13 8 S1BMOD
S2a 6 15 14 13 S2AMOD
S2b 13 15 14 13 S2BMOD
Vbat 22 19 DC 1
ESLC 51 50 VALUE={(V(5,51)/ABS(V(5,51)))*(PWR(V(5,51)/(1e-6*500),10))}
.MODEL DbodyMOD D (IS=1.3E-11 IKF=10 N=1.01 RS=1.8e-3 TRS1=8e-4 TRS2=2e-7
+ CJO=2e-9 M=0.57 TT=1e-10 XTI=0.9)
.MODEL DbreakMOD D (RS=8e-2 TRS1=1e-3 TRS2=-8.9e-6)
.MODEL DplcapMOD D (CJO=1.6e-9 IS=1e-30 N=10 M=0.38)
.MODEL MmedMOD NMOS (VTO=1.76 KP=10 IS=1e-30 N=10 TOX=1 L=1u W=1u RG=2.1 T_ABS=25)
.MODEL MstroMOD NMOS (VTO=2.2 KP=650 IS=1e-30 N=10 TOX=1 L=1u W=1u T_ABS=25)
.MODEL MweakMOD NMOS (VTO=1.47 KP=0.05 IS=1e-30 N=10 TOX=1 L=1u W=1u RG=21 RS=0.1 T_ABS=25)
.MODEL RbreakMOD RES (TC1=8.3e-4 TC2=-4e-7)
.MODEL RdrainMOD RES (TC1=2e-4 TC2=8e-6)
.MODEL RSLCMOD RES (TC1=9e-4 TC2=1e-6)
.MODEL RsourceMOD RES (TC1=8e-3 TC2=1e-6)
.MODEL RvthresMOD RES (TC1=-2e-3 TC2=-9.5e-6)
.MODEL RvtempMOD RES (TC1=-2.6e-3 TC2=2e-7)
.MODEL S1AMOD VSWITCH (RON=1e-5 ROFF=0.1 VON=-4 VOFF=-3)
.MODEL S1BMOD VSWITCH (RON=1e-5 ROFF=0.1 VON=-3 VOFF=-4)
.MODEL S2AMOD VSWITCH (RON=1e-5 ROFF=0.1 VON=-2 VOFF=-0.5)
.MODEL S2BMOD VSWITCH (RON=1e-5 ROFF=0.1 VON=-0.5 VOFF=-2)
.ENDS
Note: For further discussion of the PSPICE model, consult A New PSPICE Sub-Circuit for the Power MOSFET Featuring Global
Temperature Options; IEEE Power Electronics Specialist Conference Records, 1991, written by William J. Hepp and C. Frank
Wheatley.
18
22
+-
6
8
+
-
5
51
+
-
19
8
+-
17
18
6
8
+
-
5
8+
-
RBREAK
RVTEMP
VBAT
RVTHRES
IT
17 18
19
22
12
13
15
S1A
S1B
S2A
S2B
CA CB
EGS EDS
14
8
13
8
14
13
MWEAK
EBREAK DBODY
RSOURCE
SOURCE
11
73
LSOURCE
RLSOURCE
CIN
RDRAIN
EVTHRES 16
21
8
MMED
MSTRO
DRAIN
2
LDRAIN
RLDRAIN
DBREAK
DPLCAP
ESLC
RSLC1
10
5
51
50
RSLC2
1
GATE RGATE
EVTEMP
9
ESG
LGATE
RLGATE
20
+
-
+
-
+
-
6
FDD8870-F085 N-Channel PowerTrench ®MOSFET
www.onsemi.com
8
kw Q fifl e I... @1T 9 To“. 9 C “A
SABER Electrical Model
rev July 2003
template FDD8870 n2,n1,n3 =m_temp
electrical n2,n1,n3
number m_temp=25
{
var i iscl
dp..model dbodymod = (isl=1.3e-11,ikf=10,nl=1.01,rs=1.8e-3,trs1=8e-4,trs2=2e-7,cjo=2e-9,m=0.57,tt=1e-10,xti=0.9)
dp..model dbreakmod = (rs=8e-2,trs1=1e-3,trs2=-8.9e-6)
dp..model dplcapmod = (cjo=1.6e-9,isl=10e-30,nl=10,m=0.38)
m..model mmedmod = (type=_n,vto=1.76,kp=10,is=1e-30, tox=1)
m..model mstrongmod = (type=_n,vto=2.2,kp=650,is=1e-30, tox=1)
m..model mweakmod = (type=_n,vto=1.47,kp=0.05,is=1e-30, tox=1,rs=0.1)
sw_vcsp..model s1amod = (ron=1e-5,roff=0.1,von=-4,voff=-3)
sw_vcsp..model s1bmod = (ron=1e-5,roff=0.1,von=-3,voff=-4)
sw_vcsp..model s2amod = (ron=1e-5,roff=0.1,von=-2,voff=-0.5)
sw_vcsp..model s2bmod = (ron=1e-5,roff=0.1,von=-0.5,voff=-2)
c.ca n12 n8 = 4.2e-9
c.cb n15 n14 = 4.2e-9
c.cin n6 n8 = 4.7e-9
dp.dbody n7 n5 = model=dbodymod
dp.dbreak n5 n11 = model=dbreakmod
dp.dplcap n10 n5 = model=dplcapmod
spe.ebreak n11 n7 n17 n18 = 32.7
spe.eds n14 n8 n5 n8 = 1
spe.egs n13 n8 n6 n8 = 1
spe.esg n6 n10 n6 n8 = 1
spe.evthres n6 n21 n19 n8 = 1
spe.evtemp n20 n6 n18 n22 = 1
i.it n8 n17 = 1
l.lgate n1 n9 = 5e-9
l.ldrain n2 n5 = 1.0e-9
l.lsource n3 n7 = 2e-9
res.rlgate n1 n9 = 50
res.rldrain n2 n5 = 10
res.rlsource n3 n7 = 20
m.mmed n16 n6 n8 n8 = model=mmedmod, l=1u, w=1u, temp=m_temp
m.mstrong n16 n6 n8 n8 = model=mstrongmod, l=1u, w=1u, temp=m_temp
m.mweak n16 n21 n8 n8 = model=mweakmod, l=1u, w=1u, temp=m_temp
res.rbreak n17 n18 = 1, tc1=8.3e-4,tc2=-4e-7
res.rdrain n50 n16 = 1.57e-3, tc1=2e-4,tc2=8e-6
res.rgate n9 n20 = 2.1
res.rslc1 n5 n51 = 1e-6, tc1=9e-4,tc2=1e-6
res.rslc2 n5 n50 = 1e3
res.rsource n8 n7 = 1.2e-3, tc1=8e-3,tc2=1e-6
res.rvthres n22 n8 = 1, tc1=-2e-3,tc2=-9.5e-6
res.rvtemp n18 n19 = 1, tc1=-2.6e-3,tc2=2e-7
sw_vcsp.s1a n6 n12 n13 n8 = model=s1amod
sw_vcsp.s1b n13 n12 n13 n8 = model=s1bmod
sw_vcsp.s2a n6 n15 n14 n13 = model=s2amod
sw_vcsp.s2b n13 n15 n14 n13 = model=s2bmod
v.vbat n22 n19 = dc=1
equations {
i (n51->n50) +=iscl
iscl: v(n51,n50) = ((v(n5,n51)/(1e-9+abs(v(n5,n51))))*((abs(v(n5,n51)*1e6/500))** 10))
}
}
18
22
+-
6
8
+
-
19
8
+-
17
18
6
8
+
-
5
8+
-
RBREAK
RVTEMP
VBAT
RVTHRES
IT
17 18
19
22
12
13
15
S1A
S1B
S2A
S2B
CA CB
EGS EDS
14
8
13
8
14
13
MWEAK
EBREAK
DBODY
RSOURCE
SOURCE
11
73
LSOURCE
RLSOURCE
CIN
RDRAIN
EVTHRES 16
21
8
MMED
MSTRO
DRAIN
2
LDRAIN
RLDRAIN
DBREAK
DPLCAP
ISCL
RSLC1
10
5
51
50
RSLC2
1
GATE RGATE
EVTEMP
9
ESG
LGATE
RLGATE
20
+
-
+
-
+
-
6
FDD8870-F085 N-Channel PowerTrench ®MOSFET
www.onsemi.com
9
a a e lrademavks av Semxcunduclm Cnmvnnems In "sine \ghlsmanumhernlpalems \rademavks Dav www mm cumrsuerguwaxem Mavkmg gm
ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries.
ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor’s product/patent
coverage may be accessed at www.onsemi.com/site/pdf/PatentMarking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein.
ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages.
Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards,
regardless of any support or applications information provided by ON Semiconductor. “Typical” parameters which may be provided in ON Semiconductor data sheets and/or
specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer
application by customer’s technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not
designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification
in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized
application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and
expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such
claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This
literature is subject to all applicable copyright laws and is not for resale in any manner.
PUBLICATION ORDERING INFORMATION
N. American Technical Support: 8002829855 Toll Free
USA/Canada
Europe, Middle East and Africa Technical Support:
Phone: 421 33 790 2910
Japan Customer Focus Center
Phone: 81358171050
www.onsemi.com
LITERATURE FULFILLMENT:
Literature Distribution Center for ON Semiconductor
19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA
Phone: 3036752175 or 8003443860 Toll Free USA/Canada
Fax: 3036752176 or 8003443867 Toll Free USA/Canada
Email: orderlit@onsemi.com
ON Semiconductor Website: www.onsemi.com
Order Literature: http://www.onsemi.com/orderlit
For additional information, please contact your local
Sales Representative
© Semiconductor Components Industries, LLC